The present invention relates to an organic diode device comprising: an organic diode structure having an anode layer, a cathode layer and at least one organic layer located between the anode layer and the cathode layer.
The present invention also relates to a method of forming an organic diode device.
Organic diodes include, i.e., organic light emitting diodes and organic photodiodes, also called photovoltaic diodes. Organic Light Emitting Diodes (OLED's) have gained increased attention for use as displays and for illumination purposes. An OLED comprises a layer of a light emitting organic compound located between two thin electrodes. Organic photodiodes have the same principal design as OLED's, except for the fact that photodiodes absorb light and convert it to an electrical current, and find applications in solar cells, photo-sensors etc. A general problem with OLED's is that the electrodes have large resistivity due to their low thickness. In an OLED with a large area this means a large voltage drop over the area and inhomogeneous luminance over the area. What area is large enough to cause a voltage drop depends on the types of materials used, the thickness of the electrodes used, the brightness of the display etc. In general, with present technology, an OLED display larger than a few square centimetres suffer from inhomogeneous luminance. A similar type of voltage drop problem also arises in large area photodiodes.
US 2004/0121508 A1 describes an attempt to solve the above referenced problem. According to this attempt a metal grid is embedded inside one of the thin, transparent electrodes to improve its conductivity. The metal grid is connected to electrical leads by means of a conductive paste or epoxy such that the metal grid may be connected to the voltage supply in order to provide an even voltage distribution also in cases of large area OLED's.
A problem with the OLED of US 2004/0121508 A1 is that it is complicated to manufacture due to the isolated electrical leads, having uninsulated end portions, the electrical leads having to be connected to the metal grid by means of the conductive paste. The large number of electrical leads winding over the surface of the OLED is also not attractive from an esthetical point of view.
An object of the present invention is to provide an organic diode device, which is suitable for large area applications, and which avoids the electrical leads provided in the prior art and thus provides for easy manufacturing and an attractive visual appearance.
This object is achieved by an organic diode device comprising:
an organic diode structure having an anode layer, a cathode layer and at least one organic layer located between the anode layer and the cathode layer, one of the anode layer and the cathode layer having a first set of contact areas that are distributed over a first face of said structure,
a barrier layer being located on said first face to hermetically cover said structure, said barrier layer being provided with a first set of openings that are aligned with said first set of contact areas, and
at least one first metal conductor being electroplated on said barrier layer and being in contact with said first set of contact areas via said first set of openings in said barrier layer.
An advantage of this organic diode device is that it provides for even voltage distribution over the area of a large organic diode device and thus an even luminance, or current in the case of a solar cell, over that area. The barrier layer protects the organic diode structure and provides for a long life.
An advantage with the measure according to claim 2 is that the grid makes it possible to divide the surface of the organic diode device in tiles, each of which has an even luminance, or current as the case may be.
An advantage of the measure of claim 3 is that it provides for a high conductivity and yet a low cost for manufacturing.
An advantage of the measure of claim 4 is that it provides for improved electrical contact between the first metal conductor and the anode or cathode layer to which it is connected.
An advantage of the measure according to claim 5 is that it provides for optimum voltage distribution and a very even luminance, or current, over the area of the organic diode device since both the cathode layer and the anode layer are provided with metal conductors. Thus there will be no undesired voltage drops in the anode layer or in the cathode layer.
Another object of the present invention is to provide an efficient way of manufacturing an organic diode device, which is suitable for large area applications.
This object is achieved by a method of forming an organic diode device, the method comprising the steps of:
forming an organic diode structure by providing at least one organic layer between an anode layer and a cathode layer, one of the anode layer and the cathode layer being provided with a first set of contact areas that are distributed over a first face of said structure,
forming a barrier layer on said first face to hermetically cover said structure, said barrier layer being provided with a first set of openings that are aligned with said first set of contact areas, and
exposing said structure, being covered by said barrier layer, to an electroplating process in which said one of the anode layer and the cathode layer is connected to one of the terminals in an electroplating bath such that a conductive metal is electroplated on the first set of contact areas to form at least a first metal conductor at said first face.
An advantage of this method is that it provides for very efficient manufacturing of large area organic diode devices based on OLED or photodiode technology. Thanks to the early application of the barrier layer the organic diode structure is protected from water and oxygen during the further process steps required to form the organic diode device. This makes it possible to use electroplating in a water-based electrolyte for forming the metal conductors without problems of harming the function of the organic diode structure.
An advantage of the embodiment of claim 7 is that the layer of an isolator provides for an efficient way of keeping the metal conductors away from those areas where emission, or absorption, of light is desired. In case of metal conductors being arranged both for the anode layer and the cathode layer the measure according to claim 7 provides for keeping these metal conductors isolated from each other.
An advantage of claim 8 is that removal of the layer of the isolator after the electroplating process provides for increased luminance, or light-absorption, through that face to which the isolator was applied. A further advantage is that any post-processing of the parts located under the layer of the isolator is made easier.
An advantage of the measure according to claim 9 is that it provides for improved conductivity of the anode and/or cathode layer during the electroplating process. This improved conductivity provides for a much increased electroplating rate since the voltage drops being associated with the thin anode layer and cathode layer, this low conductivity being the principal reason of forming the metal conductors in the first place, is avoided by means of the plating base.
An advantage of the measure according to claim 10 is that removing excess portions of the plating base provides for isolating a first metal conductor being located at the first face and connected to the anode layer from a second metal conductor also being located at the first face but connected to the cathode layer.
Further embodiments and advantages of the invention will become apparent from the description below and the appended claims.
The invention will now be described in more detail with reference to the appended drawings in which:
On a first face 15 of the light emitting structure 2 a barrier layer 16 is located. The barrier layer 16 hermetically covers the first face 15 of the structure 2 and protects it from water, water vapour and oxygen. The barrier layer 16 is made from dielectric materials and may, for instance, comprise a layered structure of SiliconNitride-SiliconOxide-SiliconNitride, also called NON. Further known barrier layers are described by H. Lifka and E. Haskal in WO 2003/050894. Alternative materials for the barrier layer 16 are, for example, silicon carbide, SiC, and alumina, Al2O3. As a further alternative stacks of these materials and combinations with organic materials could be used as a barrier layer.
On a second face 17 of the structure 2 a glass plate 18 is located. The glass plate 18 forms the substrate onto which the structure 2 is formed, as will be shown below. The anode layer 12 is provided with a first set of contact areas, of which two contact areas 19, 20 are shown in
The barrier layer 16 is provided with a first set of openings, of which two openings 23, 24 are shown in
The thickness T of the first and second metal conductors 5, 8 is preferably in the range of 0.5 to 100 m, still more preferably in the range of 10 to 50 m. Thus the thickness of the metal conductors 5, 8 is about 20 to 100 times larger than that of the anode layer and the cathode layer. Further the metal conductors 5, 8 are made of high conductivity materials, as mentioned above. Thanks to these facts the voltage drop in the grid formed by the first metal conductor 5 and in the grid formed by the second metal conductor 8, as it is shown in
A method of manufacturing the light emitting device 1 will be described with reference to
It will be appreciated that numerous variants of the above-described embodiments are possible within the scope of the appended patent claims.
Above the invention has been described with reference to an organic diode in the form of an OLED. It will be appreciated that the invention is also applicable to other types of organic diodes. One such example is photodiodes comprising an organic layer, or a stack of organic layers, deposited between two electrodes and adapted for providing an electrical current upon absorption of light. Such photodiodes could be used as photocells and, in particular, large area solar cells. As regards the basic design, and manufacturing method, for a photodiode it is similar to that described above for an OLED.
It is described above that a plating base 27 is deposited on top of the barrier layer 16 prior to the electroplating process. It will be appreciated that the electroplating of the metal conductors 5, 8 could be made also in the absence of the plating base 27. However, in such case the electroplating process would become very slow due to the high resistivity of the anode layer and the cathode layer.
The plating base could preferably be structured before the electroplating step. This structuring of the plating base could be done by several methods, for example by means of shadow mask deposition of the plating base or lithographic/print masking followed by etching and removal of the etch protection. Still another method for structuring a plating base is to use so called lift-off or a similar per se known method in which a resist is deposited in a desired structure and cured. The plating base is then deposited on top of the structured resist. The fact that the plating base has been structured, for example according to one of the methods mentioned just above, has the advantage that during the formation of the conductors by the electroplating step that portion of the plating base which is located on top of the resist will, due to the missing electrical connection, not become covered with the plating metal. Thus the conductors will only be formed on the desired locations. After the electroplating step that portion of the plating base, which is located on top of the resist, can be etched selectively to the electroplated material and thus the metal conductors are formed with the desired shape in an easy manner. Thus the structuring of the plating base, made in order to form a structured plating base layer prior to the electroplating step, makes it easier to electroplate the metal conductors in the desired locations and makes removal of the excess portions of the plating base, after the electroplating step, easier.
Further it is described above that the resist layer 28 is patterned in order to define the locations of the metal conductors 5, 8 and to isolate them from each other. It will be appreciated that it would also be possible to avoid the resist layer and to electroplate a homogenous metal layer, e.g. a copper layer, directly on top of the plating base, or on top of the barrier layer in the absence of a plating base. In an additional step this homogenous copper layer would be etched to provide metal conductors of the desired shape and pattern and isolated from each other. The above-described method of using a resist layer is, however, preferred since the etching of a comparably thick layer of electroplated metal may harm the integrity of the under-lying structures.
In the embodiment described with reference to
According to the description above the anode layer 12 is placed on the glass plate 18 and has the organic layer 14 and the cathode layer 13 on top of it. It is also possible to form the anode layer and the cathode layer in the reverse order, i.e. to deposit the cathode layer first on the glass plate, then the organic layer and finally the anode layer.
Each of the light emitting devices 1, 101 described above is provided with a first metal conductor 5, 105 connected to the anode layer 12 and a second metal conductor 8, 108 connected to the cathode layer 13. It will be appreciated that it is also possible to design a light emitting device, which has only one metal conductor, which is connected to either the anode layer or the cathode layer. One example is a light emitting device, which is not transparent. In such a case the cathode could be made quite thick providing a sufficient conductivity. The anode, preferably made from ITO, would still be thin and would thus require a first metal conductor to avoid voltage drops.
To summarize an organic diode device 1 comprises an organic diode structure 2 having an anode layer 12, a cathode layer 13 and an organic layer 14. One of the anode layer 12 and the cathode layer 13 has a set of contact areas 19, 20 that are distributed over a face 15 of said structure 2. A barrier layer 16 hermetically covers said structure 2 and is provided with a set of openings 23, 24 aligned with said set of contact areas 19, 20. A metal conductor 5 has been electroplated on said barrier layer 16 and contacts the set of contact areas 19, 20 via the set of openings 23, 24. A method of forming such a device comprises forming the structure 2, forming the barrier layer 16 with the set of openings 23, 24, and exposing said structure 2 to an electroplating process to form the metal conductor 5.
Number | Date | Country | Kind |
---|---|---|---|
05108973.8 | Sep 2005 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB2006/053406 | 9/20/2006 | WO | 00 | 3/28/2008 |