This relates to an electrosurgical instrument for performing laparoscopic surgical procedures, and more particularly to a laparoscopic electrosurgical instrument that is capable of grasping vessels and vascular tissue with sufficient force between two bipolar jaws to seal the vessel or vascular tissue.
Laparoscopic surgical instruments are used to perform surgical operation without making large incisions in the patient. The laparoscopic instruments are inserted into the patient through a cannula, or port, that has been made with a trocar. Typical sizes for cannulas range from three millimeters to twelve millimeters. Smaller cannulas are usually preferred, and this presents a design challenge to instrument manufacturers who must find ways to make surgical instruments that fit through cannulas.
Certain surgical procedures require cutting blood vessels or vascular tissue. This sometimes presents a problem for surgeons because it is difficult to suture blood vessels using laparoscopic tools. Very small blood vessels, in the range below two millimeters in diameter, can often be closed using standard electrosurgical Techniques. If a larger vessel is severed, it may be necessary for the surgeon to convert the laparoscopic procedure into an open-surgical procedure and thereby abandon the benefits of laparoscopy.
Several journal articles have disclosed methods for sealing small blood vessels using electrosurgery. An article entitled Studies on Coagulation and the Development of an Automatic Computerized Bipolar Coagulator, J. Neurosurg., Volume 75, Jul. 1991, describes a bipolar coagulator which is used to seal small blood vessels. The article states that it was not possible to safely coagulate arteries with a diameter larger than 2 to 2.5 mm. A second article entitled Automatically Controlled Bipolar Electrocoagulation—“COA—COMP”, Neurosurg. Rev. (1984), pp.187-190. This article describes a method for terminating electrosurgical power to the vessel so that charring of the vessel walls can be avoided.
It has been recently determined that electrosurgical methods may be able to seal larger vessels using an appropriate electrosurgical power curve, coupled with an instrument capable of applying a large closure force to the vessel walls. It is thought that the process of coagulating small vessels is fundamentally different than electrosurgical vessel sealing. Coagulation is defined as a process of desiccating tissue wherein the tissue cells are ruptured and dried. Vessel sealing is defined as the process of liquefying the collagen in the tissue so that it crosslinks and reforms into a fused mass. Thus, coagulation of small vessels is sufficient to permanently close them. Larger vessels need to be sealed to assure permanent closure.
It would be desirable to have a surgical tool capable of applying electrosurgical energy, capable of applying a large closure force to the vessel walls, and also capable of fitting through a cannula. A large closure force between the jaws typically requires a large moment about the pivot for each jaw. This presents a challenge because the first and second pins have a small moment arm with respect to the pivot of each jaw. A large force, coupled with a small moment arm, is undesirable because the large forces may shear the first and second pins. It is also undesirable to increase the moment arm of the first and second pins because the physical size of the yoke might not fit through a cannula.
Several bipolar laparoscopic instruments are known. For example, U.S. Pat. No. 3,938,527 discloses a bipolar laparoscopic instrument for tubal cauterization. U.S. Pat. No. 5,250,047 discloses a bipolar laparoscopic instrument with a replaceable electrode tip assembly. U.S. Pat. No. 5,445,638 discloses a bipolar coagulation and cutting forceps with first and second conductors extending from the distal end. U.S. Pat. No. 5,391,166 discloses a bipolar endoscopic instrument having a detachable working end. U.S. Pat. No. 5,342,359 discloses a bipolar coagulation device.
The present invention solves the problem of providing a large closure force between the jaws of a laparoscopic bipolar electrosurgical instrument, using a compact design that fits through a cannula, without risking structural failure of the instrument yoke.
The present invention is an instrument for applying bipolar electrosurgical current to tissue in a laparoscopic operation with the added benefit of providing a large closure force between the instrument jaws. The large closure force may be particularly useful for vessel sealing operations. An advantage of the present invention is that tissue can be grasped and clamped with a relatively large closure force without damage to the yoke. The yoke is capable of transmitting the large closure force to the instrument jaws while being small enough to fit through a cannula.
The laparoscopic bipolar electrosurgical instrument comprises first and second jaws having, respectively, first and second flanges with first and second slots. The instrument is electrically connected to an electrosurgical generator, and conducts bipolar electrosurgical current to the first and second jaws. A yoke is attached to a pushrod and positioned to electrically insulate the first flange from the second flange. First and second pins on the yoke are designed to engage the first and second slots, respectively, in a cam-follower arrangement that opens and closes the jaws with linear motion of the yoke. The yoke is preferably a “push yoke” which means that linear motion of the yoke in the direction of the distal end of the instrument will cause the jaws to close together.
The yoke has first and second shoulders that are spaced apart from the first and second flanges until the jaws are in close arcuate proximity to each other. At that point, the first and second shoulders engage the first and second flanges, whereby further distal motion of the yoke applies a force to the first and second flanges that creates a moment about the pivot of each jaw. In general, the cam-follower arrangement of pins and slots may be designed to provide coarse motion of the jaws with relatively small forces. Large closure forces, once the jaws are relatively close together, may be obtained by pressing the shoulders against the flanges. The first and second pins move into cul-de-sacs in the first and second slots to protect them from large shear stresses when the shoulders are applying relatively large forces to the flanges. Thus, the first and second pins may be made from an electrically insulative material that is not designed to handle large shear stresses, large closure forces may be obtained, and the entire assembly may be compact and fit through a cannula.
A method of making the laparoscopic bipolar electrosurgical instrument is described, comprising the following steps: forming a first jaw having a first flange with a first slot, and a second jaw having a second flange with a second slot; attaching the yoke to a pushrod; electrically insulating the first flange from the second flange with the yoke; engaging first and second pins with the first and second slots; positioning first and second cul-de-sacs respectively in the first and second slots to relieve shear stresses on the first and second pins at a subtended angle and approximately wherein first and second shoulders engage the first and second flanges.
A laparoscopic bipolar electrosurgical instrument 10 is shown in FIG. 1. The instrument 10 has a proximal end 11 with a handle 14 for holding and manipulating the instrument 10. A distal end 12 on the instrument 10 is used for surgical manipulation of tissue. The instrument 10 comprises an elongate tube 13 that is sized to fit through a cannula for laparoscopic operations, and in different embodiments may be sized to fit through either a five or seven millimeter cannula.
A portion f the distal end 12 of the instrument 10 is shown in
Pieces that comprise the distal end 12 of the instrument 10 are shown in an exploded view in FIG. 3. The first jaw 15 and the second jaw 16 are shown separated from a yoke 17. The first jaw 15 has a first flange 18 and a first slot 19 therewithin. The second jaw 16 has a second flange 20 and a second slot 21 therewithin. Each jaw 15 and 16 is preferably formed from a single piece of stainless steel or other electrically conductive material.
Referring again to
A first pin 25 is located on the first side 23 to movably engage with the first slot 19. Similarly, a second pin 26 is located on the second side 24 to movably engage with the second slot 21. Each pin and slot combination works as a cam-follower mechanical linkage. Motion of the pushrod 22 moves the yoke 17 causing pins 25 and 26 to slide within their respective slots 19 and 21. The slots 19 and 21 are angled with respect to the distal ends of the jaws 15 and 16 such that the jaws 15 and 16 move in an arcuate fashion toward and away from each other. The pins 25 and 26 are different from the pivots 41 and 42. The pins 25 and 26 provide a force against the walls of the slots 19 and 21, creating a moment about the pivots 41 and 42.
The slots 19 and 21 are arranged such that distal motion of the pushrod 22 causes the jaws 15 and 16 to move together. Distal motion of the pushrod 22 is defined as motion in the direction of the distal end 12 of the instrument 10. Once the jaws 15 and 16 are closed together, the present invention holds the jaws 15 and 16 together with a compressive force on the pushrod 22.
One of the advantages of this invention is that shear forces on the pins 25 and 26 can be offloaded to prevent mechanical failure when large forces are being transmitted to the jaws 15 and 16. Each slot 19 and 20 has a cul-de-sac 27 and 28, respectively, as shown in FIG. 3. The first cul-de-sac 28 is an enlargement of the second slot 21 near its distal end. The cam-follower motion of the pins 25 and 26 in the slots 19 and 21 will bring the pins 25 and 26 into their respective cul-de-sac 27 and 28. This position of the pins 25 and 26 leaves a very small moment arm between the pins 25 and 26 and the pivots 41 and 42. The yoke 17 has shoulders 29 and 30 that can provide a relatively large moment about the pivots 41 and 42 to effect a high closure force between the jaws 15 and 16 without a high shear forces on the pins 25 and 26, as described below.
Once the pins 25 and 26 are in the cul-de-sacs 27 and 28, the force from the yoke is transmitted to the flanges 18 and 20 by a first shoulder 29 and a second shoulder 30. The shoulders 29 and 30 abut the proximal end of the flanges 18 and 20 to cause the jaws 15 and 16 to close together. The pivots 41 and 42 are preferably made of metal and can withstand relatively high shear forces. In contrast, pins 25 and 26 are preferably made of plastic and will break under relatively high shear forces. Thus, the shoulders 29 and 30 provide a moment about the pivots 41 and 42, thereby avoiding the necessity of applying high shear forces to the pins 25 and 26 when the moment arm from the pins 25 and 26 would be small. There is an angle α at which the pins 25 and 26 enter their respective cul-de-sacs 27 and 28 and the shoulders 29 and 30 abut the flanges 18 and 20. Then angle α at which the forgoing occurs is preferably around three degrees.
The bipolar electrosurgical instrument 10 has first and second poles of alternating potential that are conducted along the instrument 10 and through tissue that is grasped between the jaws 15 and 16. The first pole is conducted from the proximal end 11 toward the distal end 12 along the pushrod 22. The second pole is conducted from the proximal end 11 toward the distal end 12 along the tube 13. The outer surface of the tube 13 is preferably coated with an electrically insulative material. There is also preferably an electrically insulative barrier between the pushrod 22 and the tube 13 to prevent short circuits in the instrument 10.
In the preferred embodiment, the distal end of the instrument 10 comprises an inner nose piece 31 and an outer nose piece 32, as shown in FIG. 2. The inner nose piece 31 is electrically connected with the pushrod 22, while the outer nose piece is electrically connected with tube 13. The inner nose piece 31 and the outer nose piece 32 capture the yoke 17, along with the first and second flanges 18 and 20, as shown in FIG. 2. The yoke 17 moves axially, along an axis defined by the tube, in a space between the inner and outer nose pieces 31 and 32. A spacer 33 maintains the separation of the nose pieces 31 and 32 at their distal ends. The nose pieces 31 and 32 provide lateral support for the flanges 18 and 20 to help ensure that the pins 25 and 26 remain within the slots 19 and 21.
The preferred embodiment also comprises an inner insulator 34 and an outer insulator 35 for maintaining electrical insulation between the poles. The outer insulator 35 is seated between the tube 13 and the inner nose 31, as shown in
The first and second jaws 15 and 16 each have ridges 37 and 38 at their distal ends that preferably nest together. The jaws 15 and 16 also have seal surfaces 39 and 40, as shown in FIG. 2. The width of the seal surfaces 39 and 40 is a parameter that affects the quality of the surgical outcome. The closure force between the jaws 15 and 16 varies along the length of the seal surfaces 39 and 40, with the largest force at the distal tip and the smallest force at the proximal end of the seal surfaces 39 and 40. It has been found through experimentation that good vessel sealing results are obtained when the closure force in grams divided by the width in millimeters is in the range of 400 to 650. Since the closure force varies with the length of the seal surfaces 39 and 40, it has been found to be advantageous to taper the width of the seal surfaces 39 and 40 along their length, with the widest width at the proximal end and the narrowest width at the distal end. This design allows the jaws 15 and 16 to apply a relatively constant closure force per unit width, preferably 525 grams per millimeter width.
A method of making a laparoscopic bipolar electrosurgical instrument 10 is also herein described. The method comprises the step of forming a first jaw 15 having a first flange 18 with a first slot 19, and a second jaw 16 having a second flange 20 with a second slot 21. The jaws 15 and 16 are preferably formed in a casting process, although it is also possible to machine the jaws 15 and 16 from stock. The casting process may include injecting powdered metal under pressure into a mold, and then applying heat.
Other steps in the method include attaching a yoke 17 to a push rod 22, and electrically insulating the first flange 18 from the second flange 20 with the yoke 17. The yoke 17 is preferably an injection molded plastic part with features including a first shoulder 29 and a second shoulder 30.
During assembly of the distal portion of the instrument 10, steps in the method include engaging a first pin 25 with the first slot 19, and engaging a second pin 26 with the second slot 21. The slots 19 and 21 are shaped such that a subtended angle α between the first and second jaws 15 and 16 decreases with distal motion of the pushrod 17, and the slots 19 and 20 are formed with cul-de-sacs 27 and 28 positioned to relive shear stresses on the first and second pins 25 and 26 at the subtended angle α approximately wherein the first and second shoulder 29 and 30 engage the first and second flanges 18 and 20.
Further steps in the method comprise: surrounding at least a portion of the pushrod 22 with an electrically conductive tube 13; electrically insulating the tube 13 from the pushrod 22; electrically connecting an inner nose piece 31 to the pushrod 22, and electrically connecting an outer nose piece 32 to the tube 13, wherein the inner nose piece 31 and the outer nose piece 32 capture the yoke 17 along with the first and second flanges 18 and 20 to conduct bipolar electrosurgical current to the first and second jaws 15 and 16. In the preferred embodiment, there is a step of electrically connecting the pushrod 22 and the inner nose piece 31 with a spring contact 36.
The method of making the instrument 10, in some embodiments, includes the step of tapering the width of the seal surfaces 29 and 40 along the length of each of the first and second jaws 15 and 16.
While a particular preferred embodiment has been illustrated and described, the scope of the protection sought is in the claims that follow.
This application is a continuation of U.S. application Ser. No. 09/591,330 filed on Jun. 9, 2000, now U.S. Pat. No. 6,451,018, which is a continuation of U.S. application Ser. No. 08/970,472 filed on Nov. 14,1997, now U.S. Pat. No. 6,228,083.
Number | Name | Date | Kind |
---|---|---|---|
371664 | Brannan et al. | Oct 1887 | A |
702472 | Pignolet | Jun 1902 | A |
728883 | Downes | May 1903 | A |
1586645 | Bierman | Jun 1926 | A |
2002594 | Wappler et al. | May 1935 | A |
2011169 | Wappler | May 1935 | A |
2176479 | Willis | Oct 1939 | A |
2305156 | Grubel | Dec 1942 | A |
2632661 | Cristofv | Dec 1953 | A |
2668538 | Baker | Feb 1954 | A |
2796065 | Kapp | Jun 1957 | A |
3459187 | Pallotta | Aug 1969 | A |
3643663 | Sutter | Feb 1972 | A |
3651811 | Hildebrandt et al. | Mar 1972 | A |
3862630 | Balamuth | Jan 1975 | A |
3866610 | Kletschka | Feb 1975 | A |
3911766 | Fridolph et al. | Oct 1975 | A |
3920021 | Hitebrandt | Nov 1975 | A |
3921641 | Hulka | Nov 1975 | A |
3938527 | Rioux et al. | Feb 1976 | A |
3952749 | Fridolph et al. | Apr 1976 | A |
4005714 | Hiltebrandt | Feb 1977 | A |
4074718 | Morrison, Jr. | Feb 1978 | A |
4088134 | Mazzariello | May 1978 | A |
4165746 | Burgin | Aug 1979 | A |
4300564 | Furihata | Nov 1981 | A |
4370980 | Lottick | Feb 1983 | A |
D276790 | Laske | Dec 1984 | S |
4492231 | Auth | Jan 1985 | A |
4552143 | Lottick | Nov 1985 | A |
4574804 | Kurwa | Mar 1986 | A |
4597379 | Kihn et al. | Jul 1986 | A |
4657016 | Garito et al. | Apr 1987 | A |
4671274 | Sorochenko | Jun 1987 | A |
4685459 | Koch et al. | Aug 1987 | A |
4763669 | Jaeger | Aug 1988 | A |
4827929 | Hodge | May 1989 | A |
4887612 | Esser et al. | Dec 1989 | A |
4938761 | Ensslin | Jul 1990 | A |
5007908 | Rydell | Apr 1991 | A |
5026370 | Lottick | Jun 1991 | A |
5099840 | Goble et al. | Mar 1992 | A |
5116332 | Lottick | May 1992 | A |
5151102 | Kamiyama et al. | Sep 1992 | A |
5176695 | Dulebohn | Jan 1993 | A |
5197964 | Parins | Mar 1993 | A |
5215101 | Jacobs et al. | Jun 1993 | A |
5217457 | Delahuerga et al. | Jun 1993 | A |
5217458 | Parins | Jun 1993 | A |
5244462 | Delahuerga et al. | Sep 1993 | A |
5250047 | Rydell | Oct 1993 | A |
5258006 | Rydell et al. | Nov 1993 | A |
5261918 | Phillips et al. | Nov 1993 | A |
5275615 | Rose | Jan 1994 | A |
5277201 | Stern | Jan 1994 | A |
5282799 | Rydell | Feb 1994 | A |
5290286 | Parins | Mar 1994 | A |
5304203 | El-Mallawany et al. | Apr 1994 | A |
5308357 | Lichtman | May 1994 | A |
5318589 | Lichtman | Jun 1994 | A |
5324289 | Eggers | Jun 1994 | A |
5330471 | Eggers | Jul 1994 | A |
5334183 | Wuchinich | Aug 1994 | A |
5334215 | Chen | Aug 1994 | A |
5336221 | Anderson | Aug 1994 | A |
5342359 | Rydell | Aug 1994 | A |
5342381 | Tidemand | Aug 1994 | A |
5342393 | Stack | Aug 1994 | A |
5352222 | Rydell | Oct 1994 | A |
5354271 | Voda | Oct 1994 | A |
5356408 | Rydell | Oct 1994 | A |
5366477 | LeMarie, III et al. | Nov 1994 | A |
5383897 | Wholey | Jan 1995 | A |
5389098 | Tsuruta et al. | Feb 1995 | A |
5389104 | Hahnen et al. | Feb 1995 | A |
5391166 | Eggers | Feb 1995 | A |
5391183 | Janzen et al. | Feb 1995 | A |
5403312 | Yates et al. | Apr 1995 | A |
5411519 | Tovey et al. | May 1995 | A |
5411520 | Nash et al. | May 1995 | A |
5413571 | Katsaros et al. | May 1995 | A |
5415657 | Taymor-Luria | May 1995 | A |
5423810 | Goble et al. | Jun 1995 | A |
5425739 | Jessen | Jun 1995 | A |
5429616 | Schaffer | Jul 1995 | A |
5431674 | Basile et al. | Jul 1995 | A |
5437292 | Kipshidze et al. | Aug 1995 | A |
5438302 | Goble | Aug 1995 | A |
5441517 | Kensey et al. | Aug 1995 | A |
5443463 | Stern et al. | Aug 1995 | A |
5443464 | Russell et al. | Aug 1995 | A |
5443480 | Jacobs et al. | Aug 1995 | A |
5445638 | Rydell | Aug 1995 | A |
5445658 | Durrfeld et al. | Aug 1995 | A |
5451224 | Goble et al. | Sep 1995 | A |
5456684 | Schmidt et al. | Oct 1995 | A |
5458598 | Feinberg et al. | Oct 1995 | A |
5460629 | Shlain et al. | Oct 1995 | A |
5462546 | Rydell | Oct 1995 | A |
5472443 | Cordis et al. | Dec 1995 | A |
5478351 | Meade et al. | Dec 1995 | A |
5484436 | Eggers et al. | Jan 1996 | A |
5496317 | Goble et al. | Mar 1996 | A |
5499997 | Sharpe et al. | Mar 1996 | A |
5509922 | Aranyi et al. | Apr 1996 | A |
5514134 | Rydell et al. | May 1996 | A |
5527313 | Scott et al. | Jun 1996 | A |
5531744 | Nardella et al. | Jul 1996 | A |
5540684 | Hassler, Jr. | Jul 1996 | A |
5540685 | Parins et al. | Jul 1996 | A |
5540715 | Katsaros et al. | Jul 1996 | A |
5558672 | Edwards et al. | Sep 1996 | A |
5569241 | Edwards | Oct 1996 | A |
5569243 | Kortenbach et al. | Oct 1996 | A |
5571100 | Goble et al. | Nov 1996 | A |
5573535 | Viklund | Nov 1996 | A |
5585896 | Yamazaki et al. | Dec 1996 | A |
5590570 | LeMaire, III et al. | Jan 1997 | A |
5603711 | Parins et al. | Feb 1997 | A |
5603723 | Aranyi et al. | Feb 1997 | A |
5626578 | Tihon | May 1997 | A |
5630833 | Katsaros et al. | May 1997 | A |
5637110 | Pennybacker et al. | Jun 1997 | A |
5643294 | Tovey et al. | Jul 1997 | A |
5647869 | Goble et al. | Jul 1997 | A |
5649959 | Hannam et al. | Jul 1997 | A |
5658281 | Heard | Aug 1997 | A |
5667526 | Levin | Sep 1997 | A |
5674220 | Fox et al. | Oct 1997 | A |
5693051 | Schulze et al. | Dec 1997 | A |
5695522 | LeMaire, III et al. | Dec 1997 | A |
5700261 | Brinkerhoff | Dec 1997 | A |
5702390 | Austin et al. | Dec 1997 | A |
5707369 | Vaitekunas et al. | Jan 1998 | A |
5709680 | Yates et al. | Jan 1998 | A |
5727428 | LeMaire, III et al. | Mar 1998 | A |
5743906 | Parins et al. | Apr 1998 | A |
5755717 | Yates et al. | May 1998 | A |
5766166 | Hooven | Jun 1998 | A |
5766170 | Eggers | Jun 1998 | A |
5769849 | Eggers | Jun 1998 | A |
5776128 | Eggers | Jul 1998 | A |
5776130 | Buysse et al. | Jul 1998 | A |
5779701 | McBrayer et al. | Jul 1998 | A |
5792137 | Carr et al. | Aug 1998 | A |
5792177 | Kaseda | Aug 1998 | A |
5797958 | Yoon | Aug 1998 | A |
5800449 | Wales | Sep 1998 | A |
5810808 | Eggers | Sep 1998 | A |
5810811 | Yates et al. | Sep 1998 | A |
5814043 | Shapeton | Sep 1998 | A |
5827271 | Buysse et al. | Oct 1998 | A |
5827279 | Hughett et al. | Oct 1998 | A |
5827281 | Levin | Oct 1998 | A |
5833690 | Yates et al. | Nov 1998 | A |
5843080 | Fleenor et al. | Dec 1998 | A |
5849022 | Sakashita et al. | Dec 1998 | A |
5853412 | Mayenberger | Dec 1998 | A |
5876401 | Schulze et al. | Mar 1999 | A |
5891141 | Rydell | Apr 1999 | A |
5891142 | Eggers et al. | Apr 1999 | A |
5893863 | Yoon | Apr 1999 | A |
5893875 | Oconnor et al. | Apr 1999 | A |
5902301 | Olig | May 1999 | A |
5908420 | Parins et al. | Jun 1999 | A |
5913874 | Berns et al. | Jun 1999 | A |
5921984 | Sutcu et al. | Jul 1999 | A |
5935126 | Riza | Aug 1999 | A |
5951549 | Richardson et al. | Sep 1999 | A |
5954720 | Wilson et al. | Sep 1999 | A |
5976132 | Morris | Nov 1999 | A |
5989277 | LeMaire, III et al. | Nov 1999 | A |
6004335 | Vaitekunas et al. | Dec 1999 | A |
6024744 | Kese et al. | Feb 2000 | A |
6033399 | Gines | Mar 2000 | A |
6039733 | Buysse et al. | Mar 2000 | A |
6050996 | Schmaltz et al. | Apr 2000 | A |
6053914 | Eggers et al. | Apr 2000 | A |
6053933 | Balazs et al. | Apr 2000 | A |
D424694 | Tetzlaff et al. | May 2000 | S |
D425201 | Tetzlaff et al. | May 2000 | S |
RE36795 | Rydell | Jul 2000 | E |
6083223 | Baker | Jul 2000 | A |
6086586 | Hooven | Jul 2000 | A |
6090107 | Borgmeier et al. | Jul 2000 | A |
6099550 | Yoon | Aug 2000 | A |
6102909 | Chen et al. | Aug 2000 | A |
6110171 | Rydell | Aug 2000 | A |
6113596 | Hooven et al. | Sep 2000 | A |
6113598 | Baker | Sep 2000 | A |
H1904 | Yates et al. | Oct 2000 | H |
6126658 | Baker | Oct 2000 | A |
6152923 | Ryan | Nov 2000 | A |
6174309 | Wrublewski et al. | Jan 2001 | B1 |
6179834 | Buysse et al. | Jan 2001 | B1 |
6179837 | Hooven | Jan 2001 | B1 |
6183467 | Shapeton et al. | Feb 2001 | B1 |
6187003 | Buysse et al. | Feb 2001 | B1 |
6190386 | Rydell | Feb 2001 | B1 |
6193718 | Kortenbach et al. | Feb 2001 | B1 |
6206877 | Kese et al. | Mar 2001 | B1 |
6224593 | Ryan et al. | May 2001 | B1 |
6228080 | Gines | May 2001 | B1 |
6228083 | Lands et al. | May 2001 | B1 |
6267761 | Ryan | Jul 2001 | B1 |
6273887 | Yamauchi et al. | Aug 2001 | B1 |
6277117 | Tetzlaff et al. | Aug 2001 | B1 |
D449886 | Tetzlaff et al. | Oct 2001 | S |
6334861 | Chandler et al. | Jan 2002 | B1 |
6350264 | Hooven | Feb 2002 | B1 |
6352536 | Buysse et al. | Mar 2002 | B1 |
6409728 | Ehr et al. | Jun 2002 | B1 |
H2037 | Yates et al. | Jul 2002 | H |
6443970 | Schulze et al. | Sep 2002 | B1 |
6451018 | Lands et al. | Sep 2002 | B1 |
6458128 | Schulze | Oct 2002 | B1 |
6458130 | Frazier et al. | Oct 2002 | B1 |
6511480 | Tetzlaff et al. | Jan 2003 | B1 |
6585735 | Frazier et al. | Jul 2003 | B1 |
6620161 | Schulze et al. | Sep 2003 | B2 |
6682528 | Frazier et al. | Jan 2004 | B2 |
20030018331 | Dycus et al. | Jan 2003 | A1 |
Number | Date | Country |
---|---|---|
2104423 | Feb 1994 | CA |
19608716 | Apr 1997 | DE |
0364216 | Apr 1990 | EP |
0 518 230 | Dec 1992 | EP |
0541930 | May 1993 | EP |
0572131 | Dec 1993 | EP |
0 584 787 | Mar 1994 | EP |
0623316 | Nov 1994 | EP |
0650701 | May 1995 | EP |
0694290 | Mar 1996 | EP |
0754437 | Mar 1997 | EP |
0717966 | Jun 1998 | EP |
0 853 922 | Jul 1998 | EP |
0887046 | Jan 1999 | EP |
0923907 | Jun 1999 | EP |
1034747 | Sep 2000 | EP |
1034748 | Sep 2000 | EP |
1025807 | Oct 2000 | EP |
1034746 | Oct 2000 | EP |
1050278 | Nov 2000 | EP |
1053719 | Nov 2000 | EP |
1053720 | Nov 2000 | EP |
1055399 | Nov 2000 | EP |
1055400 | Nov 2000 | EP |
1080694 | Mar 2001 | EP |
1082944 | Mar 2001 | EP |
2214430 | Jun 1989 | GB |
5-40112 | Feb 1993 | JP |
06343644 | Dec 1994 | JP |
07265328 | Oct 1995 | JP |
08056955 | Mar 1996 | JP |
08252263 | Oct 1996 | JP |
09010223 | Jan 1997 | JP |
11249298 | Sep 1999 | JP |
2000342599 | Dec 2000 | JP |
2000350732 | Dec 2000 | JP |
2001008944 | Jan 2001 | JP |
2001029356 | Feb 2001 | JP |
2001128990 | May 2001 | JP |
401367 | Oct 1973 | SU |
WO 9206642 | Apr 1992 | WO |
WO 9502369 | Jan 1995 | WO |
WO 9700646 | Jan 1997 | WO |
WO9700647 | Jan 1997 | WO |
WO 9724073 | Jul 1997 | WO |
WO 9724993 | Jul 1997 | WO |
WO 9827880 | Jul 1998 | WO |
WO 9903407 | Jan 1999 | WO |
WO 9903408 | Jan 1999 | WO |
WO 9903409 | Jan 1999 | WO |
WO 9940857 | Aug 1999 | WO |
WO 9951158 | Oct 1999 | WO |
WO 0024330 | May 2000 | WO |
WO 0041638 | Jul 2000 | WO |
WO 0053112 | Sep 2000 | WO |
WO 0154604 | Aug 2001 | WO |
WO 02080796 | Oct 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20030032956 A1 | Feb 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09591330 | Jun 2000 | US |
Child | 10243274 | US | |
Parent | 08970472 | Nov 1997 | US |
Child | 09591330 | US |