1. Field of the Invention
The present invention relates generally to an Land Grid Array (LGA) socket connector, and more particularly to an LGA socket connector with an improved load lever which is anti-slippery.
2. Description of Related Arts
TW Pat. No. M331235 issued on Apr. 21, 2008 and having the same assignee as the present patent application discloses a traditional LGA socket connector. The LGA socket connector comprises an insulative housing, a plurality of contacts received in the insulative housing, a stiffener attaching to periphery of the insulative housing, a load plate pivotally mounted to one side of the stiffener, and a load lever pivotally mounted on the opposite side of the stiffener. The load plate is arranged at an original, open position when the socket connector is not in use. A CPU (Central Processing Unit) is put onto the insulative housing and a user rotates the load lever to actuate the load plate to move towards the insulative housing, and therefore, the CPU is received between the insulative housing and the load plate for electrically connection with the contacts. When the CPU is assembled, the load plate is at a final, closed, and secured position with respect to the insulative housing. Usually, the load lever is L-shaped and has a fixing part, an actuating part perpendicular to the fixing part and an operating part formed at the distal end of the actuating part and commonly shaping as a “U” figure. The load lever is commonly made of a metallic shaft and the operating part is rather slippery, and therefore, is not friendly operated by the user.
Hence, a socket connector having a friendly using load lever is desired to overcome the aforementioned disadvantage of the prior art.
Accordingly, an object of the present invention is to provide a socket connector having a load lever which is friendly operated.
To achieve the above object, a socket connector includes an insulative housing, a number of contacts received in the insulative housing, a stiffener attaching to periphery of the insulative housing, a load plate pivotally mounted to one side of the stiffener, a load lever pivotally mounted on the opposite side of the stiffener relative to the load plate, and a sheath piece attached to the operating part of the load lever. The load lever includes a fixing part, an actuating part perpendicular to the fixing part, and an operating part formed at the distal end of the actuating part. The load plate is capable of moving towards the insulative housing between an original, open position and a final, closed position.
Other objects, advantages and novel features of the invention will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings.
Reference will now be made in detail to the preferred embodiment of the present invention.
Referring to
Referring to
In the present invention, because the sheath piece 5 is attached to the operating part 43, it increases a area for finger and accordingly, it facilitates the operation of the user. Moreover, the sheath piece 5 forms a plurality of ribs 52 for interference and it prevents slipping when the user operates the load lever 5.
While a preferred embodiment in accordance with the present invention has been shown and described, equivalent modifications and changes known to persons skilled in the art according to the spirit of the present invention are considered within the scope of the present invention as described in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
98214397 | Aug 2009 | TW | national |