The present invention relates to a lane-keep control system which controls the vehicle so as to travel within a target lane.
Japanese Patent Provisional Publication No. 11-286280 discloses an automatic cruise control system which is arranged to stop an automatic cruise control when a steering operation indicative value due to driver intervention is greater than a threshold.
However, this stop of the automatic cruise control is executed regardless an existence of an approaching subsequent-vehicle relative to a host-vehicle. Accordingly, even if the subsequent-vehicle overtakes and passes the host-vehicle, the automatic cruise control is stopped by a similar manner in a condition that there is no subsequent-vehicle, and this arrangement never restrict the driver to control the host-vehicle to the lane to be passed by the subsequent vehicle.
It is therefore an object of the present invention to provide an improved lane-keep control system which effectively prevents the host-vehicle from deviating from a traveling lane to an adjacent lane when the subsequent vehicle overtakes and passes the host-vehicle through the adjacent lane.
An aspect of the present invention resides in a lane-keep control system which is for a host-vehicle and comprises a control unit. The control unit is programmed to execute a lane-keep control for moving the host-vehicle in a traveling lane, to determine whether there is an approaching-vehicle behind the host-vehicle, to increase an intervention threshold when there is the approaching vehicle behind the host-vehicle, and to suspend the lane-keep control when a steering control indicative value due to driver intervention is greater than the intervention threshold.
Another aspect of the present invention resides in a method of executing a lane-keep control of a host-vehicle, which method comprises a step of executing a lane-keep control for moving the host-vehicle in a traveling lane; a step of determining whether there is an approaching-vehicle behind the host-vehicle; a step of increasing an intervention threshold when there is the approaching vehicle behind the host-vehicle; and step of suspending the lane-keep control when a steering control indicative value due to driver intervention is greater than the intervention threshold.
The other objects and features of this invention will become understood from the following description with reference to the accompanying drawings.
Referring to
As shown in
More specifically, a driver of the host-vehicle controls the direction of the vehicle by manipulating steering wheel 1 functioning as steering control means. According to the steering operation of the driver, a rotation angle of steering wheel 1 is transmitted to a steering gear set of hydraulic power steering system 3 through a column shaft 2. Accordingly, a rack of the steering gear set moves on a lateral (right-and-left) straight path, and the right and left front wheels 4 and 5 are steered.
Lane-guide actuator 8 functions as steering control means during the lane-keep control. Lane-guide actuator 8 comprises motor 9, electromagnetic clutch 10 which is turned on when an automatic cruise control (ACC) is being executed, and a transmission mechanism (not shown) which transmits the rotation of motor 9 to column shaft 2.
Lane-keep control unit 18 functions as lane-keep control means which moves the host-vehicle on a target lane defined by lane markers by outputting control commands to motor 9 and electromagnetic clutch 10 of the lane-guide actuator 8. Lane-keep control unit 18 receives various signals from rotary encoder 11, steering wheel angle sensor 12, vehicle speed sensor 13, lane-recognition device 15 and subsequent-vehicle position recognition device 17. Rotary encoder 11 detects a rotation angle signal of column shaft 2 and outputs the detected signal to lane-keep control unit 18. Steering wheel angle sensor 12 detects the steering wheel angle of steering wheel 1 and outputs a signal indicative of the steering wheel angle to lane-keep control unit 18. Vehicle speed sensor 13 detects the vehicle speed of the host-vehicle and outputs a signal indicative of the vehicle speed to lane-keep control unit 18. Lane-recognition sensor 14 obtains an image view ahead of the host-vehicle by means of a CCD camera and outputs signals indicative of the obtained image view. Lane-recognition device 15 recognizes a traveling lane on the basis of the signals of lane-recognition sensor 14, and outputs signals indicative of road curvature and a lateral displacement of the forward remarking point. Subsequent-vehicle detecting sensor 16 obtains a rear view of the host-vehicle by means of a CCD camera or a laser radar, and outputs signals indicative of the rearward view. Subsequent-vehicle position recognition device 17 recognizes a position of a subsequent-vehicle relative to the host-vehicle on the basis of the signals of subsequent-vehicle detecting sensor 16, and outputs signals indicative of the position of the subsequent-vehicle, an inter-vehicle distance between the host-vehicle and the subsequent-vehicle, and a relative speed between the vehicle speeds of the host-vehicle and the subsequent-vehicle.
Lane-keep control unit 18 executes the lane-keep control for moving the host-vehicle in a target lane by engaging electromagnetic clutch 10 and applying electric current to motor 9 on the basis of the received signals. During the lane-keep control, when at least one of the steering wheel angle θ, a steering wheel angle gradient dθ and a steering wheel torque T, which are generated by the operation of the driver becomes greater than thresholds, lane-keep control unit 18 executes a suspending control for suspending the lane-keep control. Further, when it is determined that the host-vehicle deviates from the target lane, lane-keep control unit 18 executes a deviation alarming control whereby deviation alarming buzzer 18 generates alarming sounds 18 and/or a deviation quantity of the host-vehicle is displayed in deviation alarming display 20.
The manner of operation of the lane-keep control system will be discussed hereinafter.
[Intervention Control Process]
With reference to
At step S1, control unit 18 determines whether or not there is a subsequent-vehicle in the rearward direction of the host-vehicle. When the determination at step S1 is negative, that is, when there is no subsequent-vehicle in the rearward direction of the host-vehicle, the routine proceeds to step S2. When the determination at step S1 is affirmative, the routine proceeds to step S3.
At step S2, control unit 18 sets the intervention thresholds θTH, dθTH and TTH at ordinary thresholds (constant values) θTH0, dθTH0 and TTH0 which are employed in the lane-keep control under a condition that there is no subsequent-vehicle behind the host-vehicle. More specifically, a threshold θTH of the steering wheel angle θ is set at θTH0 (θTH=θTH0), a threshold dθTH of the steering-wheel angle gradient dθ is set at a constant value dθTH0 (dθTH=dθTH0), and a threshold TTH of the steering wheel torque T is set at a constant value TTH0 (TTH=TTH0), as shown in
At step S3 subsequent to the affirmative determination at step S1, control unit 18 detects the position of the subsequent-vehicle. More specifically, control unit 18 determines whether the subsequent-vehicle approaching the host-vehicle is located at a right lane, a left lane or a same lane relative to the host-vehicle traveling lane. When control unit 18 determines that the subsequent-vehicle travels on and will pass through the right lane relative to the host-vehicle traveling lane, control unit 18 varies only the intervention thresholds employed in the lane-keep control for the right-hand-side lane deviation as shown in
When the subsequent-vehicle, which is traveling on the lane as same as that of the host-vehicle, approaches the host-vehicle, it is difficult to decide which one of the right and left lanes will be passed by the subsequent-vehicle. Therefore, the control unit 18 varies the intervention thresholds θTH, dθTH and TTH for both of right and left lanes.
As a logic for detecting the subsequent-vehicle, there is adapted an optical flow type backward information detecting logic for detecting a subsequent-vehicle which approaches a host-vehicle from the rearward position of the host-vehicle, by using a motion vector (optical flow) on an image taken by a camera, such as a method disclosed in Japanese Patent Provisional Publication No. 11-255051.
At step S4, control unit 18 detects an inter-vehicle distance L1 and a relative speed ΔV1 of the approaching subsequent-vehicle, relative to the host-vehicle, and calculates the margin time (time gap) T1 (T1=ΔV1/L1). This step S4 functions as approaching degree detecting means for detecting an approaching degree of the subsequent-vehicle to the host-vehicle.
At step S5, control unit 18 calculates intervention threshold θTH as to steering-wheel angle θ, which threshold θTH increases as margin time T1 decreases, from a map showing a relationship between margin time T1 and intervention threshold θTH of steering wheel angle θ shown in FIG. 3A. This step S5 functions as threshold setting means for setting the intervention threshold of steering wheel angle θ.
At step S6, control unit 18 calculates intervention threshold dθTH as to steering-wheel angle gradient dθ, which threshold dθTH increases as margin time T1 decreases, from a map showing a relationship between margin time T1 and intervention threshold dθTH of steering-wheel angle gradient dθ shown in FIG. 3B. This step S6 functions as intervention threshold setting means for setting the intervention threshold of steering-wheel angle gradient dθ.
At step S7, control unit 18 calculates intervention threshold TTH as to steering wheel torque T, which threshold TTH increases as margin time T1 decreases, from a map showing a relationship between margin time T1 and intervention threshold TTH of steering wheel angle T shown in FIG. 3C. This step S7 functions as intervention threshold setting means for setting the intervention threshold of steering wheel torque T.
At step S8 subsequent to the execution of step S2 or step S7, control unit 18 determines whether the driver is starting driver intervention to the steering control. More specifically, control unit 18 determines whether least one of first, second and third conditions is satisfied under a subsequent-vehicle existing condition or not, wherein the first condition is that the actual steering wheel angle θ is greater than intervention threshold θTH, the second condition is that the actual steering wheel angle gradient dθ is greater than intervention threshold dθTH, and the third condition is that the actual steering wheel torque T is greater than intervention threshold TTH. When the determination at step S8 is affirmative, that is, when at least one of the first, second and third conditions is satisfied, the routine proceeds to step S9. When the determination at step S8 is negative, that is, when neither of the first, second and third conditions is satisfied, the routine proceeds to step S10.
At step S9 subsequent to the affirmative determination at step S8, control unit 18 executes the intervention control (suspending control) for suspending the lane-keep control by gradually decreasing the output current applied to motor 9 so as not to impress strange feeling to the driver and by setting the output current at zero at a moment when a predetermined time period elapsed from the start of the intervention control.
At step S10 subsequent to the negative determination at step S8, control unit 18 executes an ordinary lane-keep control.
[Operation of the Lane-keep Control in Case that there is no Subsequent-Vehicle in a Rearward Area of the Host-vehicle]
When there is no subsequent-vehicle within a rearward area detected by the host-vehicle and when the driver executes no intervention operation, the routine of the flowchart in
More specifically, the lane-keep control for moving the host-vehicle on a target lane (center position of the lane) by applying output current to motor 9 according to the lateral displacement of the vehicle relative to a center position of the host-vehicle traveling lane, as shown by an output current characteristics during the ordinary lane-keep control in FIG. 4.
When the driver executes the intervention control during the lane-keep control, the routine of the flowchart in
That is, even if the lane-keep control is being executed, the intervention control is executed in reply to the detection of the driver's steering operation (driver intervention), so that the steering operation by the driver has higher priority than the lane-keep steering operation executed by control unit 18.
[Operation of the Lane-keep Control in Case that there is a Subsequent-vehicle in a Rearward Area of the Host-vehicle]
When there is a subsequent-vehicle within a detectable rearward area and when the driver executes the intervention control, the routine of the flowchart in
By the execution of step S8, it is determined whether the driver is executing the steering intervention (driver intervention), by determining whether or not at least one of first, second and third condition is satisfied under a subsequent-vehicle existing condition, wherein the first condition is that an actual steering wheel angle θ is greater than intervention threshold θTH, the second condition is that an actual steering wheel angle gradient dθ is greater than intervention threshold dθTH, and the third condition is that an actual steering wheel torque T is greater than intervention threshold TTH.
Accordingly, when there is an approaching subsequent-vehicle behind the host-vehicle as shown in
Therefore, the driver feels the reaction force from steering wheel 1 due to the steering wheel torque T generated by lane-guide actuator 8 which controls the host-vehicle toward a target lane (center position) of the traveling lane. This effectively prevents the host-vehicle from deviating toward the lane passed by the subsequent-vehicle.
Further, at steps S5, S6 and S7, as margin time T1 is shorter, in other words, as the approaching degree of the subsequent-vehicle to the host vehicle is larger, intervention thresholds θTH, dθTH and TTH are set at higher values θTH1, dθTH1 and TTH1 which are gradually increase with the decrease of margin time T1 as shown in
Therefore, when the approaching degree of the subsequent-vehicle to the host-vehicle is high, the driver can recognize this subsequent-vehicle approaching state from the reaction force of steering wheel 1 against the driver's steering operation toward the lane of the approaching subsequent-vehicle. Further, when the approaching degree of the subsequent-vehicle to the host-vehicle is low, control unit 18 properly determines the driver intervention so as not to prevent the steering operation of the driver. This enables the driver to naturally drive the host-vehicle.
Next, there will be discussed the advantages gained the lane-keep control system according to the present invention.
(1) When there is a subsequent-vehicle approaching the host-vehicle, intervention thresholds θTH, dθTH and TTH are set at the higher thresholds θTH1, dθTH1 and TTH1. Therefore, even if the driver steers the host-vehicle toward a lane on which the approaching vehicle will pass, the lane-keep control system resists the driver intervention, and the ordinary lane-keep control is maintained. Accordingly, the driver feels the reaction force from steering wheel 1. This effectively prevents the host-vehicle from deviating toward the lane to be passed by the subsequent-vehicle.
(2) At steps S5, S6 and S7, intervention thresholds θTH, dθTH and TTH are set at higher values as margin time T1 is shorter, in other words, as the approaching degree of the subsequent-vehicle to the host vehicle is higher. Accordingly, when the approaching degree of the subsequent-vehicle to the host-vehicle is high, the driver can early recognize this subsequent-vehicle approaching state. When the approaching degree of the subsequent-vehicle to the host vehicle is low, lane-keep control unit 18 properly determines intervention thresholds θTH, dθTH and TTH so as not to prevent the steering operation of the driver. This enables the driver to agreeably drive the host-vehicle.
(3) Margin time T1 calculated by the execution of step S4 is defined as an approaching degree of the subsequent-vehicle to the host-vehicle, and intervention thresholds θTH, dθTH and TTH are varied according margin time T1. Therefore, it becomes possible to set intervention thresholds θTH, dθTH and TTH so that control unit 18 resists the detection of the driver intervention at an optimum timing when margin time T1 is adjusted at a constant time.
This application is based on Japanese Patent Applications No. 2001-213345 filed on Jul. 13, 2001 in Japan. The entire contents of this Japanese Patent Application are incorporated herein by reference.
Although the invention has been described above by reference to certain embodiments of the invention, the invention is not limited to the embodiments described above. Modifications and variations of the embodiments described above will occur to those skilled in the art, in light of the above teaching.
For example, although the first embodiment has been shown and described such that the intervention thresholds θTH, dθTH and TTH are set according to the margin time T1 indicative of the approaching degree of a subsequent-vehicle to the host-vehicle, the intervention thresholds θTH, dθTH and TTH may be set according to inter-vehicle distance L1 between the host-vehicle and the approaching subsequent-vehicle as parameter indicative of the approaching degree. When this inter-vehicle distance L1 is employed, the approaching degree is obtained by detecting the inter-vehicle distance L1. Therefore, even in a case that margin time T1 takes a large value for the reason that inter-vehicle distance L1 is small and relative speed ΔV1 is extremely small, it is possible to early execute the determination of the intervention in a difficult condition at the time when the approach of the subsequent-vehicle is detected.
Further, the intervention thresholds θTH, dθTH and TTH may be set according to relative speed ΔV1 between the host-vehicle speed and an approaching subsequent-vehicle speed indicative of the approaching degree. By employing this relative speed ΔV1 as the approaching degree of the subsequent-vehicle to the host-vehicle, even when relative speed ΔV1 is high and the subsequent-vehicle quickly approaches the host-vehicle, it is possible to early set the determination of the intervention in a difficult condition at the time when the subsequent-vehicle is located at a position apart from the host-vehicle by inter-vehicle distance L1.
Although the embodiment has been shown and described to employ the steering wheel angle, the steering wheel angle gradient and the steering wheel torque for the determination of the intervention relative to the lane-keep control, it will be understood that one or two of the steering wheel angle, the steering wheel angle gradient and the steering wheel torque may be employed for the determination of the intervention relative to the lane-keep control. Additionally, other elements may be further employed for the determination of the intervention. The scope of the invention is defined with reference to the following claims.
Number | Date | Country | Kind |
---|---|---|---|
2001-213345 | Jul 2001 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5701127 | Sharpe | Dec 1997 | A |
6064320 | d'Hont et al. | May 2000 | A |
6198426 | Tamatsu et al. | Mar 2001 | B1 |
6263270 | Sato et al. | Jul 2001 | B1 |
6269307 | Shinmura et al. | Jul 2001 | B1 |
6323763 | Bohner et al. | Nov 2001 | B1 |
6353788 | Baker et al. | Mar 2002 | B1 |
6418370 | Isogai et al. | Jul 2002 | B1 |
20010016797 | Ogura et al. | Aug 2001 | A1 |
20030097206 | Matsumoto et al. | May 2003 | A1 |
20030120414 | Matsumoto et al. | Jun 2003 | A1 |
20030173127 | Noecker | Sep 2003 | A1 |
Number | Date | Country |
---|---|---|
197 52 175 | May 1998 | DE |
198 35 601 | Feb 2000 | DE |
0 970 875 | Jan 2000 | EP |
1 063 149 | Dec 2000 | EP |
10-203394 | Aug 1998 | JP |
11-255051 | Sep 1999 | JP |
11-286280 | Oct 1999 | JP |
WO 9930919 | Jun 1999 | WO |
WO 0198101 | Dec 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20030014162 A1 | Jan 2003 | US |