1. Technical Field
This invention relates generally to delivery catheters or sheaths for providing vascular access, and more particularly, to large diameter flexible, kink-resistant introducer catheters or sheaths.
2. Background Information
Introducer sheaths are widely used as conduits to provide percutaneous access to the vascular system. Such sheaths, generally of thin-wall, small diameter construction, have a tendency to kink when traversing within the narrow confines of the vascular system. Increasing the thickness of the sheath wall minimally improves the level of kink resistance, however this level is still considered unacceptable. In addition, increasing the thickness of the sheath wall is undesirable, since it necessitates the use of a larger entry hole.
Sheaths used in certain medical procedures, such as hemofiltration and dialysis, are particularly prone to kinking, since such sheaths remain positioned in a patient's body for an extended period of time. While positioned in a patient, the sheath may be bent or pinched off and, as a result, kink due to repeated use or patient movement. A kinked sheath is unusable and cannot be straightened while positioned in the body of a patient. Consequently, the sheath must be removed, leaving an enlarged, bleeding opening which typically cannot be reused. Vascular access must then be attempted at an alternative site, and the procedure is restarted. Restarting the procedure causes a time delay, which is inconvenient, and at times may be life threatening. In addition, in some cases, an acceptable alternative site may not be available for introducing another sheath.
In addition to their use in introducing and/or withdrawing fluids from the vascular system, introducer sheaths are also utilized for delivering implantable medical devices to a deployment site well within the vascular system of a patient. Although such use of delivery catheters or sheaths is known, particular problems have been encountered when utilizing large diameter catheters or sheaths to implant medical devices. For example, large diameter catheters or sheaths are susceptible to kinking, particularly when the implantable medical device or pusher does not have a uniform diameter to reinforce the delivery catheter or sheath along its entire length. The possibility of kinking is increased when the physician exerts pressure to push the delivery catheter or sheath through an area of thrombus or calcification in the vascular system.
It is desired to provide a large diameter catheter or sheath that is less prone to kinking than existing catheters or sheaths. It is further desired to provide such a device that may be readily tracked as it is manipulated through the vascular system.
The foregoing problems are solved and a technical advance is achieved in an illustrative, large diameter, flexible, kink-resistant delivery catheter or sheath. The sheath comprises an inner tube having a passageway extending longitudinally therethrough and having a diameter of from 14 to 36 French, a coil having a plurality of coil turns extending longitudinally around the inner tube, and an outer tube positioned longitudinally around the coil and the inner tube connected to inner tube through the spacings between the turns. Preferably, the sheath also includes a polymeric radiopaque marker tube disposed adjacent the coil and between the inner and outer tubes, and bonded to the outer tube.
In another form thereof, the present invention comprises a method of manufacturing an introducer sheath. The method comprises the steps of positioning an inner tube having a substantially uniform diameter of from about 14 to 36 French over a mandril; positioning a coil having a plurality of coil turns over the inner tube; positioning a polymeric radiopaque marker tube over the inner tube adjacent the distal end of the coil; and positioning a polymeric outer tube over the inner tube, coil and marker tube. A heat shrink tube then is provided to envelope the entire assembly. The heat shrink tube is heated so that a portion of the outer tube melts and flows between the coil turns to bond with said inner tube, and so that the marker tube bonds to the outer tube.
Depicted in
Inner tube 32 is preferably formed of a lubricious material, such as a fluorocarbon. Polytetrafluoroethylene (PTFE) is an especially preferred fluorocarbon, and is well known as an inner tube or liner material in catheters and sheaths. A PTFE inner tube has a slippery inner surface 35 that allows a dilator or other medical device to be easily inserted and/or withdrawn through the inner tube. In addition, PTFE inner surface 35 is smooth and nonporous, which minimizes the formation of blood clots and other thrombi thereon. Outer surface 36 of inner tube 32 is chemically etched in well-known manner to provide the roughened surface. Roughening the outer surface enhances the connection between the inner surface of outer tube 31 and the outer surface of inner tube 32.
Preferably, inner tube 32 has a uniform inner diameter that extends the entire length of passageway 34. In this manner, the largest possible diameter catheter, stent or other interventional device can be passed through the sheath. When dealing with intravascular devices it is normally desirable to utilize a sheath having the largest possible inner diameter, and the smallest possible outer diameter, that is sufficient to achieve the intended purpose. Thus, it is desired to limit the thickness of the PTFE tube to the extent possible while, at the same time, maintaining structural integrity of the sheath and preventing the turns of compression-fitted coil 33 from protruding into inner tube passageway 34. In this regard, an inner tube having a thickness of between about 0.001 and 0.01 inch (0.025 and 0.25 mm) is preferred, more preferably between 0.003 and 0.007 inch (0.08 and 0.18 mm), and most preferably about 0.005 inch (0.13 mm).
Coil 33 may be compression fitted or wound over inner tube 32. Preferably, coil 33 is a stainless steel flat wire coil. Those skilled in the art will recognize that coils of compositions other than stainless steel that are commonly used in medical devices may be substituted. For example, coil 33 may be formed from other known metals, from a super-elastic alloy such as nitinol, or from a composite construction. In addition, coils having cross-sectional dimensions other than flat wire, such as round wire, can also be substituted. However, since it is generally desired to maintain as small a cross-sectional dimension as possible, a flat wire coil is normally preferred over a round wire coil.
In the preferred embodiment shown in
To further advantageously control the flexibility and kink-resistance of the delivery catheter and sheath, the width and thickness of the flat wire coil can be varied. Preferably, each turn of the flat wire coil has a width (measured in the longitudinal direction of the sheath) ranging between about 0.005 and 0.030 inch (0.13 and 0.76 mm), and more preferably between about 0.012 and 0.017 inch (0.30 and 0.43 mm). In addition, the flat wire coil preferably has a thickness ranging between 0.002 and 0.010 inch (0.05 and 0.25 mm), and more preferably between about 0.004 and 0.005 inch (0.10 and 0.13 mm). Generally, wider and/or thinner coils result in greater flexibility while narrower and thicker coils result in lesser flexibility.
Although the turns of the coil shown in the preferred embodiment of
Preferably, the coil is spaced from the distal and proximal ends of the inner tube, to permit tapering and flaring of the respective distal and proximal ends of the sheath. In a conventional configuration in which a valve is attached at the proximal end of the sheath and a tapered tip formed at the distal end, it is preferred to terminate the coil between about 0.5 and 5.0 inches (1.27 and 12.7 cm), more preferably about 1.2 inches (3.1 cm), from the proximal end of the sheath and between about 0.1 and 2.0 inches (0.25 and 5.1 cm), more preferably about 0.8 inch (2 cm), from the distal end.
Outer tube 31 can be formed of any well-known polymer commonly used for such purpose. Preferably, outer tube 31 comprises a heat shrinkable polyamide material, such as nylon. An outer tube having a pre-shrink thickness between about 0.004 and 0.014 inch (0.10 and 0.36 mm) is preferred. For large diameter sheaths of relatively smaller French size, such as 14 French and 16 French, a pre-shrink thickness between about 0.004 and 0.008 inch (0.10 and 0.20 mm) is preferred. For large diameter sheaths having a French size of 18-24 French, a pre-shrink thickness between about 0.006 and 0.014 inch (0.15 and 0.36 mm) is preferred, and more particularly between about 0.008 and 0.012 inch (0.20 and 0.30 mm). Sheaths larger than 24 French would normally have correspondingly larger thicknesses. The heat shrink process normally causes a slight reduction is thickness, thus, the post-shrink thickness in most cases will be slightly less than the pre-shrink thickness.
It is important that the material of outer tube 31 be sufficiently flexible so that the sheath can navigate the tortuous pathways encountered in the vascular system. Prior art small diameter sheaths, referred to herein as sheaths having a diameter of about 5 to 12 French, generally include an outer layer or jacket primarily comprised of a material having a high durometer, such as a durometer between about 60 and 80 on the Shore D scale. Such high durometer materials provide favorable kink resistance to the sheath, and also provide sufficient strength to enable the small diameter sheath to be guided through small diameter passageways in the vasculature. Using this same high durometer material with a large diameter sheath, referred to herein as a sheath having a diameter of about 14 to 36 French, or larger, would still result in a sheath that is kink resistant, but one that is more difficult to bend in actual practice than are smaller size sheaths. In some applications, this lack of flexibility may preclude use of the large diameter sheath altogether, or at a minimum, add a degree of difficulty and uncertainty to the procedure that would not be present if a more flexible sheath was used. Thus, such large diameter sized sheaths as described herein advantageously include a softer (e.g., lower durometer) outer jacket material when compared to the jacket material commonly used in small diameter sheaths. This softer outer jacket allows large diameter sheaths to bend more easily when inserted into the vasculature.
Outer tube 31 is preferably formed of a nylon elastomer having a durometer of about 30 to 60 on the Shore D hardness scale, more preferably about 35 to 50, and most preferably about 40. Although nylon tubing having a durometer as low as about 20 may be used in inventive large diameter sheaths as described herein, sheaths formed from such low durometer tubing can be difficult to manufacture. Outer layer materials having a high durometer up to about 85 may be acceptable in inventive large diameter (14 to 36 French) sheaths in some applications, such as when there is little tortuousity in the vessels to be traversed or when there is little or no need for enhanced flexibility. However, in actual practice, this will rarely be the case, and the flexibility of such high durometer large diameter sheaths will be inferior when compared to sheaths having a durometer of about 40. In some applications the lack of flexibility of the high durometer sheath would preclude its use altogether. While outer tubes of numerous durometers may be acceptable and are considered within the scope of the invention, it is believed that an outer layer having a durometer of about 40 provides best results because it combines the advantages of ease of manufacturing with sufficient flexibility in a wide variety of applications.
Those skilled in the art will recognize that there is a trade-off between flexibility and ease of manufacturing. If a sheath is to be used for a purpose that does not require that the sheath be highly flexible, then a higher durometer sheath may be used. On the other hand, if flexibility is a primary concern, then a sheath with an outer tube 31 having a durometer of 40, or even lower, should be used.
A radiopaque marker 40 may be positioned over the distal end of the inner tube next to flat wire coil 33. Radiopaque marker 40 comprises an elastomer, such as nylon. Preferably, marker 40 has a formulation similar to or the same as that of outer tube 31 to enhance thermal bonding during the heat shrink process. Also, it is preferred that the durometer of the elastomer is similar to or the same as that of the outer tube. In this manner, the flexibility of the sheath is not adversely affected by the presence of the marker. The percent filler of radiopaque material in the marker may vary depending on the loading capacity of the particular elastomer used. For a nylon marker having a durometer of about 40, the radiopaque loading may be between about 40 and 90 wt %, preferably about 80 wt %, of the total weight of the radiopaque marker.
Preferably, the radiopaque material is a material commonly used for such purposes, such as tungsten. However the radiopaque material may comprise any well-known radiopaque filler material that is compatible with the matrix of the radiopaque marker, and that may be loaded in the matrix at sufficiently high loading levels to enable an operator to distinguish the marker from the remainder of the sheath under fluoroscopy. Those of ordinary skill in the art are familiar with acceptable techniques for loading radiopaque particles in a polymeric material.
If desired, a side port 38 can be provided as shown in
During assembly of sheath 30, inner tube 32 is fitted over a suitably-sized mandril 37 as illustrated in
After the heat shrink tube has been removed, the distal end of the large diameter delivery catheter or sheath can be cut off approximately 0.1 to 2 inches (0.25 and 5.1 cm) beyond the distal end of the coil. The outer and marker tubes can be beveled or ground, or heat-molded, to provide a tapered distal end 41 that enables the delivery catheter tube to more easily traverse the vasculature of a patient. The proximal end of the delivery catheter or sheath extends approximately 0.5 to 5.0 inches (1.27 and 12.7 cm) past the proximal end of the coil, which can be cut and flared in known manner for positioning a hub or valve thereon to provide a leak resistant or hemostatic condition during insertion into a patient. Other details of the construction of the sheath are conventional, and are discussed, e.g., in the incorporated-by-reference U.S. Pat. No. 5,380,304.
By way of example, a large diameter delivery catheter having a 22 French passageway can have a length of about 54 inches (137 cm). The inner diameter of a 22 French sheath is about 0.288 in (7.3 mm). Inner tube 32 comprises PTFE and has a wall thickness of about 0.005 inch (0.13 mm). Stainless steel flat wire coil 33 may be wound or compression fitted around outer surface 36 of inner tube 32 approximately 0.12 to 0.16 inch (3 to 4 mm) from the distal end thereof and approximately 0.2 inch (5 mm) from the proximal end thereof to taper and flare the distal and proximal ends, respectively. The coils have a thickness of about 0.005 inch (0.13 mm) and a width of about 0.017 inch 0.43 mm). Outer tube 31 comprises nylon that is heat shrunk over coil 33. Outer tube 31 has an outer diameter of about 0.335 inch (8.5 mm) and a durometer of about 40. The thickness of the nylon tube is approximately 0.01 inch (0.25 mm). The thickness of the radiopaque marker is about 0.005 inch (0.13 mm).
Respective 18, 20 and 24 French sheaths may be formed from the same components used to form the 22 French sheath. The PTFE inner layer can have the same wall thickness, and the coil can have the same specifications as the coil used in the 22 French sheath. With a 14 and a 16 French sheath, it is preferred to have a thinner PTFE layer. A 24 French sheath has an inner diameter of about 0.315 in (8.0 mm).
Such large diameter delivery catheters or sheaths as described herein provide for the delivery of large diameter devices to, for example, the aorta and iliac arteries. Examples of such implantable medical devices include stents and stent-graft devices for the repair or exclusion of aneurysms. Such sheaths preferably have a diameter of from about 14 to 36 French, more preferably from 16 to 30 French, even more preferably from 20 to 26 French and most preferably 22 or 24 French.
It is contemplated that various other materials may be utilized for the inner, outer, and heat shrink tubes. It is also contemplated that introducer sheaths with an inside diameter ranging in size from 14 to 36 French, or even larger, are readily producible and may be considered within the scope of the invention. In summary, the flexible, kink-resistant, introducer sheath provides a large diameter thin-wall sheath that is extremely kink-resistant for long-term use applications.
It is therefore intended that the foregoing detailed description be regarded as illustrative rather than limiting, and that it be understood that it is the following claims, including all equivalents, that are intended to define the spirit and scope of this invention.
The present patent document claims the benefit of the filing date under 35 U.S.C. §119(e) of Provisional U.S. Patent Application Ser. No. 60/462,632, filed Apr. 14, 2003, which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
2437542 | Krippendorf | Mar 1948 | A |
2857915 | Sheridan | Oct 1958 | A |
3174851 | Buehler et al. | Mar 1965 | A |
3228894 | Jeckel | Jan 1966 | A |
3351463 | Rozner et al. | Nov 1967 | A |
3370587 | Vizcarra | Feb 1968 | A |
3416531 | Edwards | Dec 1968 | A |
3485234 | Stevens | Dec 1969 | A |
3568660 | Crites et al. | Mar 1971 | A |
3608555 | Greyson | Sep 1971 | A |
3612038 | Halligan | Oct 1971 | A |
3618614 | Flynn | Nov 1971 | A |
3746003 | Blake et al. | Jul 1973 | A |
3749134 | Slingluff et al. | Jul 1973 | A |
3753700 | Harrison | Aug 1973 | A |
3866599 | Johnson | Feb 1975 | A |
3890976 | Bazell et al. | Jun 1975 | A |
3890977 | Wilson | Jun 1975 | A |
3924632 | Cook | Dec 1975 | A |
3935857 | Co | Feb 1976 | A |
3995623 | Blake et al. | Dec 1976 | A |
4015601 | Bokros et al. | Apr 1977 | A |
4024873 | Antoshkiw et al. | May 1977 | A |
4029104 | Kerber | Jun 1977 | A |
4099425 | Moore | Jul 1978 | A |
4117836 | Erikson | Oct 1978 | A |
4169464 | Obrez | Oct 1979 | A |
4184497 | Kolff et al. | Jan 1980 | A |
4196731 | Laurin et al. | Apr 1980 | A |
4248234 | Assenza et al. | Feb 1981 | A |
4265276 | Hatada et al. | May 1981 | A |
4276874 | Wolvek et al. | Jul 1981 | A |
4279252 | Martin | Jul 1981 | A |
4306566 | Sinko | Dec 1981 | A |
4329993 | Lieber et al. | May 1982 | A |
4345602 | Yoshimura et al. | Aug 1982 | A |
4361152 | Patel | Nov 1982 | A |
4362163 | Krick | Dec 1982 | A |
4368730 | Sharrock | Jan 1983 | A |
4385635 | Ruiz | May 1983 | A |
4425919 | Alston, Jr. et al. | Jan 1984 | A |
4464176 | Wijayarathna | Aug 1984 | A |
4484586 | McMickle et al. | Nov 1984 | A |
4498473 | Gereg | Feb 1985 | A |
4504268 | Herlitze | Mar 1985 | A |
4516972 | Samson | May 1985 | A |
4531943 | Van Tassel et al. | Jul 1985 | A |
4547193 | Rydell | Oct 1985 | A |
4551292 | Fletcher et al. | Nov 1985 | A |
4563181 | Wijayarathna et al. | Jan 1986 | A |
4571240 | Samson et al. | Feb 1986 | A |
4577543 | Wilson | Mar 1986 | A |
4596563 | Pande | Jun 1986 | A |
4610674 | Suzuki et al. | Sep 1986 | A |
4627844 | Schmitt | Dec 1986 | A |
4636346 | Gold et al. | Jan 1987 | A |
4639246 | Dudley | Jan 1987 | A |
4694838 | Wijayarthna et al. | Sep 1987 | A |
4696304 | Chin | Sep 1987 | A |
4705511 | Kocak | Nov 1987 | A |
4721115 | Owens | Jan 1988 | A |
4737153 | Shimamura et al. | Apr 1988 | A |
4739768 | Engelson | Apr 1988 | A |
4747840 | Ladika et al. | May 1988 | A |
4758221 | Jureidini | Jul 1988 | A |
4762130 | Fogarty et al. | Aug 1988 | A |
4775371 | Mueller, Jr. | Oct 1988 | A |
4806182 | Rydell et al. | Feb 1989 | A |
4817613 | Jaraczewski et al. | Apr 1989 | A |
4832681 | Lenck | May 1989 | A |
4840622 | Hardy | Jun 1989 | A |
4842590 | Tanabe et al. | Jun 1989 | A |
4863442 | DeMello et al. | Sep 1989 | A |
4883058 | Ruiz | Nov 1989 | A |
4884579 | Engelson | Dec 1989 | A |
4886506 | Lovgren et al. | Dec 1989 | A |
4898591 | Jang et al. | Feb 1990 | A |
4899787 | Ouchi et al. | Feb 1990 | A |
4960410 | Pinchuk | Oct 1990 | A |
4963306 | Weldon | Oct 1990 | A |
4985022 | Fearnot et al. | Jan 1991 | A |
4994069 | Ritchart et al. | Feb 1991 | A |
5019057 | Truckai | May 1991 | A |
5037404 | Gold et al. | Aug 1991 | A |
5057092 | Webster, Jr. | Oct 1991 | A |
5069673 | Shwab | Dec 1991 | A |
5069674 | Fearnot et al. | Dec 1991 | A |
5078702 | Pomeranz | Jan 1992 | A |
5085649 | Flynn | Feb 1992 | A |
5088991 | Weldon | Feb 1992 | A |
5116652 | Alzner | May 1992 | A |
5156785 | Zdrahala | Oct 1992 | A |
5160559 | Scovil et al. | Nov 1992 | A |
5163431 | Griep | Nov 1992 | A |
5171232 | Castillo et al. | Dec 1992 | A |
5176660 | Truckai | Jan 1993 | A |
5178158 | de Toledo | Jan 1993 | A |
5180376 | Fischell | Jan 1993 | A |
5217482 | Keith | Jun 1993 | A |
5221255 | Mahurkar et al. | Jun 1993 | A |
5221270 | Parker | Jun 1993 | A |
5226911 | Chee et al. | Jul 1993 | A |
5234416 | Macaulay et al. | Aug 1993 | A |
5248305 | Zdrahala | Sep 1993 | A |
5250071 | Palermo | Oct 1993 | A |
5254107 | Soltesz | Oct 1993 | A |
5261916 | Engelson | Nov 1993 | A |
5279596 | Castaneda et al. | Jan 1994 | A |
5286259 | Ganguly et al. | Feb 1994 | A |
5290230 | Ainsworth et al. | Mar 1994 | A |
5294325 | Liu | Mar 1994 | A |
5304194 | Chee et al. | Apr 1994 | A |
5304195 | Twyford, Jr. et al. | Apr 1994 | A |
5306252 | Yutori et al. | Apr 1994 | A |
5306262 | Weldon | Apr 1994 | A |
5308342 | Sepetka et al. | May 1994 | A |
5312415 | Palermo | May 1994 | A |
5314418 | Takano et al. | May 1994 | A |
5334169 | Brown et al. | Aug 1994 | A |
5334171 | Kaldany | Aug 1994 | A |
5336205 | Zenzen et al. | Aug 1994 | A |
5342295 | Imran | Aug 1994 | A |
5342383 | Thomas | Aug 1994 | A |
5342386 | Trotta | Aug 1994 | A |
5348536 | Young et al. | Sep 1994 | A |
5356388 | Sepetka et al. | Oct 1994 | A |
5380304 | Parker | Jan 1995 | A |
5397306 | Nobuyoshi et al. | Mar 1995 | A |
5403292 | Ju | Apr 1995 | A |
5423773 | Jimenez | Jun 1995 | A |
5472435 | Sutton | Dec 1995 | A |
5484565 | Larsen et al. | Jan 1996 | A |
5489269 | Aldrich et al. | Feb 1996 | A |
5496294 | Hergenrother et al. | Mar 1996 | A |
5514236 | Avellanet et al. | May 1996 | A |
5531721 | Pepin et al. | Jul 1996 | A |
5545149 | Brin et al. | Aug 1996 | A |
5569218 | Berg | Oct 1996 | A |
5599325 | Ju et al. | Feb 1997 | A |
5599326 | Carter | Feb 1997 | A |
5601538 | Deem | Feb 1997 | A |
5603705 | Berg | Feb 1997 | A |
5658263 | Dang et al. | Aug 1997 | A |
5674208 | Berg et al. | Oct 1997 | A |
5676659 | McGurk | Oct 1997 | A |
5700253 | Parker | Dec 1997 | A |
5702373 | Samson | Dec 1997 | A |
5725513 | Ju et al. | Mar 1998 | A |
5755704 | Lunn | May 1998 | A |
5769830 | Parker | Jun 1998 | A |
5772641 | Wilson | Jun 1998 | A |
5791036 | Goodin et al. | Aug 1998 | A |
5792124 | Horrigan et al. | Aug 1998 | A |
5807350 | Diaz | Sep 1998 | A |
5811043 | Horrigan et al. | Sep 1998 | A |
5836925 | Soltesz | Nov 1998 | A |
5843031 | Hermann et al. | Dec 1998 | A |
5851203 | van Muiden | Dec 1998 | A |
5860963 | Azam et al. | Jan 1999 | A |
5897537 | Berg et al. | Apr 1999 | A |
5906605 | Coxum | May 1999 | A |
5911715 | Berg et al. | Jun 1999 | A |
5938653 | Pepin | Aug 1999 | A |
5947939 | Mortier et al. | Sep 1999 | A |
5951495 | Berg et al. | Sep 1999 | A |
5951929 | Wilson | Sep 1999 | A |
5954651 | Berg et al. | Sep 1999 | A |
5964971 | Lunn | Oct 1999 | A |
5971975 | Mills et al. | Oct 1999 | A |
5972441 | Campbell et al. | Oct 1999 | A |
5976120 | Chow et al. | Nov 1999 | A |
5980505 | Wilson | Nov 1999 | A |
6025044 | Campbell et al. | Feb 2000 | A |
6027779 | Campbell et al. | Feb 2000 | A |
6045547 | Ren et al. | Apr 2000 | A |
6059769 | Lunn et al. | May 2000 | A |
6077258 | Lange et al. | Jun 2000 | A |
6090099 | Samson et al. | Jul 2000 | A |
6103037 | Wilson | Aug 2000 | A |
6106540 | White et al. | Aug 2000 | A |
6152912 | Jansen et al. | Nov 2000 | A |
6159198 | Gardeski et al. | Dec 2000 | A |
6165165 | Cecchi et al. | Dec 2000 | A |
6168588 | Wilson | Jan 2001 | B1 |
6171296 | Chow | Jan 2001 | B1 |
6186986 | Berg et al. | Feb 2001 | B1 |
6193705 | Mortier et al. | Feb 2001 | B1 |
6197015 | Wilson | Mar 2001 | B1 |
6217565 | Cohen | Apr 2001 | B1 |
6254592 | Samson et al. | Jul 2001 | B1 |
6296631 | Chow | Oct 2001 | B2 |
6328731 | Ouchi | Dec 2001 | B1 |
6355027 | Le et al. | Mar 2002 | B1 |
6368316 | Jansen et al. | Apr 2002 | B1 |
6398791 | Que et al. | Jun 2002 | B1 |
6451005 | Saitou et al. | Sep 2002 | B1 |
6503353 | Peterson et al. | Jan 2003 | B1 |
6508804 | Sarge et al. | Jan 2003 | B2 |
6508805 | Garabedian et al. | Jan 2003 | B1 |
6524303 | Garibaldi | Feb 2003 | B1 |
6533751 | Cragg et al. | Mar 2003 | B2 |
6533770 | Lepulu et al. | Mar 2003 | B1 |
6652508 | Griffin et al. | Nov 2003 | B2 |
6706025 | Engelson et al. | Mar 2004 | B2 |
20010034514 | Parker | Oct 2001 | A1 |
20020022831 | O'Connor et al. | Feb 2002 | A1 |
Number | Date | Country |
---|---|---|
WO 0107231 | Feb 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20040220549 A1 | Nov 2004 | US |
Number | Date | Country | |
---|---|---|---|
60462632 | Apr 2003 | US |