Spinal connection systems may be used in orthopedic surgery to align and/or fix a desired relationship between adjacent vertebrae. Such systems typically include a spinal connection element, such as a relatively rigid fixation rod, plate or dynamic connector, that is coupled to adjacent vertebrae by attaching the element to various anchoring devices, such as hooks, bolts, wires, or screws. The spinal connection element can have a predetermined contour that has been designed according to the properties of the target implantation site, and once installed, the spinal connection element holds the vertebrae in a desired spatial relationship, either until desired healing or spinal fusion has taken place, or for some longer period of time.
Spinal connection elements can be anchored to specific portions of the vertebra. Since each vertebra varies in shape and size, a variety of anchoring devices have been developed to facilitate engagement of a particular portion of the bone. Pedicle screw assemblies, for example, have a shape and size that is configured to engage pedicle bone. Such screws typically include a threaded shank that is adapted to be threaded into a vertebra, and a head portion having a spinal connection element receiving element, which, in spinal rod applications, is usually in the form of a U-shaped slot formed in the head for receiving the rod. A set-screw, plug, cap or similar type of closure mechanism, may be used to lock the rod into the rod-receiving portion of the pedicle screw. In use, the shank portion of each screw may be threaded into a vertebra, and once properly positioned, a fixation rod or dynamic connector may be seated through the rod-receiving portion of each screw and the rod or dynamic connector is locked in place by tightening a cap or similar type of closure mechanism to securely interconnect each screw and the connection element. Other anchoring devices also include hooks and other types of bone screws.
In certain procedures, such as those in the lumbar or sacral spine, it may be necessary to use a larger diameter pedicle screw capable of carrying large loads. A difficulty in using a larger diameter screw comes from the corresponding increase in the size of the receiver head to accommodate the larger diameter screw shank. The increased size of the head can interfere with the bony anatomy limiting the polyaxial range of motion of the screw head. Another problem associated with manufacturing a larger diameter top-loading screw is that the opening of the receiver member has to be larger to accept the large diameter screw shank, which creates the need for a larger closure mechanism. It is desirable to maintain the same size opening such that the same size closure mechanism may be used. Accordingly, a large diameter screw is needed that does not change the size of the closure mechanism.
Disclosed herein are embodiments of a bone anchor assembly having a large diameter shank. In one embodiment, the bone anchor assembly includes a receiver member having a recess for receiving a spinal connection element and a bore, a core shaft having a head and a distal end sized to extend through the bore, and a bone-engaging sleeve having a proximal end adapted to engage the distal end of the core shaft. In alternate embodiments, the head of the core shaft may be spherical and allow pivoting between the bone-engaging sleeve and the receiver member. The head of the core shaft may have a drive feature.
In an alternate embodiment the bone anchor assembly may include a bone engaging sleeve configured to engage bone, a receiver member for receiving a spinal connection element to be coupled to the bone engaging sleeve, the receiver member having a distal end having a bore sized to receive a core shaft, and a recess in communication with the bore, the recess being sized and shaped to receive the spinal connection element, and a core shaft adapted to pivotally couple the bone-engaging sleeve and the receiver member.
These and other features and advantages of the bone anchor assembly and methods disclosed herein will be more fully understood by reference to the following detailed description in conjunction with the attached drawings in which like reference numerals refer to like elements through the different views. The drawings illustrate principles of the bone anchor assembly and methods disclosed herein and, although not to scale, show relative dimensions.
Certain exemplary embodiments will now be described to provide an overall understanding of the principles of the structure, function, manufacture, and use of the large diameter bone anchor assembly and methods disclosed herein. One or more examples of these embodiments are illustrated in the accompanying drawings. Those of ordinary skill in the art will understand that the large diameter bone anchor assembly and methods specifically described herein and illustrated in the accompanying drawings are non-limiting exemplary embodiments and that the scope of the present invention is defined solely by the claims. The features illustrated or described in connection with one exemplary embodiment may be combined with the features of other embodiments. Such modifications and variations are intended to be included within the scope of the present invention.
The articles “a” and “an” are used herein to refer to one or to more than one (i.e. to at least one) of the grammatical object of the article. By way of example, “an element” means one element or more than one element.
The terms “comprise,” “include,” and “have,” and the derivatives thereof, are used herein interchangeably as comprehensive, open-ended terms. For example, use of “comprising,” “including,” or “having” means that whatever element is comprised, had, or included, is not the only element encompassed by the subject of the clause that contains the verb.
The illustrated exemplary bone anchor assembly 10 includes a bone-engaging member 14 configured for engaging bone, a receiver member 60 for receiving a spinal connection element, and a core shaft 40 for pivotally coupling the bone-engaging member 14 to the receiver member 60. The bone-engaging member 14 extends from a proximal end 16 to a distal end 18 along a longitudinal axis 22 and has a diameter 20. An outer surface 24 of the bone-engaging member 14 extends between the proximal end 16 and the distal end 18. The outer surface 24 of the bone-engaging member 14 may include one or more bone engagement mechanisms to facilitate gripping engagement of the bone anchor assembly 10 to bone. In the illustrated exemplary embodiment, for example, the bone-engaging member 14 includes an external thread 26 shown in
The proximal end 16 of the exemplary bone-engaging member 14 may be configured to receive the distal portion of the core shaft 40 of the bone anchor assembly 10 as described below. The proximal end 16 of the bone-engaging member 14 may have a recess 28 extending toward the distal end 18 along the longitudinal axis 22. The recess 28 has a diameter dr. In the illustrated exemplary embodiment shown in
The core shaft 40 of the bone anchor assembly 10, extends along the longitudinal axis 42 from a proximal end 46 to a distal end 48 and has a shank diameter dcs. The distal end 48 of the core shaft 40 is sized to fit within the recess 28 of the bone-engaging member 14. The diameter of the core shaft dcs is less than or equal to the diameter of the recess dr. In the illustrated exemplary embodiment, for example the core shaft 40 may have external threads 50 extending along the distal end 48 to engage the threads 30 of the recess 28. In an alternate embodiment the core shaft 40 may be smooth.
The core shaft 40 has a head 44 at the proximal end 46 to facilitate adjustment of the bone-engaging member 14 relative to the receiving member 60 of the bone anchor assembly 10, as described below. For example, the head 44 may be approximately spherical in shape to permit pivoting of the bone-engaging member 14 relative to the receiving member 60. In the illustrated exemplary embodiment, for example, the head 44 may be in the shape of a truncated sphere having a generally planar proximal surface 56 and an approximately hemispherically shaped distal surface 58. The head 44 of the core shaft 40 may have surface texturing, knurling, and/or ridges. A drive feature 54 may be located internally or externally on the head 44 of the core shaft 40.
Referring to FIGS. 1A-E, the receiver member 60 of the exemplary bone anchor assembly 10 includes a proximal end 62 having a recess 68, and a distal end 70 having a bore 64. The receiver member 60, in certain exemplary embodiments, may be configured to receive a spinal connection element and couple the spinal connection element to the bone anchor assembly. In the exemplary embodiment, for example, the recess 68 of the receiver member 60 may be sized and shaped to receive a spinal rod 80, as illustrated in
In the exemplary embodiment, the bore 64 of the receiver member 60 is sized to receive at least a portion of a bone anchor assembly, such as the core shaft 40 described above. For example, the distal end 48 of the core shaft 40 may extend through the bore 64, as illustrated in
The bone anchor assembly 10 may optionally include a compression member 90 as shown in FIGS. 5A-C positionable within the receiver member 60 between the spinal connection element and the bone anchor. As illustrated in
The exemplary bone anchor assembly 10 may include a closure mechanism 100 that secures the spinal connection element to the bone anchor assembly. Referring to FIGS. 1D-E, the closure mechanism 100 secures the exemplary spinal rod 80 within the recess 68 of the receiving member 60. The closure mechanism 100 may engage the first end 62 of the receiving member 60 or, in other exemplary embodiments, may engage other portion(s) of the receiving member 60. The exemplary closure mechanism 100 is an internal set screw that engages an inner surface of the first end 62 of the receiving member 60. For example, the closure mechanism 100 may have external threads 102 that engage internal threads 104 provided on the first end 62 of the receiving member 60. Distal advancement of the closure mechanism 100 into engagement of the spinal rod 80, secures the spinal rod 80 within the recess 68 of the receiving member 60. In embodiments employing a compression member 90, such as exemplary bone anchor 10, distal advancement of the closure mechanism 100 into engagement with the spinal rod 80 seats the spinal rod 80 in the compression member 90. Distal advancement of the spinal rod 80 may also fix the bone-engaging member 14 relative to the receiving member 60 by engagement of the spinal rod 80 against the head 44 of the core shaft 40 or by engagement of the compression member 90 against the head 44 of the core shaft 40, as in the case of the illustrated exemplary embodiment.
One skilled in the art will appreciate that other types of closure mechanisms may be employed. For example, an external closure mechanism positionable around the outer surface of the legs 76A, 76B of the receiving member 60 may be employed. In other exemplary embodiments, the closure mechanism may comprise an external and an internal closure mechanism, a non-threaded twist-in cap, and/or any other conventional closure mechanism.
The components of the bone anchor assembly may be manufactured from any biocompatible material, including, for example, metals and metal alloys such as titanium and stainless steel, polymers, and/or ceramics. The components may be manufactured of the same or different materials. In one exemplary method of manufacturing, the bone-engaging member 14, the core shaft 40 and the receiver member 60 are separately constructed and assembled prior to implantation. The core shaft 40, in one exemplary method, may be coupled to the receiver member 60 by positioning the distal end 48 of the core shaft 40 through the bore 64 at the distal end 70 of the receiver member 60. The head 44 of the core shaft 40 may be seated within seat 72 such that the distal end 48 of the core shaft 40 extends through the bore 64. The compression member 90 may be positioned through the recess 68 of the receiver member 60 into engagement with the head 44 of the core shaft 40 before or after implantation.
The recess 28 of the bone-engaging member 14 receives the distal end 48 of the core shaft 40 to assemble the core shaft and the bone-engaging sleeve together while coupled with the receiver member 60. In one exemplary method, the distal end 48 of the core shaft 40 may engage threads 30 on the recess 28 of the bone-engaging sleeve to assemble the components together. In an alternate method, the distal end 48 of the core shaft 40 may frictionally engage or be press fit within the recess 28 of the bone-engaging member 14 to assemble the components while coupling the receiver member 60. After either of the above exemplary methods, the assembly may be pinned or welded together for additional security. Those of ordinary skill in the art will understand there are other methods of assembling the components together, including splining and clipping or swaging, or cinching.
While the large diameter multiple piece bone anchor assembly and methods of the present invention have been particularly shown and described with reference to the exemplary embodiments thereof, those of ordinary skill in the art will understand that various changes may be made in the form and details herein without departing from the spirit and scope of the present invention. Those of ordinary skill in the art will recognize or be able to ascertain many equivalents to the exemplary embodiments described specifically herein by using no more than routine experimentation. Such equivalents are intended to be encompassed by the scope of the present invention and the appended claims.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 60/796,057, entitled “Large Diameter Multiple Piece Bone Anchor Assembly”, filed Apr. 28, 2006, which is hereby incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60796057 | Apr 2006 | US |