1. Technical Field
The invention relates to decorative lighting and more particularly to a lantern housing an electrically powered imitation flame source.
2. Description of the Problem
Many people find candle and gas light pleasant. The flickering of light and movement of shadows across nearby surfaces generated by an open, flickering flame can be almost hypnotically soothing. As a result, candles have remained popular for generations since the invention of more practical electrical lighting, especially for decorative and mood setting purposes. This has remained so notwithstanding the hazard posed by open flames, the short service life of candles and the expense of supplying gas to exterior lamps.
Numerous electrically powered lamps have been proposed in the art intended to produce an impression of an open flame. Some lamps have included bulbs with plates producing irregular, low level electrical arcing while other lamps have been shaped as candles and topped with flame shaped bulbs. Producing an impression of realism however requires an appreciation of the conditions under which the device is used and the likely distances at which it is commonly viewed. Where the device is intended to resemble a candle a number of factors should be considered. These include the color of the light and the intensity of the light. The way in which the body of the candle picks up and scatters light can be critical to producing an impression of a flame.
In U.S. Pat. No. 6,616,308 the inventors of the present application proposed an imitation candle incorporating a super bright, light emitting diode (LED). Super bright LEDs function as highly directional, near point sources. An emission color, such as amber, is selected for the LED to produce a light similar in color to that of a paraffin fed flame. A simple circuit using multiple oscillators running at close, but not the same, frequencies, creates a realistic, pseudo-random flicker for light emitted by the LED.
The body of the imitation candle of the '308 patent is preferably a translucent material. The translucent material surrounds the LED on the sides and top and serves to diffuse the light throughout the portion of the imitation candle at or above the height of the LED. The LED is positioned near the top of the body and causes the top of the imitation candle to be more brightly illuminated than the lower parts of the candlestick. This effect can be enhanced by positioning an opaque light block around the base of the LED to prevent diffusion of light into the lower portions of the imitation candle. These steps simulate the usual diffusion of light in a real candle. Recessing the top within the side walls presents the appearance of a candle that has already been burning for some length of time, which would serve to hide the flame behind an unmelted rim, were a flame present. The body of the imitation candle is preferably made from real wax to further enhance the imitation candle's realism.
The power consumption of super bright LEDs operated at low emission levels is low enough that long battery life can be achieved. Alternatively, rechargeable cells can be used in conjunction with a solar cell or other recharging means. A simple light sensing device can be used to turn the LED off during daylight hours and extend battery life in battery operated versions of the candle.
While the imitation candle taught in the '308 patent has been highly successful, different considerations come into play in producing a lantern intended to be electrically illuminated, but none-the-less giving the impression of having a flame source. Lanterns are often intended to serve both functional and decorative purposes. They tend to be seen from greater distances and provide an enclosure for the light source. These factors suggest that straight application of an imitation candle to a lantern, while potentially satisfactory, may be improved upon.
According to the invention there is provided a decorative lantern suitable for outdoor use having a housing with a base, a globe rising vertically from the base and a cap covering the globe. The lantern includes an artificial light source which may be energized to luminesce in a flickering fashion in the manner of the wind blown candle fed flame. A translucent, light scattering body is positioned on the base of the housing enclosed within the globe. Extending upwardly from the light scattering body is an imitation wick. The tip of the imitation wick is polished, preferably to a near mirror like finish so that it reflects light without scattering or diffusing the light. A super bright light emitting diode is located above the vertical extent of the globe under and within the cap, and is oriented to project light downwardly toward the upper surface of the translucent, light scattering body and the imitation wick. An energization circuit is providing for causing the super bright light emitting diode to luminesce. A second super bright light emitting diode may be positioned within the translucent, light scattering body.
Additional effects, features and advantages will be apparent in the written description that follows.
The novel features believed characteristic of the invention are set forth in the appended claims. The invention itself however, as well as a preferred mode of use, further objects and advantages thereof, will best be understood by reference to the following detailed description of an illustrative embodiment when read in conjunction with the accompanying drawings, wherein:
Referring now to the figures and in particular to
Referring now to
Light emitted from LED 124 is directed toward light scattering body 14, which is shaped to resemble a block candle. The central axis of light emitted from LED 124 impinges the center of the horizontal upper surface of the light scattering body 14. This surface has a central depression 42 and a wick 40, rising toward the LED 124 from the center of the central depression. As described below, wick 40 has a polished end or tip 502 distal to central depression 42 which reflects light impinging thereon substantially without scattering, to produce high intensity points of light visible to viewers from outside of lantern 10. Light scattering body 14 has a cylindrical sidewall 36 and an upper surface including a depressed central region 42. A light scattering block 38 is disposed under depressed central region 42. Light impinging on light scattering body 14 is intended to diffuse in block 38, producing a glowing region evocative of illumination from a flame partially or fully obscured by the rim 51 surrounding the depressed central region 42. An opaque shield is disposed across the bottom of block 38 preventing transmittal of light into the hollow interior 34 of the light scattering body 14.
Light scattering body 14 is a cylindrical body molded from conventional temperature and weather resistant plastics for outdoor use and resembling an overturned cup. The material used to fabricate light scattering body should be translucent, having light transmission and diffusing characteristics similar to candle wax. Hollow interior 34 reduces in quantity the amount of material required to construct the body.
Now referring to
The light intensity on cylindrical vertical side wall 18 of body 12 will be roughly proportional to the square of the distance between the light source body/LED 124B and the surface. The thickness of material directly above the light source body 24 can be selected to generate a ‘hot spot’ of fairly intense light that is similar in size to the diameter of a real candle's flame. Generally though, light source body 24 is positioned so as not to be conveniently directly viewable from outside of body 12. In other words, optically diffusing material is preferably interposed between a casual viewer and LED 124B in directions to the side and above the light source body. Propagation of light downwardly from LED 124B is preferably blocked by an opaque disk 43 positioned at the base of the LED.
LED 124B is connected by wires 726 to circuit board 46 to flicker at the same rate as the primary LED 124 still located within outer cap 23. Circuit board 46 preferably mounts a flicker circuit (described below) to cause the LED 124B to vary in brightness in a pseudo-random manner to simulate the flickering of a real candle flame. Yet another option is to provide a solar cell that charges one or more rechargeable batteries.
Light emitted from LEDs 124 and 124B should be highly directional and close to being a point source to achieve the best results. The outer, light transmitting surface of the LEDs is cylindrically shaped, terminating at one end in a hemisphere. The LEDs are capped at their lower ends in an opaque base with the result being that most of the light emitted is directed out the LED's hemispherical ends, with some light escaping to the sides.
LEDs have a constant voltage drop when conducting current and the intensity of light emission from an LED is controlled by varying the current sourced to the LED. Accordingly, the LED energization circuit 146 sources a varying amount of current to LED 124 (or 124B) to produce a flickering effect. The first major element of energization circuit 146 is a base current source provided by zener diode 54, resistors 56 and 62, and a PNP transistor 60, which sources current to the load, here a light emitting diode 124. The voltage source provided by battery 50 is connected to the transistor 60 emitter by resistor 56 and to base of the transistor by reverse oriented zener diode 54. The transistor is assured of being constantly biased on by the voltage drop set by the reverse breakdown voltage of zener diode 54 as long as battery voltage remains the minimum required for zener breakdown operation. Thus transistor 60 sources current to the load through which the current returns to ground. As a result LED 124 always produces a minimum level of light output when the device is on and the battery has a minimum charge.
Variation in light output is effected by variably increasing the current supplied to LED 124. A hex inverter, such as a SN74HC14N hex inverter, available from Texas Instruments of Dallas, Tex., is used to implement several parallel oscillators or clocks. All of the oscillators are identically constructed though external component values may be altered. In the preferred embodiment 4 of 6 available invertors (91–94) are used with resistors (105–108) providing feedback from the outputs of the invertors to the inputs. Capacitors 101–104 are connected from the inputs of invertors 91–94 to set the operating frequency of the oscillators. The connection of Vcc to the invertors is represented for inverter 90 (U1E) only but is identical for each of invertors 91–94.
Oscillators 68 and 70 are designed to be low frequency oscillators running at approximately 2 Hz. Oscillators 68 and 70, formed using invertors 94 and 93, can use similar timing components to run at approximately a 10% difference in frequency. The 10% difference in frequency prevents oscillators 68 and 70 from synchronizing with each other or from drifting past one another too slowly. Low frequency oscillators 68 and 70 provide current to the LED 124 through series connected resistors and forward biased diodes 76 and 78, and 72 and 74, respectively, to a summing junction. As a result, current flow through LED 124 is increased from the minimum set by the current source formed by PNP transistor 60 pseudo-randomly. When either of oscillators 68 or 70 is high, it supplies extra current to LED 124 and the LED becomes slightly brighter. When both of oscillators 68 and 70 are high, a third, higher level of current is supplied to the LED 124. The three current levels (both high, only one high, or both low) provide three brightness levels that can be selected by the choice of values for resistors 76 and 72 and the current from the current source. As long as the two oscillators are not synchronized, the three brightness levels will vary in a pseudo-random manner as the oscillators drift. Loose component tolerances are acceptable as contributing to the degree of randomness in current sourced to LED 124.
In some applications oscillators 68 and 70 may be set to have as great as a 2:1 variation in frequency. The rate at which the oscillators drift past one another is consequential to the appearance of the luminary.
In the preferred embodiment oscillator 66, formed using inverter 92, operates at about 8 Hz. and provides two more current levels. Three parallel current sources allow for a total of six brightness levels. Again the output from the inverter is fed through a series connected resistor 84 and forward biased diode 86 to a summing junction and then by resistor 126 to LED 124. The value chosen for resistor 84 is higher than for resistors 78 and 74 with the result that oscillator 66 makes a smaller current contribution to LED 124 than oscillators 68 and 70. This contributes still more to the impression of randomness in the light output of LED 124 by providing that changes in light output occur in differing sized steps. Oscillator 64, formed using inverter 91, is also set to run at about 8 Hz. The resistance of resistor 80 is comparable to that of resistor 84 so that oscillator 64 contributes a current comparable to the current supplied by oscillator 66. The current from inverter 91 is routed to LED 124 by resistor 80 and diode 82 to the summing junction and than by resistor 126. A capacitor 125 may be connected between Vcc and ground to short circuit noise to ground preventing circuit noise from causing the oscillators to synchronize with one another.
As shown, two of the gates of the hex inverter are not used, but these gates could be used to create two more oscillators with outputs driving additional candles using multiple LEDs or supplying additional current levels to a single LED. Switch 52 is illustrated as a mechanical switch, however a photosensitive element may readily be substituted so that the lantern turns off automatically in daylight.
The invention provides a lantern suitable for both functional and decorative purposes. The scattered light from the upper part of the imitation candle maintains the illusion of an open flame while the unscattered light reflected by the tip of the imitation wick allows the lantern to be seen from a greater distance, improving the functionality of the lantern as a marker. Projection of the light into the candle body from a hidden source positioned above the body is particularly effective in effecting an appearance of light from a candle flame scattered by the walls of a candle body.
While the invention is shown in only two of its forms, it is not thus limited but is susceptible to various changes and modifications without departing from the spirit and scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
3983384 | Bucci | Sep 1976 | A |
5097180 | Ignon et al. | Mar 1992 | A |
5262929 | Lenhart | Nov 1993 | A |
6616308 | Jensen et al. | Sep 2003 | B1 |
20020070633 | Salender et al. | Jun 2002 | A1 |
20030035291 | Jensen et al. | Feb 2003 | A1 |
20030210555 | Cicero et al. | Nov 2003 | A1 |
20040037069 | Blackbourn | Feb 2004 | A1 |
Number | Date | Country |
---|---|---|
WO 03016783 | Feb 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20050254232 A1 | Nov 2005 | US |