The present invention relates to a land vehicle with a chassis and a plurality of corner support units attached thereto.
For various land vehicles, it is important that they can be leveled in parked condition (on a ground surface) and be stabilized in the leveled position. This is the case in particular for camping vehicles, particularly for recreational vehicles. For this purpose, the land vehicles in question are provided with several corner support units, which respectively comprise a support leg that can be lowered onto the ground surface.
Such corner support units are known in various designs. In this connection, a distinction must be made in particular as to whether a support leg with fixed predetermined length (e.g. DE 7806499 U, U.S. Pat. No. 6,089,603 A, EP 163544 A, GB 2109322 A) or else a support leg with variable length is used. In the last case mentioned, the support legs may in particular comprise several elements that can be displaced longitudinally (e.g. hydraulically) in the manner of a telescope relative to one another or else several members joined in the manner of a scissors lift (see U.S. Pat. No. 4,784,400 A) to one another in articulated manner, wherein the longitudinally displaceable support leg in question may additionally be mounted to swivel (between an operating position and a storage position) around a substantially horizontal axis. Examples of the prior art in this regard can be found in WO 2007/023347 AI, U.S. Pat. No. 4,174,094 A, U.S. Pat. No. 6,619,693 B1, US 2004/0046337 AI, EP 1000828 AI, U.S. Pat. No. 5,013,011 A and U.S. Pat. No. 4,061,309 A, the disclosure of which is incorporated by reference as content of the present Application. In the case of corner support units with a support leg having a fixed predetermined length, the support leg is regularly mounted to swivel around a substantially horizontal axis. In order to brace the land vehicle on the ground surface, the support leg in this case is swiveled from its raised storage position into its lowered operating position, until it rests on the ground surface via a foot disposed (in articulated manner if necessary) at its end, and the land vehicle in conjunction with its further corner support units is leveled and stabilized in the leveled position.
In view of the partly conflicting requirements (e.g. high performance capability, large working range, small overall size or small dimensions, robustness, high reliability, low manufacturing costs, possible retrofit capability, etc.), as are imposed in practice on the corner support units themselves under consideration here and on their integration into the vehicle environment, it proves difficult for which the large number of approaches (see above) can be rated as an indicator to conceive of a solution that is satisfactory in every respect.
The objective of the present invention is to contribute to an improvement of the functional capability of land vehicles with corner support units mentioned in the introduction. In particular, it is intended to provide such a land vehicle wherein the leveling system, which is used to level the vehicle and to stabilize it in the leveled position and which comprises a plurality of corner support units, that on the whole satisfies the requirements imposed in practice to the best possible extent.
This object is achieved by the land vehicle specified in the claims. One of the core features of the present invention that achieves the foregoing object is therefore that each of the corner support units has a support leg, which is mounted in articulated manner to swivel around a substantially horizontal axis in a bearing shoe attached rigidly to the land vehicle, and the length of which is telescopically variable. Each of these support leg comprises at least two tubular portions that can be displaced relative to one another in longitudinal direction of the support leg, and a hydraulic cylinder is disposed in the interior of the support leg. The position of the at least two tubular portions relative to one another (and thus the length of the support leg) can be varied by means of the said hydraulic cylinder. The hydraulic cylinder may therefore also be referred to as a lifting cylinder, because therewith corresponding to the possible stroke length the support foot disposed in end position on the support leg can be retracted and extended. What is decisive in this connection is that force-transmitting guidance of the at least two tubular portions of the support leg relative to one another is provided (for example, by means of suitable slideways), so that transmission of force components directed transversely to the longitudinal axis of the support leg in question takes place directly from one tubular portion to the other tubular portion. In contrast, no transverse forces of any kind act on the (separate) hydraulic cylinder disposed in the interior of the support leg. To the contrary, the hydraulic cylinder is loaded exclusively in its longitudinal direction, i.e. in axial direction of the support leg, during operation of the respective corner support unit. Consequently, that component of the force which is oriented in longitudinal direction of the support leg and is transmitted into the support foot is on the one hand decoupled, so to speak, from that force component which is oriented transversely to the longitudinal direction of the support leg and acts for example by developing due to placement of the support leg on an uneven ground surface on the support foot. The last-mentioned component is transmitted from the support foot via the at least two tubular portions and the bearing of the support leg (see hereinafter) directly into the land vehicle.
Furthermore, it is characteristic of the inventive land vehicle that the inventive land vehicle has several hydraulic aggregates, by the fact that each individual corner support unit is assigned its own hydraulic aggregate, which alone serves to pressurize the hydraulic cylinder (as well as an additional swiveling cylinder that may be provided; see hereinafter) disposed in the interior of the support leg of that corner support. In this connection, preferably a central control and regulating unit is provided, which controls the hydraulic aggregates depending on a position sensor, which senses the orientation of the vehicle in such a way that the land vehicle occupies and remains in the intended horizontal orientation. These decentrally provided hydraulic aggregates are particularly advantageously disposed in a mechanically protected position on the bearing shoes for the support legs, which shoes are rigidly attached to the land vehicle. The invention can be implemented by providing hydraulic lines, which are usually but certainly not necessarily flexible (see hereinafter), albeit of only short length and in a relatively protected arrangement, so that the risk of damaged hydraulic lines is small.
In this connection, the at least two tubular portions of each support leg may have circular cross sections. However, polygonal cross sections may prove particularly favorable, for example if the tubular portions are constructed in the shape of square or rectangular tubes.
Preferably the inventive land vehicle can be further improved by the features and technical viewpoints individually or else in combination with one another presented hereinafter.
Within the scope of the present invention, the respective support leg can typically be swiveled from a raised home or storage position (where it has been swiveled more or less horizontally) into a substantially vertical operating position. The said swiveling of the support leg can be achieved by providing a swiveling drive that specially serves this purpose, for example a hydraulic cylinder, which is linked on the one hand to the bearing shoe and on the other hand especially to the tubular portion of the support leg that is mounted thereon in articulated manner. Other swiveling drives familiar to the person skilled in the art (e.g. in the form of an electric motor) may likewise be considered.
According to another preferred improvement, no separate swiveling drive is provided, but instead the hydraulic cylinder disposed in the support leg not only causes the support leg to change its length telescopically but instead also causes it to swivel. This may take place in particular by using a sliding block guide, which couples the length change and the swiveling of the support leg mechanically with one another. In this context, for example in the case of a corner support having a support leg that comprises two tubular portions, at least one laterally protruding roller bolt, which passes through the outer tubular portion (e.g. via an oblong hole) and extends into a connecting link disposed on the bearing shoe, may be joined to the inner tubular portion. The geometry of this connecting link may in particular be chosen such that, at the beginning of extension of the support leg, the swiveling movement of the support leg from the storage position into the operating position takes place during a relatively short fraction of the stroke length, whereas, during the subsequent preponderant fraction of the stroke length, the support foot is lowered without further changing the orientation of the axis.
In yet another preferred improvement, the support foot disposed in end on the support leg is spring-mounted on the associated outermost tubular portion (at least in longitudinal direction of the support leg). Consequently, the support foot is able to act as a compressed spring to some extent relative to the outermost tubular portion of the support leg. This proves to be particularly advantageous with respect to keeping the land vehicle steady and in fixed position on a more or less soft ground surface, because all corner support units maintain ground contact within the range of the spring travel of the support foot relative to the associated tubular portion of the support leg, even if the ground surface gives way. In other respects, steadiness is favored when the support foot is constructed in the form of a plate mounted in articulated manner on the support leg via a universal joint.
In the case of swivelable support legs (see hereinabove), means may be additionally provided that are capable of securing the support leg when it is swiveled into its home or storage position. Mechanical means in particular (e.g. clamps) or else even magnetically acting means may be used for this purpose. In particular, the means in question for securing the support leg in its home position may engage with the outermost tubular portion carrying the support foot. This makes it possible to disengage the means simply, by lengthening the support leg using the hydraulic cylinder disposed in it telescopically.
In yet another preferred improvement, an external hydraulic pressure accumulator may be provided, which is maintained under pressure during regular operation. Via a manually actuatable emergency valve, the pressure accumulator can be placed in communication with a valve group, so that, in the emergency situation, all corner supports using the hydraulic energy stored in the hydraulic pressure accumulator can be retracted or extended at least one more time.
By means of several preferred embodiments, significant technical viewpoints, features and aspects explained in the foregoing are illustrated in the attached drawing on the basis of appropriate specific details. The fact that, as stated hereinabove, the present invention is not limited to the exemplary embodiments according to the figures should be self-evident, but nevertheless is expressly emphasized once again here.
In the drawing,
According to
In each corner support unit 3, support leg 4, as is illustrated schematically, is mounted to swivel around a horizontal axis A in a bearing shoe 32 joined rigidly to chassis 2 of land vehicle 1. A decentralized hydraulic aggregate 40 assigned to the respective corner support unit 3 is disposed on each bearing shoe.
According to the configuration illustrated in
A support foot 12 is provided at the bottom end of inner tubular portion 6 of support leg 4. This comprises a plate 13, which is mounted to swivel on a carrying part 14. Carrying part 14 can be displaced in inner tubular portion 6 in longitudinal direction X of support leg 4, wherein the maximum displacement travel is defined by cooperation of a transverse bolt 15 disposed on carrying part 14 with two oblong holes 16 formed in inner tubular portion 6. In this connection, support foot 12 is spring-mounted on support leg 4, by the fact that a helical spring 17 extends between the front side of inner tubular portion 6 of support leg 4 and carrying part 14 of support foot 12. Thus support foot 12 can act as a spring that is compressed corresponding to its load.
A hydraulic cylinder 19 is disposed in the interior of support leg 4, i.e. in the cavity 18 bounded by outer tubular portion 5 and inner tubular portion 6. The position of the at least two tubular portions 5 and 6 relative to one another and thus the length of support leg 4 can be varied with this. The two tubular portions 5 and 6 are guided slidingly with low friction relative to one another by means of sliding bearing pieces 20, wherein the lower sliding bearing pieces 20 additionally prevent ingress of dirt into the interior of support leg 4.
The two hydraulic cylinders 9 and 19 of each corner support unit 3 are pressurized by decentralized hydraulic aggregate 40 (see hereinabove) associated respectively with them. Activation of the four decentralized hydraulic aggregates takes place by a central control and regulating unit 21 comprising a leveling controller, in response to a position sensor 22, which senses the orientation of the vehicle, in such a way that the land vehicle occupies and remains in the intended horizontal orientation (see
The exemplary embodiment, shown in
Furthermore, in the exemplary embodiment according to
In the embodiment, shown in
In other respects, the exemplary embodiment according to
The exemplary embodiment according to
Bearing shoe 32 has an extension 42 constructed as a stop plate 41, against which support leg 4 is braced with its head part 7 in operating position (
In this exemplary embodiment, plate 13 of support foot 12 can be swiveled (to a limited extent) in all directions, i.e. is mounted via a universal joint, at linkage point 45 on an intermediate plate 46. Intermediate plate 46 in turn is mounted to swivel eccentrically on bottom closure part 47 of support leg 4, wherein the corresponding swiveling axis B extends parallel to swiveling axis A of support leg 4. Hereby plate 13 of support foot 12 automatically occupies a flat traveling position defined by stop 48 when support leg 4 is raised, i.e. swiveled into its storage position (
Number | Date | Country | Kind |
---|---|---|---|
10 2015 112 321 | Jul 2015 | DE | national |
This application is a continuation under 35 U.S.C. § 120 of International Application PCT/EP2016/068035, filed Jul. 28, 2016, which claims priority to German Application 10 2015 112 321.5, filed Jul. 28, 2015, the contents of each of which are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
3062385 | Thompson | Nov 1962 | A |
3219362 | Epstein | Nov 1965 | A |
3666290 | Dalton | May 1972 | A |
3734531 | Metaillier | May 1973 | A |
3857582 | Hartog | Dec 1974 | A |
3901532 | Hornagold | Aug 1975 | A |
3912288 | F'Geppert | Oct 1975 | A |
3990714 | Hornagold | Nov 1976 | A |
4061309 | Hanser | Dec 1977 | A |
4118054 | Vigerie | Oct 1978 | A |
4165861 | Hanser | Aug 1979 | A |
4174094 | Valdespino et al. | Nov 1979 | A |
4235542 | Paterik, Jr. | Nov 1980 | A |
4394912 | Epps | Jul 1983 | A |
4619369 | Mertens | Oct 1986 | A |
4634144 | Ringe | Jan 1987 | A |
4662610 | Cofer | May 1987 | A |
4743037 | Hanser | May 1988 | A |
4784400 | Hofius | Nov 1988 | A |
5013011 | Halloway | May 1991 | A |
5143386 | Uriarte | Sep 1992 | A |
5192102 | Mertens | Mar 1993 | A |
5409251 | Thorndyke | Apr 1995 | A |
6089603 | Ackley | Jul 2000 | A |
6099034 | Fujishima | Aug 2000 | A |
6619693 | Sproatt et al. | Sep 2003 | B1 |
9701286 | Dickerson | Jul 2017 | B2 |
9963123 | Dominguez | May 2018 | B2 |
20040046337 | Sproatt et al. | Mar 2004 | A1 |
20060082079 | Eichhorn | Apr 2006 | A1 |
20070180719 | Donnelly | Aug 2007 | A1 |
20100301293 | Venter | Dec 2010 | A1 |
20120173094 | Steinich | Jul 2012 | A1 |
20150006027 | Maurer | Jan 2015 | A1 |
20150054271 | Geates | Feb 2015 | A1 |
20150129821 | Dickerson | May 2015 | A1 |
20160075311 | Garceau | Mar 2016 | A1 |
20160185322 | Vierkotten | Jun 2016 | A1 |
20170326691 | Harper | Nov 2017 | A1 |
Number | Date | Country |
---|---|---|
7806499 | Oct 1978 | DE |
102010020452 | Nov 2011 | DE |
0163544 | Dec 1985 | EP |
1000828 | May 2000 | EP |
2418131 | Feb 2012 | EP |
2109322 | Jun 1983 | GB |
2007023347 | Mar 2007 | WO |
Entry |
---|
International Search Report, dated Sep. 30, 2016, for corresponding International Application No. PCT/EP2016/068035. |
Number | Date | Country | |
---|---|---|---|
20180148018 A1 | May 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP2016/068035 | Jul 2016 | US |
Child | 15880744 | US |