Lancing of oxygen

Information

  • Patent Application
  • 20070287109
  • Publication Number
    20070287109
  • Date Filed
    August 23, 2006
    18 years ago
  • Date Published
    December 13, 2007
    17 years ago
Abstract
A method for providing uniform heat distribution within a furnace as well as decreasing the amount of NOx in the combustion products, when operating an industrial furnace having at least one conventional burner using air as the oxidant. At least one lance is connected with the furnace, and an oxidant including oxygen gas is flowed into the furnace through the lance to impinge against a flame issuing from the burner at a certain impingement point. The amount of oxygen supplied by the air supply to the burner together with the amount of oxidant issuing from the lance corresponds with the stoichiometric amount for a fuel supplied to the burner. At least 50% of the supplied oxygen for combustion is supplied through the lancing of oxidant, and the oxidant is flowed into the furnace through the lance at a velocity of at least 200 m/s.
Description

BRIEF DESCRIPTION OF THE DRAWING

The invention will now be described in detail, with reference to the exemplifying embodiments of the lancing method according to the invention, and with reference to the attached drawing, wherein:



FIG. 1 is a sectional view of an industrial furnace with a burner using air as the oxidant, where the furnace has been provided with an oxidant lance in accordance with an embodiment of the method of the present invention.



FIG. 2
a is a sectional view similar to FIG. 1 of an industrial furnace that has been provided with two oxidant lances in accordance with an embodiment of the method of the present invention, oriented along the centerline I-I of FIG. 2a.



FIG. 2
b is a sectional view of an industrial furnace similar to FIG. 2a that has been provided with two oxidant lances in accordance with an embodiment of the method of the present invention, oriented along the centerline II-II of FIG. 2b, rotated 90° relative to FIG. 2a.





DESCRIPTION OF THE PREFERRED EMBODIMENTS

In FIG. 1, a rotating industrial furnace is depicted. The furnace 1 is heated by the use of a conventional burner 2, using natural gas 7 as the fuel and air 8 as the oxidant. However, it should be understood that the fuel can be any other suitable fuel, such as various liquid or gaseous hydrocarbons. The burner 2 has an associated flame 6, and is mounted in a furnace door 3, which is arranged at a first end of the furnace 1. Through an opening at the other end of the furnace 1 from burner 2, combustion products 9 exit from the furnace.


The inside diameter of the furnace 1 can, by way of example, be 3.5 m, and it can be about 12 m in length. It can be used for melting out metallic aluminum from so-called dross, which consists of a mixture of aluminum and aluminum oxide. Because of the size of the furnace 1, it must be rotated in order to be able to maintain a sufficiently uniform temperature distribution inside the volume of the furnace. It should be noted, however, that the invention not only is usable in rotary furnaces, but it can also be used in stationary furnaces, and also in furnaces having other areas of application than the processing of dross.


When using the furnace 1 with the conventional burner 2 and without the lancing method according to the present invention, large amounts of NOx compounds will be produced as a residual product from the combustion of the fuel. Furthermore, and as a consequence of the size of the volume of the furnace, rotation of the furnace 1 will not suffice for creating a sufficiently uniform temperature for all desired applications.


According to the present invention, a lance 4 is mounted through the door 3 of the furnace and opens into the volume of the furnace 1. The lance 4 can have an inside diameter of 40 mm, and is provided, in its end facing into the furnace 1, with two discharge openings (not shown) that are arranged at an angle from each other of about 10°, both openings having an inside diameter of 15 mm. The lance is inserted through a drilled hole (not shown) extending through the door 3 of the furnace 1, and the side of the hole which faces into the furnace 1 is brought to a position essentially level with the outer wall surface of the door 3 of the furnace. Through the lance 4, and into the furnace 1, an oxidant having at least 85 weight % oxygen gas is supplied. The oxidant is supplied to the lance 4 under an overpressure of about 4 bars, which results in an exit velocity from the lance discharge openings of about 300 m/s. Because the discharge openings are arranged at an angle relative to each other, the resulting oxidant stream 5 inside the furnace 1 will have a spread of about 10°. The oxidant stream 5 impinges against the flame 6 at a point P, at a distance A from the burner 2. At the point P, the oxidant stream 5 has thus had the time to spread, so that it is broader in width in comparison to its width at the discharge opening of the lance 4.


That the oxidant stream 5 impinges against the flame 6 means, in the present context, that the nearest distance between the oxidant stream 5 and the central axis of the flame 6 is made so small that at least one part of the oxidant stream 5 and at least one part of the flame 6 come into direct contact with one another at the place where the distance between the stream 5 and the flame 6 is minimal.


Because additional oxidant is introduced into the furnace 1 through the lance 4, in addition to the oxidant already fed into the furnace 1 through the burner 2, it is required that the quantity of oxidant supplied through the burner 2 be reduced in order for the stoichiometric equilibrium to be maintained between the amount of fuel supplied and the total amount of oxidant supplied. Thus, the quantity of oxidant supplied by the burner 2 is reduced so that stoichiometric equilibrium is maintained, depending upon the amount of oxidant supplied through the lance 4. In order to achieve the advantages of the present invention, at least 50% of the total supplied oxygen must be supplied through the lance 4. Preferably, about 60% of the oxygen is supplied to the furnace through the lance 4, and 40% of the oxygen through the burner 2.


In the furnace 1, about 60% of the oxygen can be supplied through the lance 4 in the form of an oxidant having at least 85 weight % oxygen gas, and the rest of the oxygen is supplied as a component of the air being supplied through the burner 2. For example, that means that if about 890 m3/h oxygen gas is supplied through the lance 4, at the same time about 585 m3/h oxidant is supplied through the burner 2. Also in that case, about 700 m3/h of natural gas is supplied through the burner 2, whereby stoichiometric equilibrium is achieved for the combustion reaction as a whole.


It should be noted that one can, of course, apply the present invention to industrial furnaces with more than one conventional burner. In those cases at most 50% of the total supplied oxidant is supplied through the burners, and the rest of the oxidant is supplied through lancing.


The distance A is chosen depending upon the intended application, the length of the flame 6, etc., so that a sufficiently strong turbulence is achieved inside the volume of the furnace 1 in order to obtain the advantages of the invention. Preferably, the distance A is chosen to be between ¼ and ½ of the total inside length of the furnace 1, most preferably about ⅓ of the total inside length of the furnace 1.


As the oxidant stream 5 with an oxygen content of as much as 50% or more of the total supplied oxygen, impinges upon the flame 6 with a high velocity, a strong recirculation of the combustion products is achieved. Actually, the high velocity of the lanced oxidant stream 5 creates a reduced pressure region, sucking combustion products into the flame 6, as a result of which the flame 6 will occupy a larger volume. Consequently, the combustion temperature inside the flame 6 falls to such levels that the production of NOx compounds drastically decreases during combustion, which is desirable. Furthermore, the inventor has been able to verify the turbulence-creating effect that the lancing of oxygen at elevated velocities provides inside the volume of the furnace, and thereby convection currents, so that the temperature distribution in the furnace is maintained at a relatively uniform level, and so that the operation becomes smooth, even when the method is utilized in very large industrial furnaces.


When put into practice in the furnace 1, the present invention can be applied in three distinct phases:


In the first phase, the cold or preheated material to be heated inside the furnace 1 is charged. In the second phase, the burner 2 is operated at a high heat output, and additional oxidant is also lanced into the furnace 11 under stoichiometric equilibrium. That provides the advantages associated with the present invention in terms of low NOx production and good temperature uniformity within the furnace. Once the material is completely heated, at which time only maintenance heating is required to avoid cooling down of the heated material, the third phase is initiated. During that third phase the lancing of additional oxidant is terminated, and the share of the oxidant that is supplied through the burner 2 is increased, in order to maintain the stoichiometric equilibrium. Moreover, in the third phase the heat output of the burner 2 is decreased as compared to the heat output during the second phase.


In that way, the lancing according to the present invention, when it is put into practice together with a furnace 1, can be switched on or off during distinct production steps, depending upon the demand for high temperature uniformity and low NOx production, in combination with the demand for a high or a low heat output.


Furthermore, it is relatively inexpensive to mount a lance 4 for the lancing of oxidant into the interior of an industrial furnace 1 having a burner 2 that uses air as the oxidant, in comparison with, for example, installing an oxyfuel burner in such an industrial furnace 1, because the lance can be easily mounted at, for instance, a drilled hole in the door 3 of the furnace 1. Further, a lance can be positioned so that its oxidant discharge opening is flush with an interior surface of the furnace.


When using only one lance along with a burner, there is a risk of problems arising with respect to asymmetrical heat distributions inside the flame, as described above. Therefore, it is in some cases desirable to use several, cooperating lances along with every burner. FIGS. 2a and 2b show an industrial furnace 11, shown in two different views rotated relative to each other at an angle of 90°, with a conventional burner 12 and two such cooperating lances 14a, 14b, arranged at a door 13 in one of the ends of the furnace 11. In that case, the lances 14a, 14b are directed so that the distance between their respective oxidant streams 15a, 15b is at its minimum at a point at or near a common point of impact PP in the flame 16 of the burner 12, and so that the respective oxidant streams 15, 15b are directed partly towards each other, but do not intersect directly. As is shown in FIGS. 2a and 2b, the lances 14a, 14b are directed toward the flame 16 at two different angles that are inclined with respect to the longitudinal axis of the burner 11. Thus, their respective oxidant streams 15a, 15b pass on a respective side of the flame 16, in the border areas of the flame 16 on each side, where they stream near each other but partly in opposite rotational directions. Thus, they will essentially neutralize any thermal asymmetries of combustion in the flame 16, and at the same time they will further increase the turbulence, and consequently the convection, within the volume of the furnace by giving rise to a spiral-shaped motion inside the furnace volume. Thus, the advantages of the present invention, in terms of low NOx production in combination with high temperature uniformity, are achieved at the same time because any thermal asymmetries in the flame 6 are avoided.


In the event several lances are utilized in a furnace having several conventional burners, the lanced streams of oxidant could very well strike the different flames at several distinct points of impact. The choice of burner and lance geometries relative to the furnace will thus depend upon the particular furnace application.


Preferred embodiments have been described above. However, it will be apparent to the person skilled in the art that numerous modifications are possible to the described embodiments without departing from the inventive idea. Thus, the invention should not be considered to be limited by the described embodiments, but could rather be modified within the scope of the appended claims.

Claims
  • 1. A method for uniformly distributing heat within a furnace and for decreasing NOx in combustion products, said method comprising: a. providing a furnace having at least one burner utilizing air as an oxidant for combustion;b. introducing at least one lance into the furnace for selectively providing additional oxidant;c. feeding into the lance an oxidant including gaseous oxygen;d. impinging upon a flame issuing from the burner a stream of oxidant from the lance, wherein oxygen supplied by air introduced into the furnace for combustion and oxygen supplied by oxidant issuing from the lance together provide a stoichiometric amount of oxygen for combustion with a fuel; ande. supplying through the lance at least 50% of a stoichiometric amount of oxygen for combustion, wherein oxidant is fed into the furnace through the lance at a velocity of at least 200 m/s.
  • 2. A method according to claim 1, including the steps of: providing at least two lances in association with a single burner; and arranging the at least two lances at such respective angles that streams of oxidant issuing from the lances are directed so that the distance between them is at its minimum at a point adjacent to a common point of impact of the oxidant streams with a flame issuing from the burner, so that the respective oxidant streams are partly directed toward each other in a non-intersecting relationship.
  • 3. A method according to claim 1, including the step of arranging an oxidant stream and a burner flame so that they impact within the furnace at a point of impact at a distance from an associated burner of between ¼ and ½ of the total interior length of the furnace.
  • 4. A method according to claim 1, including the steps of: controlling oxidant flow from the at least one lance so that the flow is selectively on or off during different processing steps; and regulating an amount of supplied oxygen from an air supply to the at least one burner continuously in correspondence with an amount of supplied fuel so that stoichiometric equilibrium is maintained as the oxidant flow from a lance is turned on or off.
  • 5. A method according to claim 1, including the step of supplying through the at least one lance an oxidant containing at least 85 weight % oxygen gas.
  • 6. A method according to claim 1, including the step of positioning each at least one lance so that its oxidant discharge opening is flush with an interior surface of the furnace.
Priority Claims (1)
Number Date Country Kind
0601274-4 Jun 2006 SE national