Laparoscopic tissue thickness and clamp load measuring devices

Information

  • Patent Grant
  • 8893946
  • Patent Number
    8,893,946
  • Date Filed
    Wednesday, March 28, 2007
    17 years ago
  • Date Issued
    Tuesday, November 25, 2014
    10 years ago
Abstract
A surgical instrument having opposed jaws that can be selectively moved between open and closed positions. Various embodiments include components for measuring the thickness of tissue clamped between the opposed jaws. Some embodiments are configured to ascertain the amount of compressive force that is being applied to the tissue while the thickness of the tissue is being determined. The tissue thickness data is displayed on the instrument itself and/or on a display that is remote from the instrument. The various embodiments may comprise different types of surgical instruments such as surgical staplers and graspers. A jaw arrangement with jaws shaped to define a cradle that corresponds to a cross-sectional shape of an object is also disclosed. The components that generate the thickness data may be electrically or mechanically actuated.
Description
FIELD OF THE INVENTION

The present invention relates in general to laparoscopic and endoscopic surgical instruments and, more particularly, to endoscopic surgical devices and grasping devices configured to enable the surgeon to measure tissue thickness and clamping loads.


BACKGROUND OF THE INVENTION

Endoscopic surgical instruments are often preferred over traditional open surgical devices since a smaller incision tends to reduce the post-operative recovery time and complications. Consequently, significant development has gone into a range of endoscopic surgical instruments that are suitable for precise placement of a distal end effector at a desired surgical site through a cannula of a trocar. These distal end effectors engage the tissue in a number of ways to achieve a diagnostic or therapeutic effect (e.g., endocutter, grasper, cutter, staplers, clip applier, access device, drug/gene therapy delivery device, and energy device using ultrasound, RF, laser, etc.).


Known surgical staplers include an end effector that simultaneously makes a longitudinal incision in tissue and applies lines of staples on opposing sides of the incision. The end effector includes a pair of cooperating jaw members that, if the instrument is intended for endoscopic or laparoscopic applications, are capable of passing through a cannula passageway. One of the jaw members receives a staple cartridge having at least two laterally spaced rows of staples. The other jaw member defines an anvil having staple-forming pockets aligned with the rows of staples in the cartridge. The instrument commonly includes a plurality of reciprocating wedges which, when driven distally, pass through openings in the staple cartridge and engage drivers supporting the staples to effect the firing of the staples toward the anvil.


When using an endocutter during endoscopic surgery, it is often difficult for the surgeon to determine the thickness of the tissue that they are about to transect. The thickness of the tissue determines the type of cartridge/staple they need in order to properly seal the transection. Often times, the surgeon must make the thickness determination based upon their visual observations of the tissue on a monitor or, if possible, they use their hands to feel the thickness of the tissue.


Another type of device that is commonly employed during laparoscopic surgery is known as a grasper. Such graspers typically have a pair of opposing jaws that are used to grasp tissue or portions of other surgical instruments during the surgical procedure. Such grasping devices, however, also lack means for determining tissue thicknesses. In addition, the jaw arrangements employed by such graspers are often ill-suited to effectively grip and manipulate other surgical instruments used during the operation.


Consequently, a significant need exists for a laparoscopic device that would permit a surgeon to accurately and repeatably measure tissue thickness to enable the surgeon to select a proper staple cartridge to perform a transection. There is a further need for graspers that have tissue thickness measuring capabilities and jaws designed to effectively grasp other surgical instruments therebetween.


The foregoing discussion is intended only to illustrate some of the shortcomings present in the field of the invention at the time, and should not be taken as a disavowal of claim scope.


SUMMARY

In one aspect of the invention, there is provided a surgical instrument that comprises a pair of opposing jaws, wherein at least one jaw is selectively movable relative to the other jaw in response to opening and closing motions applied thereto for selectively clamping tissue therebetween. An output generator is associated with the pair of opposing jaws and is capable of generating tissue thickness data or indicia that represents a thickness of the tissue that is clamped between the pair of opposing jaws. The surgical instrument may further include a display for displaying the tissue thickness data or indicia thereon. In various embodiments, the tissue thickness data or indicia may be displayed on a display located on the surgical instrument itself or it may be displayed on a display located remote from the surgical instrument.


In another general aspect of various embodiments of the present invention there is provided a surgical instrument that comprises a handle assembly and an end effector for performing a surgical operation. The end effector is coupled to the handle assembly and has opposed jaw members for selectively clamping tissue therebetween in response to opening and closing motions applied thereto. A closure drive is supported by the handle assembly and is configured to generate the opening and closing motions for selective application to the end effector. The end effector may include at least one signal generator for generating signals corresponding to a thickness of the tissue clamped between the opposed jaw members. The instrument may further include a signal processor for receiving said signals from the signal generator and calculating the thickness of the tissue. In addition, a display communicates with the signal processor for displaying the tissue thickness thereon.


In still another general aspect of various embodiments of the present invention there is provided a jaw arrangement for a surgical instrument that comprises a first jaw that is operably coupleable to the surgical instrument and has a distal end and a first clamping face and at least one first nodule that is formed on the first clamping face. The arrangement further includes a second jaw that has a distal end and a second clamping face. At least one second nodule is formed on the second clamping face. The second jaw is operably coupleable to the surgical instrument relative to the first jaw such that the first and second distal ends of the first and second jaws, respectively may be selectively moved toward and away from each other upon application of open and closing motions to at least one of the first and second jaws from the surgical instrument such that as the first and second distal ends are moved towards each other, the first and second distal ends and the first and second nodules cooperate to define a cradle area therebetween sized to grippingly support therein an object having a specific cross-sectional shape.


In another aspect of the present invention, there is provided a surgical instrument that may comprise a handle assembly and a pair of opposing jaws that are operably coupled to the handle assembly. The opposing jaws may be selectively movable between open and closed positions for clamping tissue therebetween. The surgical instrument may further include a closure drive that is operably supported by the handle assembly for selectively applying opening and closing motions to the pair of opposing jaws. An output generator may cooperate with the closure drive to display reference indicia that corresponds to a thickness of the tissue clamped between the pair of opposing jaws.


These and other objects and advantages of the present invention shall be made apparent from the accompanying drawings and the description thereof.





BRIEF DESCRIPTION OF THE FIGURES

The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention, and, together with the general description of the invention given above, and the detailed description of the embodiments given below, serve to explain various principles of the present invention.



FIG. 1 is a perspective view of a surgical stapling and severing instrument of various embodiments of the present invention;



FIG. 2 is a left side perspective view of an end effector embodiment of the present invention;



FIG. 3 is a cross-sectional view of the end effector of FIG. 2 with a portion of tissue clamped between the anvil and tissue measurement cartridge;



FIG. 4 is a cross-sectional view of the end effector of FIG. 3 taken along line 4-4 in FIG. 3;



FIG. 5 is a schematic diagram of a strain gauge and operating system arrangement of various embodiments of the present invention;



FIG. 6 is a cross-sectional view of another end effector embodiment of the present invention with tissue clamped between the anvil and the tissue measurement cartridge;



FIG. 7 is a schematic diagram of a strain gauge and operating system arrangement of another embodiment of the present invention;



FIG. 8 is a side elevational view of a grasper embodiment of the present invention with the left hand side of the handle casing removed to show the various components supported within the handle assembly;



FIG. 9 is an exploded assembly view of a portion of the grasper rod arrangement employed in the grasper embodiment depicted in FIG. 8;



FIG. 10 is a schematic view of various components of the grasper embodiment of FIG. 8 with the jaws thereof in an open position;



FIG. 11 is another schematic view of various components of the grasper embodiment of FIG. 8 with the jaws thereof clamping a portion of tissue therebetween;



FIG. 12 is another schematic view of various components of the grasper embodiment of FIG. 8 with the jaws thereof in a fully closed position;



FIG. 13 is a right side elevational view of another grasper embodiment of the present invention;



FIG. 14 is a side elevational view of a jaw arrangement of other embodiments of the present invention;



FIG. 15 is a side view of another surgical instrument embodiment of the present invention;



FIG. 16 is an exploded assembly view of a portion of the surgical instrument of FIG. 15;



FIG. 17 is a cross-sectional view of a handle assembly of the surgical instrument of FIGS. 15 and 16 with some components thereof shown in solid form for clarity;



FIG. 18 is a cross-sectional view of the surgical instrument of FIGS. 15-17 in a fully closed and locked position with some components thereof shown in solid form for clarity;



FIG. 19 is another cross-sectional view of the surgical instrument of FIGS. 15-18 in a fully open position with some components thereof shown in solid form for clarity;



FIG. 20 is another cross-sectional view of the surgical instrument of FIGS. 15-19 in a fully closed position and with the release trigger in a fully depressed position with some components thereof shown in solid form for clarity;



FIG. 21 is another cross-sectional view of the surgical instrument of FIGS. 15-20 in a tissue clamping position with some components thereof shown in solid form for clarity;



FIG. 22 is a cross-sectional view of the surgical instrument of FIGS. 15-21 in a position wherein the clinician is applying excessive clamping force to the tissue with some components thereof shown in solid form for clarity; and



FIG. 23 is another cross-sectional view of the surgical instrument of FIGS. 15-22 in a tissue clamping position wherein the user can read the reference indicia corresponding to a thickness “t” of the tissue clamped thereby.





DETAILED DESCRIPTION

Certain exemplary embodiments will now be described to provide an overall understanding of the principles of the structure, function, manufacture, and use of the devices and methods disclosed herein. One or more examples of these embodiments are illustrated in the accompanying drawings. Those of ordinary skill in the art will understand that the devices and methods specifically described herein and illustrated in the accompanying drawings are non-limiting exemplary embodiments and that the scope of the various embodiments of the present invention is defined solely by the claims. The features illustrated or described in connection with one exemplary embodiment may be combined with the features of other embodiments. Such modifications and variations are intended to be included within the scope of the present invention.


The present invention generally relates to methods and devices for measuring the thickness of tissue to be transected or otherwise manipulated during endoscopic and laparoscopic procedures. In one exemplary embodiment, the measuring device can be employed in connection with an endocutter for transecting and stapling tissue. Such endocutters typically include an end effector with opposing jaws that are adapted to receive the target tissue therebetween. As will be described in connection with one exemplary embodiment, the end effector is attached to a handle assembly by an elongated shaft assembly. The handle assembly is equipped with a closure trigger that enables the surgeon to selectively open and close the end effector jaws. The end effector is also equipped with a firing drive system for driving a knife through the staple cartridge and clamped tissue while also driving the staples housed within the staple cartridge into forming contact with an anvil. Other exemplary embodiments comprise a surgical device that has a pair of opposed jaws for simply manipulating and grasping tissue, other surgical instruments, etc.


As the present Detailed Description proceeds, a person of ordinary skill in the art will appreciate that the surgical instruments described herein can have a variety of configurations, and that one or more of the various tissue measurement features of the various embodiments of the present invention disclosed herein can be successfully used in a variety of different grasping device/end effectors known in the art for grasping/manipulating tissue or other objects. Thus, the term “surgical instrument” as used herein is intended to include any device that has opposed movable jaws that come together to grasp, clamp, cut, dissect, staple, etc.


Turning to the Drawings, wherein like numerals denote like components throughout the several views, FIGS. 1 and 2 depict a surgical stapling and severing instrument 10 that is capable of practicing various unique benefits of the present invention. The surgical stapling and severing instrument 10 incorporates an end effector 12 that has a first jaw 14 and a second jaw 16. In various embodiments, the second jaw 16 may comprise elongate channel 17 and the first jaw may comprise an anvil 15 that is pivotally attached to the elongate channel 17, forming opposing jaws for clamping tissue to be severed and stapled. Those of ordinary skill in the art will understand that the exemplary endocutter embodiment depicted in the Figures comprises one endocutter version with which various embodiments of the present invention may be successfully employed. However, various embodiments of the present invention may be used in connection with a variety of different endocutter instruments. For example, various embodiments of the present invention may be used in connection with those surgical instruments disclosed in U.S. Pat. No. 6,978,921 to Shelton, I V et al., entitled Surgical Stapling Instrument Incorporating an E-Beam Firing Mechanism, the disclosure of which is herein incorporated by reference.


As can be seen in FIG. 1, the end effector 12 may be coupled to a handle assembly 20 by an elongate shaft assembly 18. An implement portion 22, formed by the end effector 12 and shaft assembly 18, may be advantageously sized for insertion through a trocar or small laparoscopic opening to perform an endoscopic surgical procedure while being controlled by a surgeon grasping the handle assembly 20. The handle assembly 20 may include features that allow separate closure motions and firing motions, lockouts to prevent inadvertent or ill-advised firing of the end effector, as well as enabling multiple firing strokes to effect firing (i.e., severing and stapling) of the end effector 12 while indicating the degree of firing to the surgeon.


To these ends, a closure tube 24 of the shaft assembly 18 may be coupled between a closure trigger 26 (FIG. 1) and the anvil 15 to cause closure of the end effector 12. Within the closure tube 24, a frame 28 may be coupled between the elongate channel 17 and the handle assembly 20 to longitudinally position and support the end effector 12. A rotation knob 30 may be coupled with the frame 28, and both elements may be rotatably coupled to the handle assembly 20. Thus, the surgeon can rotate the end effector 12 by turning the rotation knob 30 which causes rotation of the closure tube 24. The frame 28 extends through the closure tube 24 along with a firing rod 32 which is positioned for longitudinal movement and is operably coupled to a firing trigger 34. In the embodiment depicted in FIG. 1, the closure trigger 26 is distal to a pistol grip 36 of the handle assembly 20 with the firing trigger 34 distal to both the pistol grip 36 and closure trigger 26.


It will be appreciated that the terms “proximal” and “distal” are used herein with reference to a clinician gripping a handle of an instrument. Thus, the end effector 12 is distal with respect to the more proximal handle assembly 20. Analogous terms such as “front” and “back” similarly correspond respectively to distal and proximal. It will be further appreciated that for convenience and clarity, spatial terms such as “vertical”, “horizontal”, “up” and “down” are used herein with respect to the drawings. However, surgical instruments are used in many orientations and positions, and these terms are not intended to be limiting and absolute.


The present invention is being discussed in terms of endoscopic procedures and apparatus. However, use herein of terms such as “endoscopic”, should not be construed to limit the present invention to a surgical stapling and severing instrument for use only in conjunction with an endoscopic tube (i.e., trocar). On the contrary, it is believed that the present invention may find use in any procedure where access is limited to a small incision, including but not limited to laparoscopic procedures, as well as open procedures.


With particular reference to FIG. 3, the anvil 15 is pivotally coupled to the elongate channel 17 by a pair of laterally projecting anvil pivot pins 54 that are proximal to a vertically projecting anvil feature 56 (FIG. 4). The anvil pivot pins 54 translate within kidney shaped openings 58 in the elongate channel 17 to open and close anvil 15 relative to elongate channel 17. The anvil feature 56 engages a tab 59 (FIG. 1) extending inwardly in a tab aperture 60 on a distal end 62 of the closure tube 24. Thus, when the closure tube 24 moves proximally from its open position, the tab 59 of the closure tube 24 draws the anvil feature 56 proximally, and the anvil pivot pins 54 follow the kidney shaped openings 58 of the elongate channel 17 causing the anvil 15 to simultaneously translate proximally and rotate upward to the open position. When the closure tube 24 moves distally, the tab 59 in the tab aperture 60 releases from the anvil feature 56 and the distal edge 64 pushes on the anvil face 50, closing the anvil 15.


It should be appreciated that, although a nonarticulating shaft assembly 18 is illustrated herein, applications of the present invention may include instruments capable of articulation, such as those described in three commonly owned U.S. patents and two commonly owned U.S. patent applications, the disclosure of each being hereby incorporated by reference in their entirety: (1) U.S. Pat. No. 7,111,769 to Kenneth S. Wales, Douglas B. Hoffman, Frederick E. Shelton I V, and Jeffrey S. Swayze, issued Sep. 26, 2006, entitled “Surgical instrument Incorporating An Articulation Mechanism Having Rotation About the Longitudinal Axis”; (2) U.S. Pat. No. 6,981,628 to Kenneth S. Wales, issued Jan. 3, 2006, entitled “Surgical Instrument With A Lateral-Moving Articulation Control”; (3) U.S. Pat. No. 7,055,731 to Frederick E. Shelton I V, Michael E. Setser, William B. Weisenburgh II, issued Jun. 6, 2006 entitled “Surgical Stapling Instrument Incorporating A Tapered Firing Bar For Increased Flexibility Around The Articulation Joint”; (4) U.S. Patent Publication No. 2005/0006429 entitled “Surgical Stapling Instrument Having Articulation Joint Support Plates For Supporting A Firing Bar”, Ser. No. 10/615,971, to Kenneth S. Wales and Joseph Charles Hueil, filed 9 Jul. 2003; and (5) U.S. patent application entitled “Surgical Stapling Instrument Incorporating An Articulation Joint For a Firing Bar Track”, Ser. No. 10/615,962, to Brian J. Hemmelgam, filed 9 Jul. 2003. Those of ordinary skill in the art will readily understand, however, that the unique and novel aspects of various features of the present invention may be employed in connection with still other types of articulating surgical instruments without departing from the spirit and scope of the present invention.


With reference to FIGS. 2 and 3, the elongate channel 17 is configured to removably receive a thickness measurement cartridge 100 therein. Thickness measurement cartridge 100 may resemble a conventional staple cartridge. However, thickness measurement cartridge 100 lacks the staples and staple firing drivers and may also differ from a conventional staple cartridge in at least the manners described below. In particular, the body portion 102 of the thickness measurement cartridge 100 may have an upstanding clamping nodule 110 that is formed on a distal end 101 of the cartridge 100. The clamping nodule 110 may be so oriented on the distal end 101 of the cartridge 100 such that when the cartridge 100 is installed in the elongate channel 17, the clamping nodule 110 is located over a first conventional strain gauge 120 that is mounted within the elongate channel 17. The purpose of the first strain gauge 120 will be discussed in further detail below.


As can also be seen in FIGS. 2 and 3, the thickness measurement cartridge 100 may also include a thickness or anvil probe 130 that is mounted within the cartridge body 102. More specifically, as can be seen in FIG. 3, the anvil probe 130 may include a first portion 132 that is mounted within the cartridge body 102 and a second deflectable portion 134 that protrudes upwardly from the cartridge body 102 for contact with the underside 19 of the anvil 15. The anvil probe 130 may be fabricated from metal or other suitable material and may be associated with a second strain gauge 140 that is mounted in the cartridge body 102. The first and second strain gauges 120, 140 may each be coupled to a battery or other source of electrical power 150, an amplifier 152, a digital-to-analog converter 154, a conventional central processing unit “CPU” 156, and a display unit 158. The battery 150, amplifier 152, the converter 154, CPU 156 and display unit 158 may be housed within the handle assembly 20. Each strain gauge may have its own amplifier. The first and second strain gauges 120, 140 and the source of electrical power 150, amplifier, 152, converter 154 and CPU 156 may collectively form an output generator generally designated as 118. In alternative embodiments, the CPU 156 may also be coupled to a wireless signal generator 160 that transmits the thickness data to a remote (i.e., not supported by the handle assembly 20) monitor 162. See FIG. 5. The measurement cartridge 100 may be formed with a pin and socket connection (not shown) to facilitate electrical communication between the second strain gauge 140 and conductors in the elongate channel 17 that extend through the shaft 18 and are ultimately coupled to the CPU 156 and/or source of electrical power 150.


Operation of a thickness measurement cartridge 100 of various embodiments of the present invention will now be described with reference to FIGS. 1, 3, 4, and 5. Prior to installing a conventional staple cartridge into the elongate channel 17 of the instrument 10, the surgeon may first install the thickness measurement cartridge 100 into the elongate channel 17. The thickness measurement cartridge 100 may be fabricated with retention features that are commonly found on conventional staple cartridges to removably retain the thickness measurement cartridge 100 within the elongate channel 17. When installed, a pin and socket connector or other arrangement may connect the second strain gauge 140 to the source of electrical power 150 and amplifier 152.


In laparoscopic and endoscopic surgical procedures, a small incision or puncture is made in the patient's body to provide access for a tube or cannula device. Once extended into the patient's body, the cannula allows insertion of various surgical instruments to perform the surgery. After the surgeon has installed the thickness measurement cartridge 100 in the elongate channel 17, the surgeon may then insert the implement 22 through the cannula (not shown) so that a portion T′ of the tissue “T” to be transected is positioned between the underside 19 of the anvil 15 and the measurement cartridge 100. See FIG. 3. The surgeon then moves the closure trigger 26 towards the pistol grip 36 to move the closure tube 24 in a known manner to pivot the anvil 15 in a closing direction. As the anvil 15 is pivoted in the closing direction, a portion of the tissue “T” to be transected is clamped between the underside 19 of the anvil 15 and the nodule 110. As can be most particularly seen in FIGS. 3 and 4, a pivot protrusion 104 may be formed on the underside of the cartridge body 102 to rest on the bottom of the elongate cartridge 17 to thereby enable the cartridge body 102 to pivot thereon.


As the anvil 15 begins to clamp the tissue “T” between the underside 19 of the anvil 15 and the nodule 110, the first strain gauge 120 is placed under load and may act as a resistor, such that, as the load that is applied to the first strain gauge 120, the first strain gauge 120 either increases or decreases the amount of resistance to the electricity supplied to it from the source of electrical power 150. The amplifier 152 amplifies the signal from the first strain gauge 120 and feeds the amplified signal into the digital-to-analog converter 154 that changes raw current into digital data. The digital data is then sent to the CPU 156 which interprets the digital signal and mathematically transforms the data into a first amount of strain or load which is displayed by the handle display 158 and/or is sent to a wireless signal generator 160 which wirelessly transmits the data to a remote monitor 162. See FIG. 5. The surgeon continues to close the anvil 15 until the display indicates that the tissue “T” within the first and second jaws 14, 16 has been clamped under a predetermined amount of clamping load. For example, the predetermined amount of clamping load or force may be eight grams. Such force may not, for example, damage the tissue “T”, but may provide a reference point for repeatability purposes.


As the anvil 15 is being closed, the undersurface 19 of the anvil 15 starts to impart a load onto the anvil probe 134 which is conveyed to the second strain gauge 140 located in the cartridge 100. The amplifier 152 amplifies the output signal from the second strain gauge 140 and feeds the amplified signal into the digital-to-analog converter 154 that changes raw current into digital data. The digital data is then transmitted to the CPU 156 which interprets the digital signal and mathematically transforms the data into a tissue thickness that is displayed on the handle display 158 and/or is transmitted to the wireless signal generator 160 for sending to a remote monitor 162. After the surgeon has determined the thickness “t” of the tissue to be transected, the implement portion 22 is withdrawn to enable the thickness measurement cartridge 100 to be replaced with the appropriate staple cartridge. The measurement cartridge 100 may then be resterilized for the next procedure or simply disposed of.


In an alternative embodiment as depicted in FIGS. 6 and 7, the measurement cartridge 100′ lacks the nodule and the first strain gauge that was included in the measurement cartridge 100 as described above. This embodiment may only be equipped with a strain gauge 140′. Thus, in this embodiment, the output generator 118′ may comprise the source of electrical power 150, the strain gauge 140′, the amplifier 152, the converter 154, and the CPU 156. Otherwise, cartridge 100′ may be substantially identical to cartridge 100. FIG. 7 is a schematic drawing of the interface between the strain gauge 140′ and the CPU 156. In this embodiment, the CPU 156 employs an algorithm that compares the strain values over time and waits until the strain is no longer changing within a desired delta, before it displays the final load reading or calculated tissue thickness “t” on the display. In addition, a switch 164 (mechanically or electrically activated) could be associated with the clamping trigger 26 for detecting the position of the clamping trigger 26. The switch 164 may communicate with the CPU 156 such that the CPU 156 would not start to process the strain loads until the clamping trigger 26 reached a predetermined position.



FIGS. 8-12 illustrate another surgical instrument 300 in the form of a grasper 302 that may employ various unique and novel features of various embodiments of the present invention. Such graspers 302 are known in the art and, therefore, the known features thereof, will not be discussed in great detail herein beyond what may be needed to fully understand and appreciate various embodiments of the subject invention. Examples of such devices are disclosed in U.S. Pat. No. 6,117,158 to Measamer et al. and U.S. Pat. No. 5,735,874 to Measamer et al., the disclosures of which are herein incorporated by reference.


As can be seen in FIG. 8, the grasper 302 includes an end effector 312 that has a first jaw 314 and a second jaw 316 that are operably mounted to a grasper rod 400 that protrudes distally from a handle assembly 320. As is known, a proximal portion 402 of the grasper rod 400 may be rotatably supported within the handle assembly 320 and coupled to a rotation knob 330 rotatably supported on the handle assembly 320. Such arrangement permits the surgeon to rotate the grasper rod 400 (and jaws 314, 316) relative to the handle assembly 320. As can also be seen in FIG. 8, the grasper rod 400 extends through a closure tube 324 that also protrudes from the handle assembly 320.


As is known in the art, as the jaws 314 and 316 are pivotally coupled to a distal end 404 of the grasper rod 400 and may be retained in the open position illustrated in FIG. 8 by a spring arrangement (not shown). The jaws 314 and 316 are caused to close when their respective proximal ends 315, 317 are brought into contact with a distal end 325 of the closure tube 324 as the grasper rod 400 is drawn in the proximal direction in response to the actuation of a closure trigger 326 attached to the handle assembly 320. As can be seen in FIG. 8, the closure trigger 326 is pivotally mounted on a pivot rod 328 for selective pivotal travel therearound. The closure trigger 326 has an arcuate follower arm 340 attached thereto that is constrained to pivot along an arcuate path within the handle assembly 320 as the closure trigger 326 is pivoted between the open position shown in FIG. 8 and a closed position wherein the proximal end 327 of the pivot trigger 326 is substantially adjacent to a grip portion 336 of the handle assembly 330. Supported within the handle assembly 320 is a closure spring 342 that is arranged to engage the distal end of the follower arm 340 to bias the closure trigger 326 in the open position. In various embodiments, the grasper 320 may further include a locking trigger assembly 350 for locking the closure trigger 326 and ultimately the jaws 314, 316 in a specific clamping position. The construction and operation of such locking trigger assembly 350 is known in the art and therefore will not be described in detail herein.


As can be seen in FIG. 8, the grasper 302 is provided with an output generator generally designated as 500. In various embodiments, the output generator 500 may include a first gear 502 in the form of an arcuate arm 504 that has a series of gear teeth 510 formed on a distal end 506 thereof. A proximal end 508 is attached to the closure trigger 326. The gear teeth 510 are arranged in meshing engagement with the teeth of a second or closure gear 520 which is nonrotatably coupled to a bell crank 530. The second gear 520 may be rotatably supported on a second pivot rod 514 within the handle housing 320. As can be seen in FIG. 8, a distal end 532 of the bell crank 530 has a series of crank teeth 534 formed thereon and a retainer tab 538 formed on a proximal end 536 thereof. Thus, by pivoting the closure trigger 326 toward the grip portion 330, the bell crank 530 is rotated in a clockwise direction “CW” as shown in FIG. 8.


Also in this embodiment, a series of rings 550 may be formed on a portion of the grasper rod 400. The rings 550 are located on the grasper rod 400 for selective engagement with the crank teeth 534. A lug 552 is also formed adjacent the proximal-most ring 550. As can be seen in FIGS. 8 and 9, the proximal end 410 of the grasper rod 400 may be attached to a reference scale arm 560 by means of a linkage arm assembly 570. As was discussed above, it may be desirable for the surgeon to be able rotate the grasper rod 400 relative to the handle assembly 320 to facilitate accurate positioning of the jaws 314 and 316. Thus, in various embodiments, the proximal end 410 of the grasper rod 400 may be attached to the linkage arm assembly by a gimble-like joint assembly, generally designated as 580. As shown in FIG. 9, the gimble-like joint assembly 580 may include a collar 582 that has two circumferentially opposed pivot pins 584, 586 protruding therefrom. The collar 584 is received on a shoulder portion 412 of the grasper rod 400 and retained thereon by a screw 414 that threadably engages the proximal end 410 of the grasper rod 400 as shown. Those of ordinary skill in the art will understand that such arrangement serves to permit the grasper rod 400 to freely rotate within the collar 582 while being attached thereto.


As can also be seen in FIG. 9, the linkage arm assembly 570 may comprise a right linkage arm 572 that is pivotally attached to the right pivot pin 584 and a left linkage arm 574 that is attached to the left pivot pin 586. The proximal end 573 of the right linkage arm 572 and the proximal end 575 of the left linkage arm 574 may be pivotally attached to the scale arm 560 by a pivot pin 590. Thus, such arrangement enables grasper rod 400 to be linked to the scale arm 560 while permitting free rotation of the grasper rod 400 relative thereto. In various embodiments, the lower end 562 of the scale arm 560 may be pivotally coupled to handle case 320 by a pivot pin 564 to enable the scale arm 560 to pivot in sync with the grasper rod 400.


As can be seen in FIG. 8, the lower portion 562 of the scale arm 560 may also be attached to a load applying assembly 600. In various embodiments, the load applying assembly may comprise a pin 610 that is sized to move axially within a cavity 323 formed in the handle case 321. A measurement spring 612 is located within the cavity 323 for biasing the pin 610 in a distal direction “DD”. As will be further discussed below, the measurement spring 612 may be sized to apply an 8 gram or other predetermined load to close the jaws 314, 316 when the closure trigger 326 has been pivoted to a certain position. The distal end of the pin 614 may be pivotally coupled to the scale arm 560 by a pin 620 that is received in an elongated slot 563 formed in the bottom end of the scale arm. See FIGS. 10-12. A reference scale 566 may be attached to or formed on the upper end of the scale arm 560 as shown. The reference scale 566 may be provided with reference indicia 568, the purpose of which will be discussed in further detail below. Also in the embodiment depicted in FIG. 8, a shroud 630 may protrude from the bell crank 530. The shroud 630 may have a first reference window 632 therethrough. In addition, a window 329 is also provided through the handle case 321 to enable the surgeon to read the reference indicia 568 on the reference scale 566 that is aligned therewith. See FIG. 10.


The operation of the grasper 302 may be further appreciated from reference to FIGS. 10-12 which schematically illustrate one method of operation. FIG. 10 illustrates the grasper 302 in schematic form with the jaws 314, 316 in the fully open position. When in that position, the closure spring 342 biases the closure trigger 326 away from the grip portion (not illustrated in FIG. 10). The closure spring 342 may be sized relative to the measurement spring 612 such that the closure spring 342 is stronger than the measurement spring 612 to cause the closure trigger 326 to be pivoted to the open position when the grasper 302 is unactuated. In FIG. 10, the closure spring 342 is biasing the closure trigger 326 in the counterclockwise “CCW” direction. As can be seen in FIGS. 8 and 10, when the grasper rod 400 is in the fully opened position, none of the teeth 534 on the bell crank 530 are in engagement with any of the rings 550 on the grasper rod 400 and the retention tab 538 on the bell crank 530 is in contact with the lug 552 on the grasper rod 400. In addition, the end of the shroud 630 extends between the reference scale 566 and the viewing window 329 in the handle case 321 so that the surgeon will only see the shroud 630 when looking through the window 329; no reference indicia 568 would be viewable in the window 329.



FIG. 11 illustrates use of the grasper 302 in schematic form to measure the thickness “t” of the tissue “T”. As can be seen in that Figure, the closure trigger 326 has been pulled in the CCW direction against the closing force of the closing spring 342 to cause the bell crank 530 to rotate in the CW direction to move the retention tab 538 out of engagement with the lug 552 on the grasper rod 400. When the retention tab 538 has been moved out of engagement with lug 552, the grasper rod 400 is caused to move in the proximal direction “PD” by means of scale arm 560. In particular, the lower end 562 of the scale arm 560 is moved in the distal direction by the pin 610 which causes the scale arm 560 to pivot about the pivot pin 564 and pull the grasper rod 400 in the proximal direction “PD”. As the measurement spring 612 expands, the position where the pin 610 engages the scale arm 560 in the slot 563 will change—moving further from the pivot rod 564. Thus, as the measurement spring force reduces (resulting from extension of the measurement spring 612), the mechanical advantage of the scale arm 560 would increase to maintain a constant load on the grasper jaws 314, 316. As the grasper rod 400 moves in the proximal direction “PD”, it causes the jaws 314 and 316 to close upon the tissue “T”. In various embodiments, the measurement spring 612 may be sized such that a predetermined amount of clamping load is applied to the tissue “T”. For example, in one exemplary embodiment, the measurement spring 612 is sized such that approximately eight grams of closure load is applied to the tissue “T”.


When in the tissue “T” has been clamped between the jaws 314, 316 solely under the clamping load of the measurement spring 612, a corresponding one of the reference indicia 568 will be aligned with the viewing window 329 in the handle case 321. The surgeon can then position the closure trigger 326 to cause the bell crank 530 and shroud 630 to move to a position wherein the viewing window 632 in the shroud 630 is in alignment with the viewing 329 window to permit the surgeon to view the reference indicia 568 through the viewing windows 329, 632 as shown in FIG. 11. When in that position, the bell crank 530 is not influencing the position of the grasping rod 530. The position of the grasping rod 400 is solely controlled by the influence of the measuring spring 612 on the scale arm 560 in the manner described above. Thus, when in that position, the surgeon is viewing the reference indicia 568 associated with the thickness of the tissue “T” as it is clamped between the jaws 314, 316 under that predetermined load. Those of ordinary skill in the art will appreciate that the measurement spring and measurement lever may be constructed/calibrated such that the reference indicia 568 correspond to the thickness of the tissue “T” that is clamped under that load.



FIG. 12 illustrates the position of the various grasper components when the surgeon has completely closed the jaws 314, 316 with no tissue clamped therebetween. As can be seen in that Figure, the surgeon has pulled the closure trigger 326 to the point wherein the measurement spring 612 has biased the scale arm 560 to pull the grasper rod 400 far enough in the proximal direction “PD” to cause the jaws 314, 316 to completely close. When the surgeon releases the closure trigger 326, the closure spring 342, which is stronger that the measurement spring 612, biases the closure trigger 326 to the open position. As the closure trigger 326 rotates to the open position, it causes the bell crank 530 to pivot in the CCW direction in FIG. 12 to bring the retainer tab 538 into engagement with the lug 552 on the grasper rod 400 to drive the grasper rod 400 in the distal direction “DD” until the grasper rod 400 reaches the open position (FIG. 10).


Thus, various embodiments of the grasper 302 may be used in the following manner. The surgeon may initially close the jaws 314, 316 to enable the implement portion 322 to be inserted through the cannula or other opening. After the implement portion 322 has been inserted into the patient, the surgeon may release the closure trigger 326 to permit the jaws 314, 316 to open. The surgeon may then manipulate the instrument until the target tissue “T” is oriented between the jaws 314, 316. The jaws 314, 316 may then be closed on the target tissue “T” by depressing the closure trigger 326 towards the grip portion 336 of the handle assembly 320. As the surgeon continues to depress the closure trigger 326, he or she can observe the viewing window 329 in the handle assembly 320 until the reference indicia 568 which corresponds to the tissue thickness under a predetermined clamping load is viewable. Further depressing of the closure trigger 326 would further draw the grasper rod 400 in the proximal direction “PD” by virtue of the engagement of the teeth 534 on the bell crank 530 with one or more rings 550 on the grasper rod 400 and thereby apply further clamping force to the tissue “T”. In doing so, however, the movement of the bell crank 530 and shroud 630 causes the viewing window 632 in the shroud 630 to move out of alignment with the viewing window 329 in the handle casing 321. Thus, the surgeon is unable to view the reference indicia 568 when the tissue “T” has been placed under a clamping load that is greater than the desired predetermined clamping load. If the surgeon desires to take a thickness reading, he or she simply must start to release the closure trigger 326 until the window 632 in the shroud 630 once again aligns with the window 329 in the handle casing to permit viewing of the reference indicia.



FIG. 13 illustrates another surgical instrument 700 in the form of a grasper 702 that may employ various unique and novel features of various embodiments of the present invention. In this embodiment, a conventional grasper arrangement may be employed. Such grasper 702 may include an end effector 712 that has a first jaw 714 and a second jaw 716 that are operably mounted to a grasper rod 800 that protrudes distally from a handle assembly 720. As is known, a proximal portion 802 of the grasper rod 800 is rotatably supported within the handle assembly 720 and coupled to a rotation knob 730 rotatably supported on the handle assembly 720. Such arrangement permits the surgeon to rotate the grasper rod 800 relative to the handle assembly 720. As can also be seen in FIG. 13, the grasper rod 800 may extend through a closure tube 724 that also protrudes from the handle assembly 720.


As is known in the art, the jaws 714 and 716 may be pivotally coupled to a distal end 804 of the grasper rod 800 and may be retained in the open position illustrated in FIG. 13 by a spring arrangement (not shown). The jaws 714 and 716 are caused to close when their proximal ends 715, 717, respectively are brought into contact with a distal end 725 of the closure tube 724 as the grasper rod 800 is drawn in the proximal direction in response to the actuation of a closure trigger 726 attached to the handle assembly 720. The construction and operation of the closure trigger and its interaction with the grasper rod 800 are known in the art and therefore will not be discussed in detail herein.


In various embodiments, however, a strain gauge 900 may be oriented for interaction with the grasper rod 800 such that as the grasper rod is moved in the proximal direction “PD” by depressing the closure trigger 726, the strain gauge 900 measures the strain on the closure rod 800. As can be seen in FIG. 14, the strain gauge 900 is coupled to a battery or other source of electrical power 910, an amplifier 912, a digital-to-analog converter 914, a conventional central processing unit “CPU” 916, and a display unit 918. In various embodiments, the strain gauge 900, source of electrical power 910, the amplifier 912, converter 914 and CPU 916 may be collectively referred to as an output generator, generally designated as 930. In alternative embodiments, the CPU 916 may also be coupled to a wireless signal generator 920 that transmits the thickness data to a remote monitor 922.


In this embodiment, the CPU 916 employs an algorithm that compares the strain values over time and waits until the strain is no longer changing within a given delta for example, less than 1 to 2% variation, before it displays the final load reading or calculated tissue thickness “t” on the display. Such variation may be measured in raw voltage (strain gauge acts as a resistor to modify voltage according to how much it is stressed or pulled or compressed), deflection after the data is translated from voltage to strain, or tissue thickness when the strain is translated into thickness. In addition, a switch (mechanically or electrically activated) could be associated with the clamping trigger for detecting the position of the clamping trigger. The switch 164 may communicate with the CPU 156 such that the CPU 156 would not start to process the strain loads until the closure trigger 26 reached a predetermined position.


Another feature of various embodiments of the present invention is depicted in FIG. 14. In particular, FIG. 14 illustrates jaws 710, 720 that may be used in connection with any of the grasper embodiments described herein or other conventional grasper arrangements wherein it may be advantageous to grasp and manipulate another surgical instrument such as, an endocutter or the like. In the embodiment depicted in FIG. 15, the first jaw 710 may have a clamping face 711 and a distal end 712 that curves downward. The second jaw 720 has a clamping face 721 and a distal end 722 that curves upwardly. A somewhat curved nodule 714 may be formed on the clamping face 711 of the first jaw 710 and another somewhat curved nodule 724 may be formed on the clamping face 721 of the second jaw 720. In this embodiment, the nodules 714, 724 may be so oriented and shaped to cooperate with the respective distal ends 712, 722 of the first and second jaws 710, 720 so as to form a cradle, generally designated as 730, for receiving and supporting a portion of a surgical instrument 750 that has a substantially circular cross-sectional shape. Such arrangement serves to provide a positive support for the surgical instrument 750 within the first and second jaws 710, 720 and enables the surgeon to accurately manipulate the instrument 750 using the grasper. Those of ordinary skill in the art will understand that, in other embodiments of the present invention, the sizes, shapes and numbers of nodules may vary and/or the distal ends of the jaws may have different shapes to better form a cradle that corresponds to the cross-sectional shape of the instrument to be grasped between the jaws. Thus, the scope and protection afforded to these various embodiments should not be limited to use of two nodules having the specific shapes illustrated in FIG. 14.



FIGS. 15-23 illustrate another surgical instrument 1000 in the form of a grasper 1002 that may employ certain unique and novel features of various embodiments of the present invention. In various embodiments, the grasper 1002 may include an end effector 1012 that has a first jaw 1014 and a second jaw 1016 that are operably mounted to a grasper rod 1100 that protrudes distally from a handle assembly 1020. See FIG. 19. The grasper rod 1100 may be axially received within a tube 1024 that may be rotatably affixed to the handle assembly 1020. A rotation knob 1030 may be rotatably affixed to the handle assembly 1020 as shown in FIG. 19 and be attached to the tube 1024 such that rotation of the rotation knob 1030 relative to the handle assembly 1020 may also result in the rotation of the end effector 1012 relative to the handle assembly 1020. The jaws 1014 and 1016 may be pivotally coupled to a distal end 1104 of the grasper rod 1100 by corresponding linkages 1106, 1108. Movement of the grasper rod 1100 in the distal direction “DD” will cause the jaws to 1014, 1016 to pivot closed.


In various embodiments, the grasper rod 1100 may be selectively moved by actuation of a closure trigger 1026 that is pivotally supported by the handle assembly 1020. More specifically and with reference to FIGS. 17 and 18, a proximal end 1102 of the grasper rod 1100 may be attached to a calibrated spring slide 1200 housed within the handle assembly 1020. In various embodiments for example, the proximal end 1102 of the grasper rod 1100 may be formed with a T-shaped portion 1103 that is configured to be received in a correspondingly shaped cavity 1204 in a distal end portion 1202 of the calibrated spring slide 1200. The calibrated spring slide 1200 is configured to be movably received in an elongated opening 1040 in the handle assembly 1020 and has an actuator opening 1208 therein for receiving a lever arm 1028 formed on the closure trigger 1026. The lever arm 1028 may also protrude through the actuator opening 1208 into a corresponding opening 1212 in a window slide 1210 that is configured to be slidably supported within a window slide cavity 1040 formed in the handle assembly 1020. The widow slide 1210 may have blocking portions 1214 formed thereon that, as will be discussed in further detail below, serve to block corresponding window openings 1022 formed in the handle assembly 1020. Thus, by pivoting the closure trigger 1026 toward the pistol grip portion 1025 of the handle assembly 1020, the lever arm 1028 causes the calibration spring slide 1200 and the window slide 1210 to move in the proximal “PD” direction. In various embodiments, a window slide spring 1216 may be supported by the handle assembly 1020 to bias the window slide 1210 in the distal “DD” direction.


As can also be seen in FIGS. 16-23, the grasper 1002 may also be configured with a releasable lock assembly, generally designated as 1220. In various embodiments, the lock assembly 1220 may comprise a lever lock arm 1222 that is attached to or protrudes from the closure trigger 1026 that is pivotally journaled on a pivot stud 1023 or other member formed on or otherwise attached to the handle assembly 1020. See FIG. 16. A torque spring 1230 may also be journaled on the pivot stud 1023 to apply a biasing force to the closure trigger 1026 to bias the closure trigger 1026 to an open position as illustrated in FIG. 18. In various embodiments, the lever lock arm 1222 may comprise a piece of metal or other suitable material that is attached to the closure trigger 1026 and is configured to extend into a lock cavity 1027 formed in the handle assembly 1020. Extending into the lock cavity 1027 is a lock member that has a serrated or toothed end 1242 that is configured to selectively engage a portion of the lever lock arm 1222 and retain it within the lock cavity 1027. As shown in FIGS. 16-23, a lock spring 1250 may be supported in the handle assembly 1020 for biasing the lock member 1240 into retaining engagement with a portion of the lever lock arm 1222. To enable the clinician to selectively release the lock member 1240 out of retaining engagement with the lever lock arm 1222, a release trigger 1260 may be provided. In various embodiments, the release trigger 1260 may have a proximal end 1262 portion that is slidably received within a trigger cavity 1029 in the handle assembly. The proximal end 1262 of the release trigger 1260 is also configured to extend into a cavity 1244 formed in the lock member 1240. Depressing the release trigger 1260 toward the pistol grip portion 1025 of the handle assembly 1020 causes the proximal end 1262 of the release trigger 1260 to cooperate with an angled surface 1246 within the cavity 1244 to cause the lock member 1240 to moved downwardly against the lock spring 1250 to enable the lever lock arm 1222 to be released from the lock cavity 1027. When the lever lock arm 1222 is released, the closure trigger 1026 may pivot to an open position under the influence of the torque spring 1230.


Various embodiments may further include an output generator generally designated as 1201. In various embodiments, the output generator may include a reference dial 1270 that is rotatably supported on a dial stud 1272 formed or otherwise supported within the handle assembly 1020. The reference dial 1270 may be provided with reference indicia 1274, the purpose of which will be discussed in further detail below. In addition, the output generator 1201 may further include drive gear 1280 may be formed or otherwise attached to the reference dial 1270 as shown in FIG. 16. The drive gear 1280 is arranged for meshing engagement with gear teeth 1206 formed on the calibrated spring slide 1204. Also in various embodiments, the output generator may, for example, include a calibrated spring 1290 provided on the distal end 1202 of the calibrated spring slide 1200 and be received within a corresponding cavity 1292 in the handle housing 1020. As will be appreciated from the discussion to follow, the output generator 1201 in various embodiments is mechanically actuated or powered. As used herein, the term “mechanically actuated” means that the output generator is actuated without any electrically generated input.


Operation of various embodiments of the grasper 1002 may be understood from reference to FIGS. 18-23. FIG. 18 illustrates the grasper 1002 in a “fully closed” and locked position. When the closure trigger 1026 is in the fully depressed position, the lever arm 1028 is positioned within the lever arm cavity 1208 in the calibrated spring slide 1200 to permit the calibrated spring slide 1200 to slide proximally under the biasing force created by the calibration spring 1292. As the calibrated spring slide 1200 moves proximally, it drives the reference dial 1270 in a clockwise direction by virtue of the meshing engagement between the teeth 1206 and the drive gear 1280. In various embodiments, the calibrated spring 1292 may be sized such that the “0” on the reference dial 1270 is aligned with the window 1022 in the handle assembly 1020. To return to a fully open position (FIG. 19), the clinician depresses the release trigger 1260 as shown in FIG. 23 which releases the lever lock arm 1222 and permits the closure trigger 1026 to return to the open position under the force of the torque spring 1230. As the closure trigger 1026 moves to the open position, the lever arm portion 1028 pivots in a counterclockwise direction within the opening 1212 in the window slide 1210 thereby permitting the window slide 1210 to be biased in the distal direction by the window slide spring 1216 such that the blocking portions 1214 block the windows 1022 in the handle assembly 1020. In addition, the lever arm portion 1028 pushes the calibrated spring slide 1200 distally which moves the grasper rod 1100 distally to open the jaws 1014 and 1016.


When the clinician desires to clamp the tissue “T” between the jaws 1014, 1016 as shown in FIG. 21, the clinician moves the end effector 1012 into position and depresses the release trigger 1260 to permit the closure trigger 1026 to begin to be depressed. When in that position, the window slide 1210 is positioned in its distal-most position and the blocking portions 1214 thereof do not obscure the windows 1022 in the housing assembly. As the closure trigger 1026 is depressed, the calibrated spring slide 1200 moves proximally which draws the grasper rod 1110 proximally and causes the jaws 1014 and 1016 to clamp the tissue “T” therebetween (FIG. 21). The clinician continues to depress the closure trigger 1026 until the closure trigger has pivoted to a point wherein the lever arm portion 1028 biases the window slide 1210 proximally to a position wherein the blocking portions 1214 block the windows 1022 in the handle assembly 1020. See FIG. 22. The clinician thereafter slightly releases the closure trigger 1026 to a point wherein the reference indicia 1274 on the reference dial 1270 is viewable through the windows 1022 in the handle assembly 1020. See FIG. 23. Those of ordinary skill in the art will appreciate that the reference indicia may be associated with a particular thickness “t” of tissue “T”. For example, the number 1 on the reference dial 1270 may represent an approximate tissue thickness of 1 mm; the number 2 may represent an approximate tissue thickness of 2 mm and so on. It will be further understood that such unique and novel arrangement enables the clinician to obtain a thickness measurement of the tissue “T” at a predetermined clamping load (resulting from the calibrated spring 1292). For example, the calibrated spring 1292 may be sized to apply an approximate clamping load of 8 grams/mm squared when the grasper is positioned to indicate the tissue thickness. If the clinician “over clamps” the tissue, the window slide 1210 moves to a position wherein the blocking portions 1214 block the windows 1022 to thereby prevent the clinician from reading the reference indicia 1274.


While the present invention has been illustrated by description of several embodiments and while the illustrative embodiments have been described in considerable detail, it is not the intention of the applicant to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications may readily appear to those skilled in the art. Those of ordinary skill in the art will readily appreciate the different advantages provided by these various embodiments. For example, various embodiments of the present invention enable the surgeon to determine the thickness of the desired target tissue to enable the properly sized implementations (staple cartridges, etc.) to be employed. Various embodiments are also constructed to enable the surgeon to take such tissue thickness measurements under a predetermined compressive load.


While several embodiments of the invention have been described, it should be apparent, however, that various modifications, alterations and adaptations to those embodiments may occur to persons skilled in the art with the attainment of some or all of the advantages of the invention. For example, according to various embodiments, a single component may be replaced by multiple components, and multiple components may be replaced by a single component, to perform a given function or functions. This application is therefore intended to cover all such modifications, alterations and adaptations without departing from the scope and spirit of the disclosed invention as defined by the appended claims.


The devices disclosed herein can be designed to be disposed of after a single use, or they can be designed to be used multiple times. In either case, however, the device can be reconditioned for reuse after at least one use. Reconditioning can include an combination of the steps of disassembly of the device, followed by cleaning or replacement of particular pieces, and subsequent reassembly. In particular, the device can be disassembled, and any number of particular pieces or parts of the device can be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular parts, the device can be reassembled for subsequent use either at a reconditioning facility, or by a surgical team immediately prior to a surgical procedure. Those of ordinary skill in the art will appreciate that the reconditioning of a device can utilize a variety of different techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.


Preferably, the invention described herein will be processed before surgery. First a new or used instrument is obtained and, if necessary, cleaned. The instrument can then be sterilized. In one sterilization technique, the instrument is placed in a closed and sealed container, such as a plastic or TYVEK® bag. The container and instrument are then placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, or higher energy electrons. The radiation kills bacteria on the instrument and in the container. The sterilized instrument can then be stored in the sterile container. The sealed container keeps the instrument sterile until it is opened in the medical facility.


Any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated materials does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.


The invention which is intended to be protected is not to be construed as limited to the particular embodiments disclosed. The embodiments are therefore to be regarded as illustrative rather than restrictive. Variations and changes may be made by others without departing from the spirit of the present invention. Accordingly, it is expressly intended that all such equivalents, variations and changes which fall within the spirit and scope of the present invention as defined in the claims be embraced thereby.

Claims
  • 1. A surgical instrument, comprising: a pair of opposing jaws, wherein at least one jaw is selectively movable relative to the other jaw in response to opening and closing motions applied to at least one of said opposing jaws for selectively clamping tissue therebetween;an output generator associated with said pair of opposing jaws, said output generator generating tissue thickness data representing thicknesses of the tissue clamped between said pair of opposing jaws when said opposing jaws are in a plurality of positions between opened and closed;a probe operably interfacing with said output generator, wherein said probe is configured to operably contact both of the jaws when said pair of opposing jaws are in said plurality of positions such that at said plurality of positions said probe causes said output generator to generate said tissue thickness data; anda display for displaying said tissue thickness data thereon.
  • 2. The surgical instrument of claim 1 wherein said output generator comprises: at least one strain gauge for generating a strain signal corresponding to the tissue thickness of the tissue clamped between said pair of opposing jaws; anda processor communicating with said at least one strain gauge for receiving said strain signal therefrom and generating said tissue thickness data corresponding to said strain signal and communicating said tissue thickness data to said display.
  • 3. The surgical instrument of claim 1 wherein said pair of opposing jaws comprises: a first jaw sized to removably support a cartridge therein; anda second jaw movably coupled to said first jaw and being selectively movable between open and closed positions relative to said first jaw in response to application of said open and closing motions to at least one of said first and second jaws and wherein said output generator comprises:a measurement cartridge removably supportable in said first jaw;at least one strain gauge associated with said measurement cartridge for generating a strain signal corresponding to the tissue thickness of tissue clamped between the measurement cartridge and the second jaw; anda processor communicating with said at least one strain gauge for receiving said strain signals therefrom and calculating said tissue thickness data corresponding to said tissue thickness and communicating said tissue thickness data to said display.
  • 4. The surgical instrument of claim 3 wherein said strain gauge is supported by said measurement cartridge and said probe has a deflectable portion for contact with said second jaw.
  • 5. A surgical instrument comprising: a handle assembly;an end effector for performing a surgical operation, said end effector coupled to said handle assembly and having opposed jaw members for selectively clamping tissue therebetween in response to opening and closing motions applied to at least one of said opposing jaw members;a first signal generator in said end effector for generating first signals corresponding to a thickness of the tissue clamped between said opposed jaw members;a nodule oriented on said end effector such that said nodule is aligned with the first signal generator;a probe configured to operably contact both of the jaw members when said pair of opposed jaw members are in a plurality of positions between opened and closed such that at said plurality of positions said probe causes a second signal generator operably interfacing with said probe to generate second tissue thickness signals;a signal processor for receiving said first and second signals from said first signal generator and said second signal generator and calculating the thickness of the tissue clamped between said opposed jaw members; anda display communicating with said signal processor for displaying the tissue thickness thereon.
  • 6. The surgical instrument of claim 5 further comprising a measurement cartridge, comprising a cartridge body sized to be removably supported in said end effector and wherein said first signal generator comprises a first strain gauge supported by said cartridge body and configured to communicate with said signal processor when said cartridge body is removably supported in said end effector, said first strain gauge generating first strain signals corresponding to an amount of compressive load applied to the tissue clamped by said end effector.
  • 7. The surgical instrument of claim 6 wherein said second signal generator comprises a second strain gauge supported within said cartridge body and communicating with said signal processor, said second strain gauge generating at least one second strain signal corresponding to a thickness of tissue clamped by said end effector.
  • 8. The surgical instrument of claim 6 wherein said cartridge body is pivotally supported within the end effector.
  • 9. The surgical instrument of claim 8 wherein said opposing jaw members of said end effector comprise: an elongate channel configured to removably support the cartridge body therein; andan anvil movably supported relative to the elongate channel.
  • 10. The surgical instrument of claim 9 wherein said elongate channel is configured to operably support a surgical fastener cartridge therein when said cartridge body of the measurement cartridge has been removed from the elongate channel.
  • 11. The surgical instrument of claim 10 further comprising: a closure drive supported by said handle assembly and configured to generate said opening and closing motions for selective application to said end effector; anda firing drive supported by said handle assembly and configured to selectively generate and apply firing motions to said surgical fastener cartridge operably supported by said elongate channel.
  • 12. The surgical instrument of claim 6 wherein said cartridge body includes a tissue clamping surface and wherein said nodule protrudes from said tissue clamping surface.
  • 13. The surgical instrument of claim 6 wherein said first signal generator is located distal to said second signal generator.
  • 14. The surgical instrument of claim 5 wherein said tissue thickness data is wirelessly transmitted to said display.
  • 15. The surgical instrument of claim 5 wherein said display is supported on said handle assembly.
  • 16. The surgical instrument of claim 5 wherein said display is remote from said handle assembly.
  • 17. The surgical instrument of claim 5 further comprising a closure drive supported by said handle assembly and configured to generate said opening and closing motions for selective application to said end effector.
US Referenced Citations (705)
Number Name Date Kind
2804848 O'Farrell et al. Sep 1957 A
2853074 Olson Sep 1958 A
3490675 Green et al. Jan 1970 A
3551987 Wilkinson Jan 1971 A
3643851 Green et al. Feb 1972 A
3662939 Bryan May 1972 A
3717294 Green Feb 1973 A
3819100 Noiles et al. Jun 1974 A
4331277 Green May 1982 A
4383634 Green May 1983 A
4396139 Hall et al. Aug 1983 A
4402445 Green Sep 1983 A
4415112 Green Nov 1983 A
4429695 Green Feb 1984 A
4475679 Fleury, Jr. Oct 1984 A
4489875 Crawford et al. Dec 1984 A
4500024 DiGiovanni et al. Feb 1985 A
4505273 Braun et al. Mar 1985 A
4505414 Filipi Mar 1985 A
4506671 Green Mar 1985 A
4522327 Korthoff et al. Jun 1985 A
4530453 Green Jul 1985 A
4566620 Green et al. Jan 1986 A
4573622 Green et al. Mar 1986 A
4576167 Noiles Mar 1986 A
4580712 Green Apr 1986 A
4610250 Green Sep 1986 A
4610383 Rothfuss et al. Sep 1986 A
4619262 Taylor Oct 1986 A
4629107 Fedotov et al. Dec 1986 A
4655222 Florez et al. Apr 1987 A
4664305 Blake, III et al. May 1987 A
4667674 Korthoff et al. May 1987 A
4671445 Barker et al. Jun 1987 A
4715520 Roehr, Jr. et al. Dec 1987 A
4728020 Green et al. Mar 1988 A
4752024 Green et al. Jun 1988 A
4754909 Barker et al. Jul 1988 A
4767044 Green Aug 1988 A
4805823 Rothfuss Feb 1989 A
4809695 Gwathmey et al. Mar 1989 A
4817847 Redtenbacher et al. Apr 1989 A
4819853 Green Apr 1989 A
4821939 Green Apr 1989 A
4869414 Green et al. Sep 1989 A
4869415 Fox Sep 1989 A
4880015 Nierman Nov 1989 A
4941623 Pruitt Jul 1990 A
4944443 Oddsen et al. Jul 1990 A
5014899 Presty et al. May 1991 A
5042707 Taheri Aug 1991 A
5065929 Schulze et al. Nov 1991 A
5071430 de Salis et al. Dec 1991 A
5084057 Green et al. Jan 1992 A
5116349 Aranyi May 1992 A
5129570 Schulze et al. Jul 1992 A
5137198 Nobis et al. Aug 1992 A
5139513 Segato Aug 1992 A
5158567 Green Oct 1992 A
5171247 Hughett et al. Dec 1992 A
5171249 Stefanchik et al. Dec 1992 A
5209747 Knoepfler May 1993 A
5211649 Kohler et al. May 1993 A
5221036 Takase Jun 1993 A
5222975 Crainich Jun 1993 A
5236440 Hlavacek Aug 1993 A
5246443 Mai Sep 1993 A
5258009 Conners Nov 1993 A
5282806 Haber et al. Feb 1994 A
5282829 Hermes Feb 1994 A
5304204 Bregen Apr 1994 A
5314424 Nicholas May 1994 A
5333422 Warren et al. Aug 1994 A
5341724 Vatel Aug 1994 A
5342395 Jarrett et al. Aug 1994 A
5342396 Cook Aug 1994 A
5350400 Esposito et al. Sep 1994 A
5352235 Koros et al. Oct 1994 A
5352238 Green et al. Oct 1994 A
5354303 Spaeth et al. Oct 1994 A
5358510 Luscombe et al. Oct 1994 A
5366479 McGarry et al. Nov 1994 A
5374277 Hassler Dec 1994 A
5379933 Green et al. Jan 1995 A
5383880 Hooven Jan 1995 A
5383888 Zvenyatsky et al. Jan 1995 A
5383895 Holmes et al. Jan 1995 A
5389098 Tsuruta et al. Feb 1995 A
5397324 Carroll et al. Mar 1995 A
5405344 Williamson et al. Apr 1995 A
5413272 Green et al. May 1995 A
5415334 Williamson, IV et al. May 1995 A
5417361 Williamson, IV May 1995 A
5425745 Green et al. Jun 1995 A
5449365 Green et al. Sep 1995 A
5456401 Green et al. Oct 1995 A
5474566 Alesi et al. Dec 1995 A
5478354 Tovey et al. Dec 1995 A
5480089 Blewett Jan 1996 A
5482197 Green et al. Jan 1996 A
5484095 Green et al. Jan 1996 A
5484451 Akopov et al. Jan 1996 A
5485947 Olson et al. Jan 1996 A
5485952 Fontayne Jan 1996 A
5487499 Sorrentino et al. Jan 1996 A
5487500 Knodel et al. Jan 1996 A
5489058 Plyley et al. Feb 1996 A
5497933 DeFonzo et al. Mar 1996 A
5503320 Webster et al. Apr 1996 A
5503638 Cooper et al. Apr 1996 A
5509596 Green et al. Apr 1996 A
5529235 Boiarski et al. Jun 1996 A
5533521 Granger Jul 1996 A
5535934 Boiarski et al. Jul 1996 A
5535935 Vidal et al. Jul 1996 A
5535937 Boiarski et al. Jul 1996 A
5540375 Bolanos et al. Jul 1996 A
5542594 McKean et al. Aug 1996 A
5547117 Hamblin et al. Aug 1996 A
5549628 Cooper et al. Aug 1996 A
5549637 Crainich Aug 1996 A
5553765 Knodel et al. Sep 1996 A
5554169 Green et al. Sep 1996 A
5558665 Kieturakis Sep 1996 A
5560530 Bolanos et al. Oct 1996 A
5560532 DeFonzo et al. Oct 1996 A
5562239 Boiarski et al. Oct 1996 A
5562241 Knodel et al. Oct 1996 A
5562682 Oberlin et al. Oct 1996 A
5562702 Huitema et al. Oct 1996 A
5564615 Bishop et al. Oct 1996 A
5571116 Bolanos et al. Nov 1996 A
5575799 Bolanos et al. Nov 1996 A
5575803 Cooper et al. Nov 1996 A
5577654 Bishop Nov 1996 A
5579978 Green et al. Dec 1996 A
5580067 Hamblin et al. Dec 1996 A
5582611 Tsuruta et al. Dec 1996 A
5584425 Savage et al. Dec 1996 A
5586711 Plyley et al. Dec 1996 A
5588579 Schnut et al. Dec 1996 A
5588580 Paul et al. Dec 1996 A
5588581 Conlon et al. Dec 1996 A
5597107 Knodel et al. Jan 1997 A
5601224 Bishop et al. Feb 1997 A
5603443 Clark et al. Feb 1997 A
5605272 Witt et al. Feb 1997 A
5605273 Hamblin et al. Feb 1997 A
5607094 Clark et al. Mar 1997 A
5607095 Smith et al. Mar 1997 A
5609285 Grant et al. Mar 1997 A
5624452 Yates Apr 1997 A
5628446 Geiste et al. May 1997 A
5630539 Plyley et al. May 1997 A
5630540 Blewett May 1997 A
5632432 Schulze et al. May 1997 A
5632433 Grant et al. May 1997 A
5634584 Okorocha et al. Jun 1997 A
5636779 Palmer Jun 1997 A
5636780 Green et al. Jun 1997 A
5639008 Gallagher et al. Jun 1997 A
5645209 Green et al. Jul 1997 A
5647526 Green et al. Jul 1997 A
5649937 Bito et al. Jul 1997 A
5651491 Heaton et al. Jul 1997 A
5653373 Green et al. Aug 1997 A
5653374 Young et al. Aug 1997 A
5655698 Yoon Aug 1997 A
5657921 Young et al. Aug 1997 A
5662258 Knodel et al. Sep 1997 A
5662260 Yoon Sep 1997 A
5667527 Cook Sep 1997 A
5669544 Schulze et al. Sep 1997 A
5673840 Schulze et al. Oct 1997 A
5673841 Schulze et al. Oct 1997 A
5673842 Bittner et al. Oct 1997 A
5678748 Plyley et al. Oct 1997 A
5680981 Mililli et al. Oct 1997 A
5680982 Schulze et al. Oct 1997 A
5680983 Plyley et al. Oct 1997 A
5685474 Seeber Nov 1997 A
5688270 Yates et al. Nov 1997 A
5690269 Bolanos et al. Nov 1997 A
5692668 Schulze et al. Dec 1997 A
5697543 Burdorff Dec 1997 A
5700270 Peyser et al. Dec 1997 A
5702408 Wales et al. Dec 1997 A
5704534 Huitema et al. Jan 1998 A
5706997 Green et al. Jan 1998 A
5706998 Plyley et al. Jan 1998 A
5707392 Kortenbach Jan 1998 A
5709334 Sorrentino et al. Jan 1998 A
5711472 Bryan Jan 1998 A
5713505 Huitema Feb 1998 A
5715987 Kelley et al. Feb 1998 A
5715988 Palmer Feb 1998 A
5716366 Yates Feb 1998 A
5718359 Palmer et al. Feb 1998 A
5718360 Green et al. Feb 1998 A
5725536 Oberlin et al. Mar 1998 A
5725554 Simon et al. Mar 1998 A
5728121 Bimbo et al. Mar 1998 A
5730758 Allgeyer Mar 1998 A
5732871 Clark et al. Mar 1998 A
5732872 Bolduc et al. Mar 1998 A
5735445 Vidal et al. Apr 1998 A
5735874 Measamer et al. Apr 1998 A
5743456 Jones et al. Apr 1998 A
5752644 Bolanos et al. May 1998 A
5758814 Gallagher et al. Jun 1998 A
5762255 Chrisman et al. Jun 1998 A
5762256 Mastri et al. Jun 1998 A
5779130 Alesi et al. Jul 1998 A
5779131 Knodel et al. Jul 1998 A
5779132 Knodel et al. Jul 1998 A
5782396 Mastri et al. Jul 1998 A
5782397 Koukline Jul 1998 A
5785232 Vidal et al. Jul 1998 A
5794834 Hamblin et al. Aug 1998 A
5797536 Smith et al. Aug 1998 A
5797537 Oberlin et al. Aug 1998 A
5797538 Heaton et al. Aug 1998 A
5797959 Castro et al. Aug 1998 A
5799857 Robertson et al. Sep 1998 A
5807393 Williamson, IV et al. Sep 1998 A
5817119 Klieman et al. Oct 1998 A
5820009 Melling et al. Oct 1998 A
5826776 Schulze et al. Oct 1998 A
5829662 Allen et al. Nov 1998 A
5833690 Yates et al. Nov 1998 A
5833695 Yoon Nov 1998 A
5836503 Ehrenfels et al. Nov 1998 A
5839639 Sauer et al. Nov 1998 A
5855311 Hamblin et al. Jan 1999 A
5865361 Milliman et al. Feb 1999 A
5868760 McGuckin, Jr. Feb 1999 A
5871135 Williamson, IV et al. Feb 1999 A
5876401 Schulze et al. Mar 1999 A
5878937 Green et al. Mar 1999 A
5878938 Bittner et al. Mar 1999 A
5893506 Powell Apr 1999 A
5894979 Powell Apr 1999 A
5897552 Edwards et al. Apr 1999 A
5901895 Heaton et al. May 1999 A
5906625 Bito et al. May 1999 A
5908427 McKean et al. Jun 1999 A
5911353 Bolanos et al. Jun 1999 A
5915616 Viola et al. Jun 1999 A
5918791 Sorrentino et al. Jul 1999 A
5919198 Graves, Jr. et al. Jul 1999 A
5938667 Peyser et al. Aug 1999 A
5941442 Geiste et al. Aug 1999 A
5951552 Long et al. Sep 1999 A
5951574 Stefanchik et al. Sep 1999 A
5954259 Viola et al. Sep 1999 A
5988479 Palmer Nov 1999 A
6010054 Johnson et al. Jan 2000 A
6032849 Mastri et al. Mar 2000 A
6033427 Lee Mar 2000 A
6045560 McKean et al. Apr 2000 A
6050472 Shibata Apr 2000 A
6083242 Cook Jul 2000 A
6086600 Kortenbach Jul 2000 A
6099551 Gabbay Aug 2000 A
6102271 Longo et al. Aug 2000 A
6109500 Alli et al. Aug 2000 A
6117158 Measamer et al. Sep 2000 A
6119913 Adams et al. Sep 2000 A
6126058 Adams et al. Oct 2000 A
6131789 Schulze et al. Oct 2000 A
6155473 Tompkins et al. Dec 2000 A
6156056 Kearns et al. Dec 2000 A
6162208 Hipps Dec 2000 A
6168605 Measamer et al. Jan 2001 B1
6171330 Benchetrit Jan 2001 B1
6197042 Ginn et al. Mar 2001 B1
6202914 Geiste et al. Mar 2001 B1
6228084 Kirwan, Jr. May 2001 B1
6241139 Milliman et al. Jun 2001 B1
6241723 Heim et al. Jun 2001 B1
6250532 Green et al. Jun 2001 B1
6264086 McGuckin, Jr. Jul 2001 B1
6264087 Whitman Jul 2001 B1
6273897 Dalessandro et al. Aug 2001 B1
6302311 Adams et al. Oct 2001 B1
6315184 Whitman Nov 2001 B1
6325810 Hamilton et al. Dec 2001 B1
6330965 Milliman et al. Dec 2001 B1
6387113 Hawkins et al. May 2002 B1
6387114 Adams May 2002 B2
6406440 Stefanchik Jun 2002 B1
RE37814 Allgeyer Aug 2002 E
6436107 Wang et al. Aug 2002 B1
6443973 Whitman Sep 2002 B1
6482200 Shippert Nov 2002 B2
6488197 Whitman Dec 2002 B1
6491201 Whitman Dec 2002 B1
6494896 D'Alessio et al. Dec 2002 B1
6503257 Grant et al. Jan 2003 B2
6505768 Whitman Jan 2003 B2
6517565 Whitman et al. Feb 2003 B1
6569171 DeGuillebon et al. May 2003 B2
6578751 Hartwick Jun 2003 B2
6588643 Bolduc et al. Jul 2003 B2
6592597 Grant et al. Jul 2003 B2
6601749 Sullivan et al. Aug 2003 B2
6602252 Mollenauer Aug 2003 B2
6616686 Coleman et al. Sep 2003 B2
6619529 Green et al. Sep 2003 B2
6620166 Wenstrom, Jr. et al. Sep 2003 B1
6629988 Weadock Oct 2003 B2
6644532 Green et al. Nov 2003 B2
6656193 Grant et al. Dec 2003 B2
6669073 Milliman et al. Dec 2003 B2
6681978 Geiste et al. Jan 2004 B2
6681979 Whitman Jan 2004 B2
6682528 Frazier et al. Jan 2004 B2
6685727 Fisher et al. Feb 2004 B2
6695199 Whitman Feb 2004 B2
6698643 Whitman Mar 2004 B2
6716233 Whitman Apr 2004 B1
6723087 O'Neill et al. Apr 2004 B2
6752768 Burdorff et al. Jun 2004 B2
6755338 Hahnen et al. Jun 2004 B2
6767356 Kanner et al. Jul 2004 B2
6769594 Orban, III Aug 2004 B2
6773438 Knodel et al. Aug 2004 B1
6786382 Hoffman Sep 2004 B1
6786896 Madhani et al. Sep 2004 B1
6793652 Whitman et al. Sep 2004 B1
6805273 Bilotti et al. Oct 2004 B2
6814741 Bowman et al. Nov 2004 B2
6817508 Racenet et al. Nov 2004 B1
6817509 Geiste et al. Nov 2004 B2
6821273 Mollenauer Nov 2004 B2
6830174 Hillstead et al. Dec 2004 B2
6835199 McGuckin, Jr. et al. Dec 2004 B2
6843403 Whitman Jan 2005 B2
6846307 Whitman et al. Jan 2005 B2
6846308 Whitman et al. Jan 2005 B2
6846309 Whitman et al. Jan 2005 B2
6849071 Whitman et al. Feb 2005 B2
RE38708 Bolanos et al. Mar 2005 E
6874669 Adams et al. Apr 2005 B2
6877647 Green et al. Apr 2005 B2
6905057 Swayze et al. Jun 2005 B2
6945444 Gresham et al. Sep 2005 B2
6953138 Dworak et al. Oct 2005 B1
6953139 Milliman et al. Oct 2005 B2
6959852 Shelton, IV et al. Nov 2005 B2
6964363 Wales et al. Nov 2005 B2
6978921 Shelton, IV et al. Dec 2005 B2
6978922 Bilotti et al. Dec 2005 B2
6981628 Wales Jan 2006 B2
6986451 Mastri et al. Jan 2006 B1
6988649 Shelton, IV et al. Jan 2006 B2
6988650 Schwemberger et al. Jan 2006 B2
7000818 Shelton, IV et al. Feb 2006 B2
7000819 Swayze et al. Feb 2006 B2
7001408 Knodel et al. Feb 2006 B2
7008435 Cummins Mar 2006 B2
7032798 Whitman et al. Apr 2006 B2
7032799 Viola et al. Apr 2006 B2
7044352 Shelton, IV et al. May 2006 B2
7044353 Mastri et al. May 2006 B2
7048687 Reuss et al. May 2006 B1
7055730 Ehrenfels et al. Jun 2006 B2
7055731 Shelton, IV et al. Jun 2006 B2
7056330 Gayton Jun 2006 B2
7059508 Shelton, IV et al. Jun 2006 B2
7070083 Jankowski Jul 2006 B2
7077856 Whitman Jul 2006 B2
7080769 Vresh et al. Jul 2006 B2
7081114 Rashidi Jul 2006 B2
7083073 Yoshie et al. Aug 2006 B2
7083075 Swayze et al. Aug 2006 B2
7090673 Dycus et al. Aug 2006 B2
7090684 McGuckin, Jr. et al. Aug 2006 B2
7097089 Marczyk Aug 2006 B2
7108695 Witt et al. Sep 2006 B2
7108709 Cummins Sep 2006 B2
7111769 Wales et al. Sep 2006 B2
7112214 Peterson et al. Sep 2006 B2
7114642 Whitman Oct 2006 B2
7118582 Wang et al. Oct 2006 B1
7121446 Arad et al. Oct 2006 B2
7122028 Looper et al. Oct 2006 B2
7128253 Mastri et al. Oct 2006 B2
7128254 Shelton, IV et al. Oct 2006 B2
7140527 Ehrenfels et al. Nov 2006 B2
7140528 Shelton, IV Nov 2006 B2
7143923 Shelton, IV et al. Dec 2006 B2
7143924 Scirica et al. Dec 2006 B2
7143925 Shelton, IV et al. Dec 2006 B2
7143926 Shelton, IV et al. Dec 2006 B2
7147138 Shelton, IV Dec 2006 B2
7159750 Racenet et al. Jan 2007 B2
7160299 Baily Jan 2007 B2
7168604 Milliman et al. Jan 2007 B2
7172104 Scirica et al. Feb 2007 B2
7188758 Viola et al. Mar 2007 B2
7207471 Heinrich et al. Apr 2007 B2
7207472 Wukusick et al. Apr 2007 B2
7210609 Leiboff et May 2007 B2
7213736 Wales et al. May 2007 B2
7220272 Weadock May 2007 B2
7225964 Mastri et al. Jun 2007 B2
7235089 McGuckin, Jr. Jun 2007 B1
7238195 Viola Jul 2007 B2
7241288 Braun Jul 2007 B2
7246734 Shelton, IV Jul 2007 B2
7258262 Mastri et al. Aug 2007 B2
7278562 Mastri et al. Oct 2007 B2
7278563 Green Oct 2007 B1
7296724 Green et al. Nov 2007 B2
7297149 Vitali et al. Nov 2007 B2
7303106 Milliman et al. Dec 2007 B2
7303107 Milliman et al. Dec 2007 B2
7303108 Shelton, IV Dec 2007 B2
7303556 Metzger Dec 2007 B2
7328828 Ortiz et al. Feb 2008 B2
7328829 Arad et al. Feb 2008 B2
7343920 Toby et al. Mar 2008 B2
7354447 Shelton, IV et al. Apr 2008 B2
7364061 Swayze et al. Apr 2008 B2
7380695 Doll et al. Jun 2008 B2
7380696 Shelton, IV et al. Jun 2008 B2
7396356 Mollenauer Jul 2008 B2
7398907 Racenet et al. Jul 2008 B2
7398908 Holsten et al. Jul 2008 B2
7404508 Smith et al. Jul 2008 B2
7404509 Ortiz et al. Jul 2008 B2
7407075 Holsten et al. Aug 2008 B2
7407078 Shelton, IV et al. Aug 2008 B2
7410086 Ortiz et al. Aug 2008 B2
7416101 Shelton, IV et al. Aug 2008 B2
7422136 Marczyk Sep 2008 B1
7422139 Shelton, IV et al. Sep 2008 B2
7424965 Racenet et al. Sep 2008 B2
7431188 Marczyk Oct 2008 B1
7431189 Shelton, IV et al. Oct 2008 B2
7431730 Viola Oct 2008 B2
7434715 Shelton, IV et al. Oct 2008 B2
7434717 Shelton, IV et al. Oct 2008 B2
7438209 Hess et al. Oct 2008 B1
7441684 Shelton, IV et al. Oct 2008 B2
7441685 Boudreaux Oct 2008 B1
7448525 Shelton, IV et al. Nov 2008 B2
7464846 Shelton, IV et al. Dec 2008 B2
7464847 Viola et al. Dec 2008 B2
7464849 Shelton, IV et al. Dec 2008 B2
7467740 Shelton, IV et al. Dec 2008 B2
7472814 Mastri et al. Jan 2009 B2
7472815 Shelton, IV et al. Jan 2009 B2
7473253 Dycus et al. Jan 2009 B2
7490749 Schall et al. Feb 2009 B2
7494039 Racenet et al. Feb 2009 B2
7500979 Hueil et al. Mar 2009 B2
7506790 Shelton, IV Mar 2009 B2
7506791 Omaits et al. Mar 2009 B2
7510107 Timm et al. Mar 2009 B2
7546940 Milliman et al. Jun 2009 B2
7549564 Boudreaux Jun 2009 B2
7552854 Wixey et al. Jun 2009 B2
7568603 Shelton, IV et al. Aug 2009 B2
7575144 Ortiz et al. Aug 2009 B2
7631793 Rethy et al. Dec 2009 B2
7641093 Doll et al. Jan 2010 B2
7665646 Prommersberger Feb 2010 B2
7699204 Viola Apr 2010 B2
8079606 Dull et al. Dec 2011 B2
20020117534 Green et al. Aug 2002 A1
20020165541 Whitman Nov 2002 A1
20040006372 Racenet et al. Jan 2004 A1
20040034369 Sauer et al. Feb 2004 A1
20040044364 DeVries et al. Mar 2004 A1
20040094597 Whitman et al. May 2004 A1
20040108357 Milliman et al. Jun 2004 A1
20040111081 Whitman et al. Jun 2004 A1
20040164123 Racenet et al. Aug 2004 A1
20040167572 Roth et al. Aug 2004 A1
20040173659 Green et al. Sep 2004 A1
20040222268 Bilotti et al. Nov 2004 A1
20040232201 Wenchell et al. Nov 2004 A1
20040243151 Demmy et al. Dec 2004 A1
20040243176 Hahnen et al. Dec 2004 A1
20040254608 Huitema et al. Dec 2004 A1
20050033357 Braun Feb 2005 A1
20050054946 Krzyzanowski Mar 2005 A1
20050059997 Bauman et al. Mar 2005 A1
20050080454 Drews et al. Apr 2005 A1
20050103819 Racenet et al. May 2005 A1
20050107824 Hillstead et al. May 2005 A1
20050119669 Demmy Jun 2005 A1
20050125009 Perry et al. Jun 2005 A1
20050131390 Heinrich et al. Jun 2005 A1
20050131457 Douglas et al. Jun 2005 A1
20050143759 Kelly Jun 2005 A1
20050171522 Christopherson Aug 2005 A1
20050184121 Heinrich Aug 2005 A1
20050187576 Whitman et al. Aug 2005 A1
20050189397 Jankowski Sep 2005 A1
20050192628 Viola Sep 2005 A1
20050216055 Scirica et al. Sep 2005 A1
20050240222 Shipp Oct 2005 A1
20050256522 Francischelli et al. Nov 2005 A1
20050263563 Racenet et al. Dec 2005 A1
20050274768 Cummins et al. Dec 2005 A1
20060011699 Olson et al. Jan 2006 A1
20060047303 Ortiz et al. Mar 2006 A1
20060047307 Ortiz et al. Mar 2006 A1
20060049229 Milliman et al. Mar 2006 A1
20060052825 Ransick et al. Mar 2006 A1
20060060630 Shelton, IV et al. Mar 2006 A1
20060085031 Bettuchi Apr 2006 A1
20060085033 Criscuolo et al. Apr 2006 A1
20060100643 Laufer et al. May 2006 A1
20060108393 Heinrich et al. May 2006 A1
20060122636 Bailly et al. Jun 2006 A1
20060149163 Hibner et al. Jul 2006 A1
20060151567 Roy Jul 2006 A1
20060180634 Shelton, IV et al. Aug 2006 A1
20060217729 Eskridge et al. Sep 2006 A1
20060226196 Hueil et al. Oct 2006 A1
20060235469 Viola Oct 2006 A1
20060241655 Viola Oct 2006 A1
20060241692 McGuckin, Jr. et al. Oct 2006 A1
20060273135 Beetel Dec 2006 A1
20060278680 Viola et al. Dec 2006 A1
20060278681 Viola et al. Dec 2006 A1
20060289602 Wales et al. Dec 2006 A1
20070023476 Whitman et al. Feb 2007 A1
20070023477 Whitman et al. Feb 2007 A1
20070027469 Smith et al. Feb 2007 A1
20070034668 Holsten et al. Feb 2007 A1
20070045379 Shelton, IV Mar 2007 A1
20070055219 Whitman et al. Mar 2007 A1
20070073341 Smith et al. Mar 2007 A1
20070084897 Shelton, IV et al. Apr 2007 A1
20070102452 Shelton, IV et al. May 2007 A1
20070102453 Morgan et al. May 2007 A1
20070102472 Shelton, IV May 2007 A1
20070102473 Shelton, IV et al. May 2007 A1
20070102474 Shelton, IV et al. May 2007 A1
20070106317 Shelton, IV et al. May 2007 A1
20070114261 Ortiz et al. May 2007 A1
20070158385 Hueil et al. Jul 2007 A1
20070170225 Shelton, IV et al. Jul 2007 A1
20070173806 Orszulak et al. Jul 2007 A1
20070173813 Odom Jul 2007 A1
20070175949 Shelton, IV et al. Aug 2007 A1
20070175950 Shelton, IV et al. Aug 2007 A1
20070175951 Shelton, IV et al. Aug 2007 A1
20070175953 Shelton, IV et al. Aug 2007 A1
20070175955 Shelton, IV et al. Aug 2007 A1
20070175956 Swayze et al. Aug 2007 A1
20070175957 Shelton, IV et al. Aug 2007 A1
20070175958 Shelton, IV et al. Aug 2007 A1
20070175964 Shelton, IV et al. Aug 2007 A1
20070179476 Shelton, IV et al. Aug 2007 A1
20070181632 Milliman Aug 2007 A1
20070194079 Hueil et al. Aug 2007 A1
20070194080 Swayze et al. Aug 2007 A1
20070194081 Hueil et al. Aug 2007 A1
20070194082 Morgan et al. Aug 2007 A1
20070233053 Shelton et al. Oct 2007 A1
20070246505 Pace-Floridia et al. Oct 2007 A1
20070288044 Jinno et al. Dec 2007 A1
20070295780 Shelton et al. Dec 2007 A1
20080029570 Shelton et al. Feb 2008 A1
20080029573 Shelton et al. Feb 2008 A1
20080029574 Shelton et al. Feb 2008 A1
20080029575 Shelton et al. Feb 2008 A1
20080029576 Shelton et al. Feb 2008 A1
20080035701 Racenet et al. Feb 2008 A1
20080041916 Milliman et al. Feb 2008 A1
20080041917 Racenet et al. Feb 2008 A1
20080078800 Hess et al. Apr 2008 A1
20080078801 Shelton et al. Apr 2008 A1
20080078802 Hess et al. Apr 2008 A1
20080078803 Shelton et al. Apr 2008 A1
20080078804 Shelton et al. Apr 2008 A1
20080078806 Omaits et al. Apr 2008 A1
20080078807 Hess et al. Apr 2008 A1
20080078808 Hess et al. Apr 2008 A1
20080082115 Morgan et al. Apr 2008 A1
20080082124 Hess et al. Apr 2008 A1
20080082125 Murray et al. Apr 2008 A1
20080082126 Murray et al. Apr 2008 A1
20080083813 Zemlok et al. Apr 2008 A1
20080140115 Stopek Jun 2008 A1
20080164296 Shelton et al. Jul 2008 A1
20080167522 Giordano et al. Jul 2008 A1
20080167644 Shelton et al. Jul 2008 A1
20080167670 Shelton et al. Jul 2008 A1
20080167671 Giordano et al. Jul 2008 A1
20080167672 Giordano et al. Jul 2008 A1
20080167736 Swayze et al. Jul 2008 A1
20080169328 Shelton Jul 2008 A1
20080169329 Shelton et al. Jul 2008 A1
20080169330 Shelton et al. Jul 2008 A1
20080169331 Shelton et al. Jul 2008 A1
20080169332 Shelton et al. Jul 2008 A1
20080169333 Shelton et al. Jul 2008 A1
20080197167 Viola et al. Aug 2008 A1
20080210738 Shelton et al. Sep 2008 A1
20080237296 Boudreaux et al. Oct 2008 A1
20080251568 Zemlok et al. Oct 2008 A1
20080283570 Boyden et al. Nov 2008 A1
20080290134 Bettuchi et al. Nov 2008 A1
20080296343 Schall et al. Dec 2008 A1
20080296345 Shelton, IV et al. Dec 2008 A1
20080296346 Shelton, IV et al. Dec 2008 A1
20080296347 Shelton, IV et al. Dec 2008 A1
20080300579 Broehl et al. Dec 2008 A1
20080300580 Shelton, IV et al. Dec 2008 A1
20080300613 Shelton, IV et al. Dec 2008 A1
20080308601 Timm et al. Dec 2008 A1
20080308602 Timm et al. Dec 2008 A1
20080308603 Shelton et al. Dec 2008 A1
20080308606 Timm et al. Dec 2008 A1
20080308607 Timm et al. Dec 2008 A1
20080308608 Prommersberger Dec 2008 A1
20080314954 Boudreaux Dec 2008 A1
20080314955 Boudreaux et al. Dec 2008 A1
20080314957 Boudreaux Dec 2008 A1
20080314960 Marczyk et al. Dec 2008 A1
20080314961 Boudreaux et al. Dec 2008 A1
20080314962 Boudreaux Dec 2008 A1
20090001121 Hess et al. Jan 2009 A1
20090001122 Prommersberger et al. Jan 2009 A1
20090001123 Morgan et al. Jan 2009 A1
20090001124 Hess et al. Jan 2009 A1
20090001125 Hess et al. Jan 2009 A1
20090001126 Hess et al. Jan 2009 A1
20090001128 Weisenburgh, II et al. Jan 2009 A1
20090001130 Hess et al. Jan 2009 A1
20090005807 Hess et al. Jan 2009 A1
20090005808 Hess et al. Jan 2009 A1
20090005809 Hess et al. Jan 2009 A1
20090076534 Shelton, IV et al. Mar 2009 A1
20090090763 Zemlok et al. Apr 2009 A1
20090200355 Baxter, III et al. Aug 2009 A1
20090206123 Doll et al. Aug 2009 A1
20090206124 Hall et al. Aug 2009 A1
20090206125 Huitema et al. Aug 2009 A1
20090206126 Huitema et al. Aug 2009 A1
20090206128 Hueil et al. Aug 2009 A1
20090206129 Doll et al. Aug 2009 A1
20090206130 Hall et al. Aug 2009 A1
20090206131 Weisenburgh, II et al. Aug 2009 A1
20090206132 Hueil et al. Aug 2009 A1
20090206133 Morgan et al. Aug 2009 A1
20090206134 Swayze et al. Aug 2009 A1
20090206135 Hall et al. Aug 2009 A1
20090206136 Moore et al. Aug 2009 A1
20090206137 Hall et al. Aug 2009 A1
20090206138 Smith et al. Aug 2009 A1
20090206139 Hall et al. Aug 2009 A1
20090206140 Scheib et al. Aug 2009 A1
20090206141 Huitema et al. Aug 2009 A1
20090206142 Huitema et al. Aug 2009 A1
20090206143 Huitema et al. Aug 2009 A1
20090206144 Doll et al. Aug 2009 A1
20090209946 Swayze et al. Aug 2009 A1
20090218384 Aranyi Sep 2009 A1
20090242610 Shelton, IV et al. Oct 2009 A1
20090255974 Viola Oct 2009 A1
20090255975 Zemlok et al. Oct 2009 A1
20090255977 Zemlok Oct 2009 A1
20090255978 Viola et al. Oct 2009 A1
20090265976 Mclemore Oct 2009 A1
20090289096 Shelton, IV et al. Nov 2009 A1
20090292283 Odom Nov 2009 A1
20100032470 Hess et al. Feb 2010 A1
20100065605 Shelton, IV et al. Mar 2010 A1
20100065609 Schwemberger Mar 2010 A1
20100069942 Shelton, IV Mar 2010 A1
20100072251 Baxter, III et al. Mar 2010 A1
20100072252 Baxter, III et al. Mar 2010 A1
20100072253 Baxter, III et al. Mar 2010 A1
20100072256 Baxter, III et al. Mar 2010 A1
20100076474 Yates et al. Mar 2010 A1
20100076475 Yates et al. Mar 2010 A1
20100089970 Smith et al. Apr 2010 A1
20100089974 Shelton, IV Apr 2010 A1
20100096435 Fuchs et al. Apr 2010 A1
20100127042 Shelton, IV May 2010 A1
20100133317 Shelton, IV et al. Jun 2010 A1
20100133318 Boudreaux Jun 2010 A1
20100179382 Shelton, IV et al. Jul 2010 A1
20100181364 Shelton, IV et al. Jul 2010 A1
20100193566 Scheib et al. Aug 2010 A1
20100193567 Scheib et al. Aug 2010 A1
20100193568 Scheib et al. Aug 2010 A1
20100193569 Yates et al. Aug 2010 A1
20100198220 Boudreaux et al. Aug 2010 A1
20100213241 Bedi Aug 2010 A1
20100222901 Swayze et al. Sep 2010 A1
20100224669 Shelton, IV et al. Sep 2010 A1
20100237132 Measamer et al. Sep 2010 A1
20100243709 Hess et al. Sep 2010 A1
20100264193 Huang et al. Oct 2010 A1
20100264194 Huang et al. Oct 2010 A1
20100294829 Giordano et al. Nov 2010 A1
Foreign Referenced Citations (227)
Number Date Country
2458946 Mar 2003 CA
2512960 Jan 2006 CA
2514274 Jan 2006 CA
9412228 Sep 1994 DE
19924311 Nov 2000 DE
69328576 Jan 2001 DE
10314072 Oct 2004 DE
0122046 Oct 1984 EP
0070230 Oct 1985 EP
0033548 May 1986 EP
0276104 Jul 1988 EP
0639349 Feb 1994 EP
0324636 Mar 1994 EP
0593920 Apr 1994 EP
0600182 Jun 1994 EP
0630612 Dec 1994 EP
0634144 Jan 1995 EP
0646356 Apr 1995 EP
0646357 Apr 1995 EP
0653189 May 1995 EP
0669104 Aug 1995 EP
0511470 Oct 1995 EP
0679367 Nov 1995 EP
0392547 Dec 1995 EP
0685204 Dec 1995 EP
0699418 Mar 1996 EP
0702937 Mar 1996 EP
0705571 Apr 1996 EP
0484677 Jun 1996 EP
0541987 Jul 1996 EP
0667119 Jul 1996 EP
0770355 May 1997 EP
0503662 Jun 1997 EP
0578425 Sep 1997 EP
0625335 Nov 1997 EP
0552423 Jan 1998 EP
0592244 Jan 1998 EP
0648476 Jan 1998 EP
0676173 Sep 1998 EP
0603472 Nov 1998 EP
0605351 Nov 1998 EP
0878169 Nov 1998 EP
0879742 Nov 1998 EP
0760230 Feb 1999 EP
0537572 Jun 1999 EP
0552050 May 2000 EP
1090592 Apr 2001 EP
1256318 May 2001 EP
0908152 Jan 2002 EP
0872213 May 2002 EP
1238634 Sep 2002 EP
0656188 Jan 2003 EP
0829235 Jun 2003 EP
0813843 Oct 2003 EP
0741996 Feb 2004 EP
0705570 Apr 2004 EP
1086713 May 2004 EP
1426012 Jun 2004 EP
0888749 Sep 2004 EP
1477119 Nov 2004 EP
1479345 Nov 2004 EP
1479347 Nov 2004 EP
1479348 Nov 2004 EP
1520521 Apr 2005 EP
1520523 Apr 2005 EP
1520525 Apr 2005 EP
1522264 Apr 2005 EP
1550408 Jul 2005 EP
1557129 Jul 2005 EP
1064883 Aug 2005 EP
1157666 Sep 2005 EP
1621138 Feb 2006 EP
1621139 Feb 2006 EP
1621141 Feb 2006 EP
1621145 Feb 2006 EP
1621151 Feb 2006 EP
1652481 May 2006 EP
1382303 Jun 2006 EP
1045672 Aug 2006 EP
1617768 Aug 2006 EP
1702567 Sep 2006 EP
1129665 Nov 2006 EP
1256317 Dec 2006 EP
1728473 Dec 2006 EP
1728475 Dec 2006 EP
1479346 Jan 2007 EP
1484024 Jan 2007 EP
1754445 Feb 2007 EP
1759812 Mar 2007 EP
1769756 Apr 2007 EP
1769758 Apr 2007 EP
1785097 May 2007 EP
1790293 May 2007 EP
1800610 Jun 2007 EP
1300117 Aug 2007 EP
1813199 Aug 2007 EP
1813201 Aug 2007 EP
1813203 Aug 2007 EP
1813207 Aug 2007 EP
1813209 Aug 2007 EP
1839596 Oct 2007 EP
1402821 Dec 2007 EP
1872727 Jan 2008 EP
1897502 Mar 2008 EP
1702568 Jul 2008 EP
1970014 Sep 2008 EP
1980213 Oct 2008 EP
1759645 Nov 2008 EP
1693008 Dec 2008 EP
2000102 Dec 2008 EP
1749486 Mar 2009 EP
2090256 Aug 2009 EP
1813206 Apr 2010 EP
1769754 Jun 2010 EP
2765794 Jan 1999 FR
939929 Oct 1963 GB
1210522 Oct 1970 GB
2336214 Oct 1999 GB
6007357 Jan 1994 JP
7051273 Feb 1995 JP
8033641 Feb 1996 JP
8229050 Sep 1996 JP
2000287987 Oct 2000 JP
2001286477 Oct 2001 JP
2002369820 Dec 2002 JP
2005505322 Feb 2005 JP
2005103293 Apr 2005 JP
2187249 Aug 2002 RU
2225170 Mar 2004 RU
1377053 Feb 1988 SU
1561964 May 1990 SU
1722476 Mar 1992 SU
WO 9308755 May 1993 WO
WO 9518572 Jul 1995 WO
WO 9523557 Sep 1995 WO
WO 9529639 Nov 1995 WO
WO 9622055 Jul 1996 WO
WO 9635464 Nov 1996 WO
WO 9734533 Sep 1997 WO
WO 9739688 Oct 1997 WO
WO 9817180 Apr 1998 WO
WO 9830153 Jul 1998 WO
WO 9912483 Mar 1999 WO
WO 9915086 Apr 1999 WO
WO 9934744 Jul 1999 WO
WO 9945849 Sep 1999 WO
WO 0024322 May 2000 WO
WO 0057796 Oct 2000 WO
WO 0064365 Nov 2000 WO
WO 0072762 Dec 2000 WO
WO 0072765 Dec 2000 WO
WO 0105702 Jan 2001 WO
WO 0110482 Feb 2001 WO
WO 0154594 Aug 2001 WO
WO 0162158 Aug 2001 WO
WO 0162162 Aug 2001 WO
WO 0162164 Aug 2001 WO
WO 0191646 Dec 2001 WO
WO 0207608 Jan 2002 WO
WO 0207618 Jan 2002 WO
WO 0217799 Mar 2002 WO
WO 0219920 Mar 2002 WO
WO 0230297 Apr 2002 WO
WO 0232322 Apr 2002 WO
WO 0243571 Jun 2002 WO
WO 02058568 Aug 2002 WO
WO 02060328 Aug 2002 WO
WO 02067785 Sep 2002 WO
WO 02098302 Dec 2002 WO
WO 03000138 Jan 2003 WO
WO 03001329 Jan 2003 WO
WO 03013363 Feb 2003 WO
WO 03020106 Mar 2003 WO
WO 03020139 Mar 2003 WO
WO 2003079909 Mar 2003 WO
WO 03030743 Apr 2003 WO
WO 03037193 May 2003 WO
WO 03047436 Jun 2003 WO
WO 03057048 Jul 2003 WO
WO 03057058 Jul 2003 WO
WO 03063694 Aug 2003 WO
WO 03077769 Sep 2003 WO
WO 03082126 Oct 2003 WO
WO 03088845 Oct 2003 WO
WO 03090630 Nov 2003 WO
WO 03094743 Nov 2003 WO
WO 03094745 Nov 2003 WO
WO 03094747 Nov 2003 WO
WO 2003094746 Nov 2003 WO
WO 03101313 Dec 2003 WO
WO 03105698 Dec 2003 WO
WO 03105702 Dec 2003 WO
WO 2004006980 Jan 2004 WO
WO 2004028585 Apr 2004 WO
WO 2004032754 Apr 2004 WO
WO 2004032760 Apr 2004 WO
WO 2004032762 Apr 2004 WO
WO 2004032763 Apr 2004 WO
WO 2004047653 Jun 2004 WO
WO 2004049956 Jun 2004 WO
WO 2004086987 Oct 2004 WO
WO 2004096057 Nov 2004 WO
WO 2004105621 Dec 2004 WO
WO 2004112618 Dec 2004 WO
WO 2004112652 Dec 2004 WO
WO 2005027983 Mar 2005 WO
WO 2005037329 Apr 2005 WO
WO 2005078892 Aug 2005 WO
WO 2005096954 Oct 2005 WO
WO 2005112808 Dec 2005 WO
WO 2005115251 Dec 2005 WO
WO 2006044490 Apr 2006 WO
WO 2006044581 Apr 2006 WO
WO 2006044810 Apr 2006 WO
WO 2006083748 Aug 2006 WO
WO 2006115958 Nov 2006 WO
WO 2006132992 Dec 2006 WO
WO 2007002180 Jan 2007 WO
WO 2007016290 Feb 2007 WO
WO 2007018898 Feb 2007 WO
WO 2007098220 Aug 2007 WO
WO 2007121579 Nov 2007 WO
WO 2007137304 Nov 2007 WO
WO 2007139734 Dec 2007 WO
WO 2007142625 Dec 2007 WO
WO 2008039270 Apr 2008 WO
WO 2008045383 Apr 2008 WO
Non-Patent Literature Citations (8)
Entry
European Search Opinion, Application No. 08251188.2, dated May 7, 2009 (6 pages).
Disclosed Anonymously, “Motor-Driven Surgical Stapler Improvements,” Research Disclosure Database No. 526041, Published: Feb. 2008.
C.C. Thompson et al., “Peroral Endoscopic Reduction of Dilated Gastrojejunal Anastomosis After Roux-en-Y Gastric Bypass: A Possible New Option for Patients with Weight Regain,” Surg Endosc (2006) vol. 20, pp. 1744-1748.
B.R. Coolman, DVM, MS et al., “Comparison of Skin Staples With Sutures for Anastomosis of the Small Intestine in Dogs,” Abstract; http://www.blackwell-synergy.com/doi/abs/10.1053/jvet.2000.7539?cookieSet=1&journalCode=vsu which redirects to http://www3.interscience.wiley.com/journal/119040681/abstract?CRETRY=1&SRETRY=0; [online] accessed: Sep. 22, 2008 (2 pages).
U.S. Appl. No. 11/821,277, filed Jun. 22, 2007.
U.S. Appl. No. 12/031,368, filed Feb. 14, 2008.
The Sodem Aseptic Battery Transfer Kit, Sodem Systems, 2000, 3 pages.
“Biomedical Coatings,” Fort Wayne Metals, Research Products Corporation, obtained online at www.fwmetals.com on Jun. 21, 2010 (1 page).
Related Publications (1)
Number Date Country
20090012556 A1 Jan 2009 US