1. Technical Field
Embodiments of the subject matter disclosed herein generally relate to methods and systems for collecting seismic data using a vertical hydrophone cable or a buried hydrophone and, more particularly, to mechanisms and techniques for increasing a coupling of a hydrophone with the ground.
2. Discussion of the Background
Land seismic data acquisition and processing may be used to generate a profile (image) of the geophysical structure under the ground (subsurface). While this profile does not provide an accurate location for oil and gas reservoirs, it suggests, to those trained in the field, the presence or absence of such reservoirs. Thus, providing a high-resolution image of the subsurface is important, for example, to those who need to determine where oil and gas reservoirs are located.
Traditionally, as illustrated in
After all the hydrophones have been deployed, one or more seismic sources are brought into the field and actuated to generate seismic waves, which propagate through the ground until they are reflected by various reflectors. The reflected waves propagate to the hydrophones, where a pressure change of the earth is recorded. However, if the generated pressure waves encounter any obstacles along their paths that extend through the ground, well, water and hydrophone, the recorded data is of poor quality.
A hydrophone typically has a cylindrical shape and a small size. Thus, a gap between the hydrophone and the well might be a problem when the hydrophone does not tightly fit into the well (supposing that the hydrophone is directly placed into the well). The pressure wave path is improved if the hydrophone's diameter is close to the diameter of the well, i.e., if the hydrophone is in tight contact with the well's walls. However, obtaining tight contact is difficult. Thus, the coupling between the ground and hydrophone is traditionally poor, and also not well understood. The hydrophone-ground coupling may be defined as the difference between the pressure measured by the hydrophone and the pressure in the ground without the hydrophone. This definition is appropriate for designing a hydrophone.
However, once the hydrophone is designed and needs to be deployed, the practicing geophysicist has to deal with the fact that the hydrophone may not be appropriately deployed. For example, the hydrophone may not be “well” coupled to its surroundings. In this situation, the above definition might not be appropriate. For this situation, what those skilled in the art would consider a “bad” hydrophone coupling refers to the difference between the pressure as measured by the badly coupled hydrophone and the pressure as measured by the well-coupled hydrophone.
Irrespective of the used definition, the ground-hydrophone coupling is a persistent problem in the art because it is difficult to make the casing of the hydrophone to have tight contact with the well and, at the same time, to ensure that the hydrophones are easily inserted and/or retrievable from the well. One method known in the industry is to attach a cable 110 with high mechanical resistance to the casing of each hydrophone and, when it is time to remove the hydrophones, to pull this cable up. However, if the well has collapsed at the location of one hydrophone, that hydrophone may be stuck at that position, and even pulling the cable 110 may not retrieve the hydrophone.
Therefore, there is a need to improve the coupling of the hydrophone to the ground and at the same time to make easier and safer the process of retrieving the hydrophones.
According to an embodiment, there is a seismic sensor system for collecting seismic data in a well. The system includes a pipe to be deployed inside the well, the pipe having a distal end; a first sensor located inside the pipe, next to the distal end; and a bladder jacket in which the pipe is placed, the bladder jacket being configured to hold a fluid. The pipe has holes next to the first sensor so that the fluid surrounds and contacts the first sensor.
According to another embodiment, there is a seismic sensor system for collecting seismic data in a well. The system includes a support member configured to be lowered into the well; a bag attached to the support member and configured to contain a fluid; a feeding pipe configured to feed the fluid inside the bag, the feeding pipe extending into the bag; and a seismic sensor attached to the support member. The seismic sensor is located inside the bag.
According to still another embodiment, there is a seismic sensor system for collecting seismic data in a well. The system includes a pipe configured to be lowered into the well, the pipe having an open end; a bag attached to the pipe at the open end and configured to contain a fluid; a feeding pipe configured to feed the fluid inside the pipe; and a seismic sensor located inside the pipe, near its open end. The seismic sensor is located inside the bag.
According to yet another embodiment, there is a seismic sensor system for collecting seismic data in a well. The system includes a flexible bag; a seismic sensor located inside the flexible bag and configured to detect seismic data; and a support member attached to the flexible bag. A hardening material is poured over the flexible bag when inside the well so that the hardening material is distributed below, on the side and above the flexible bag.
For a more complete understanding of the present invention, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
The following description of the exemplary embodiments refers to the accompanying drawings. The same reference numbers in different drawings identify the same or similar elements. The following detailed description does not limit the invention. Instead, the scope of the invention is defined by the appended claims. The following embodiments are discussed, for simplicity, with regard to the terminology and structure of a land buried hydrophone. However, the embodiments to be discussed next are not limited to a land buried hydrophone, but may be applied to a combination of hydrophones and geophones.
Reference throughout the specification to “one embodiment” or “an embodiment” means that a particular feature, structure or characteristic described in connection with an embodiment is included in at least one embodiment of the subject matter disclosed. Thus, the appearance of the phrases “in one embodiment” or “in an embodiment” in various places throughout the specification is not necessarily referring to the same embodiment. Further, the particular features, structures or characteristics may be combined in any suitable manner in one or more embodiments.
According to an exemplary embodiment illustrated in
Further, connector mechanism 204 and cap 206 are so configured that fluid 208 does not leak outside envelope 202 when the fluid 208 is pressurized. An electric cable 210 connects connector mechanism 204 to each of the hydrophones 212 distributed inside vertical or slanted hydrophone cable 200. In the following, it is noted that the term “vertical” means that an angle formed between hydrophone cable 200 and gravity is smaller than a few degrees, e.g., smaller than 10 degrees. A slanted cable makes an angle larger than 10 degrees.
Hydrophone 212 includes a casing 212A inside which is provided a hydrophone sensor 212B. A hydrophone sensor is configured to detect pressure changes. As the hydrophone is configured to detect a pressure change in the environment, hydrophone 212 is floating in fluid 208, which transmits the pressure changes from the envelope. Thus, envelope 202 is made of a flexible material, for example, polyurethane. In this way, any pressure change in the dirt around vertical hydrophone cable 200 is accurately transmitted to envelope 202, then to fluid 208, and finally to hydrophone 212.
To improve the coupling between envelope 202 and the ambient soil 300 of a well 302, as shown in
Fluid 208 may be a bio-degradable oil, mineral oil, water, etc. One purpose of fluid 208 is to ensure better contact between the envelope (and consequently the hydrophone) and the walls of the well. This is further explained next while also explaining how the retrievable vertical hydrophone cable is deployed and retrieved from a well.
The retrievable vertical hydrophone cable 200 is initially inserted into the well 302 having a given amount of fluid 208. This fluid is not under pressure except its own hydrostatic pressure. A distance h1 between connector mechanism 204 and the first hydrophone 212 is about 2 to 4 m. A distance between adjacent hydrophones is about 1.5 to 3 m. Other distances may be used as a function of the goals of the seismic survey. Any number of hydrophones may be attached to vertical hydrophone cable 200. However, a length of vertical hydrophone cable 200 is between 3 and 10 m.
To easily insert vertical hydrophone cable 200 into well 302, the external diameter d1 of retrievable vertical hydrophone cable 200, i.e., an external diameter of envelope 202, is slightly smaller than the internal diameter d2 of well 302. Once the retrievable vertical hydrophone cable 200 is in place, a gap 304 (exaggerated in
Fluid 208 is trapped inside the envelope and is not supposed to escape outside the envelope except in a controlled way through connector mechanism 204. In the event that the envelope's integrity is compromised, if fluid 208 is a bio-degradable oil or water, there is minimal impact to the environment. Other types of fluids may be used.
Seismic data from the hydrophones is collected through the electrical cable 210, which connects each hydrophone to connector mechanism 204. Thus, connector mechanism 204 is an electric and hydraulic connector.
After the seismic survey has been completed, to retrieve the retrievable vertical hydrophone cable 200, some of fluid 208 is released from envelope 202 or its pressure is decreased, so that the envelope is deflated (i.e., its volume is reduced) to not be in tight contact with the walls of well 302. In this way, retrievable vertical hydrophone cable 200 can easily be returned to the surface.
The above process may be summarized based on the flowchart shown in
Note that the retrievable vertical hydrophone cable is intended to replace traditional geophones 500 that are deployed, in a horizontal manner, above or below ground 502 as illustrated in
In another embodiment illustrated in
A pipe 740 may be configured to enter inside pipe 710, past the sealing member 732, to supply fluid 722. A pump 742 supplies fluid 722 and the pump is located at the surface 760. One or more electrical wires 750 connect the hydrophone and geophone to a recording unit 752, also located at the surface 760. In one application, a clamping mechanism 770 may be attached to pipe 710. Clamping mechanism 770 is deployed when pipe 710 is in place and achieves a better coupling of the geophone with the well. Thus, for this reason, clamping mechanism 770 is located next to geophone 704. The clamping mechanism may be retrievable, i.e., it may have a biasing mechanism 772 (e.g., spring) that may be remotely controlled to be retrieved inside or next to pipe 710. The bladder jacket may be left behind after the sensors and corresponding pipes are retrieved. In one application, pipe 710 may accommodate a vertical hydrophone and/or geophone cable.
Another embodiment is illustrated in
In one application, a diameter D of the bag is much larger than a diameter d of the hydrophone, e.g., D may be 4 inches (e.g., it may match the diameter of the well) and d may be 2 inches (e.g., it is half or less the diameter of the bag). A height H of bag 808 may be around 12 to 15 inches. A depth of the bag relative to the surface 820 may be between 2 to 20 m.
Next, a process of deploying system 800 is addressed. After well 810 is drilled (manually or with a small rig because its depth is not more than 30 m) to have diameter D, support 804 (having the hydrophone and bag attached to its end as illustrated in
One way is to retrieve the sensor and not the bag. For this embodiment, the bag is left behind. This may be especially convenient when debris 840 partially covers bag 808. Thus, by pulling support 804 up, a connection 830 between bag 808 and support 804 may be broken so that the bag is left behind and the sensor is pulled up. In another embodiment, a string 832 may be connected with one end to connection 830 and with another end to the surface so that an operator (not shown) can manually disconnect the bag from the support.
Still in another embodiment, it is possible that debris 840 is removed prior to pulling bag 808 outside the well. In one application, it is possible to use a pneumatic drill that pumps compressed air to remove the debris about the bag. In another embodiment, it is possible to place a debris barrier 850 above the bag. When it is time to remove the bag, the debris barrier may be lifted from the surface to remove all the debris, and then the bag may be retrieved. To lift the debris barrier, it is possible to fixedly attach it to support 804 or to have a dedicated mechanism (e.g., chain) 852 for pulling up the barrier independent of the bag and sensor.
The length of the bag and its shape may vary. Some of the above embodiments have shown the bag extending from the surface to the bottom of the well, others have shown the bag being localized, i.e., extending only around a sensor at the bottom of the well. For this last case, it is possible to add a weight 900 on top of bag 808 for achieving a better coupling with the well, as illustrated in
In still another embodiment, illustrated in
According to another exemplary embodiment illustrated in
A barrier 1040 may be located inside pipe 1010, above sensor 1002 to prevent vibrations and to provide acoustic insulation properties. Barrier 1040 may be fixed relative to pipe 1010 and may be made of a solid (rigid) material. Barrier 1040 is made to withstand water pressure if water 1042 is added above it. Also, the barrier may be configured to insulate water 1042 from fluid 1006. When it is time to retrieve the sensor, the bag may be emptied (partially or totally) of the fluid and then left behind, similar to the embodiment discussed with regard to
A more permanent assembly is now discussed with regard to
In more detail,
This embodiment is more successful during installation than traditional configurations because there is no danger of having a hydrostatic head in the hoses connecting the bag that can reach very high pressures, rupturing the flexible bag. This possibility does not happen in this embodiment as the pressures are more balanced because of the external pressure of the cement and any additional head of water. In a deep borehole, if there is significant head of water or drilling fluid, a large pressure can be exerted externally on the flexible bah. To prevent this pressure on acting on the bag, it is possible to blow compressed air to clear the drilling fluid, before inserting the assembly and the cement. In this way, the maximum external pressure is controlled by the head of cement.
With respect to one or more of the embodiments discussed above, if it is desired to reuse the bag when the sensor is pulled out of the well, care needs to be exercise for preventing the bag to being punctured by rock formations in the well. One way to avoid such undesirable outcome, is to provide a net 1230 over bag 1208 as illustrated in
The disclosed exemplary embodiments provide a method and a retrievable hydrophone. It should be understood that this description is not intended to limit the invention. On the contrary, the exemplary embodiments are intended to cover alternatives, modifications and equivalents, which are included in the spirit and scope of the invention as defined by the appended claims. Further, in the detailed description of the exemplary embodiments, numerous specific details are set forth in order to provide a comprehensive understanding of the claimed invention. However, one skilled in the art would understand that various embodiments may be practiced without such specific details.
Although the features and elements of the present exemplary embodiments are described in the embodiments in particular combinations, each feature or element can be used alone without the other features and elements of the embodiments or in various combinations with or without other features and elements disclosed herein.
This written description uses examples of the subject matter disclosed to enable any person skilled in the art to practice the same, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the subject matter is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims.
Number | Date | Country | |
---|---|---|---|
61790918 | Mar 2013 | US |