This invention relates generally to mass mail handling equipment. More particularly, this invention relates to an improved apparatus for taking a series of flat articles such as envelopes, orienting them, and then stacking the articles in groupings.
In the high volume mail industry, in both U.S. First Class and Third Class mail, envelopes are filled with various letter pieces using automated mail inserters. For example, U.S. Pat. Nos. 5,029,832 (Orsinger et al.) and 5,211,384 (Orsinger et al.) disclose an in-line inserter device having envelope and feeding assemblies, an envelope inserting station, a sealing and stacking assembly, and various diverter stations.
Mass-mailing equipment has become very diverse in its functions. For instance, inserting equipment transports envelopes along an inserting track while various types of inserts are automatically inserted into the envelopes. The envelopes are normally transported to another piece of equipment that automatically seals the envelopes, weighs them and affixes postage. Still additional equipment automatically reads the zip codes or zip code indicia on the envelopes and indicates zip code breaks in the envelope groups for zip code presorting. This allows the user to take advantage of lower postage rates. Other mass-mailing equipment may include remittance processing equipment and zip code sorting equipment.
These mail-inserters may run at speeds, for example, from several hundred filled envelopes per hour to approximately 14,000 envelopes per hour. These speeds have created a need on the end of the inserters to collect the filled envelopes in such a way as to allow the operator to load them into mail trays or other forms of storage quickly and efficiently. In addition, since these envelopes are often prearranged in special zip code order, this order must be maintained by the operator and then separated into different trays depending on these zip code groupings.
U.S. Pat. Nos. 6,398,204 (Keane et al.) and 6,540,223 (Keane et al.) address these issues, however, these methods have limitations as the envelopes being processed become larger. The invention of these two patents rely on sliding the incoming envelope behind the previously stacked envelope. However, this invention may create difficulties when dealing with the larger “flat” envelopes (flats being defined as envelopes that are approximately six inches by nine inches and larger). Because these envelopes tend to have more documents in them and thus be thicker, and because of the increased surface area of these envelopes, they have difficult sliding behind the previous envelope efficiently.
Currently, many mail inserters simply eject the filled envelope onto a short flat conveyor, allowing the envelopes to free float on the conveyor. This creates the possibility that the zip order of the envelopes will get mixed up, the possibility of envelopes becoming disorderly and difficult to quickly pick up, and the possibility of envelope flaps popping opened prior to proper glue drying. Additionally, this method is an inefficient use of conveyor space, allowing only a short amount of time before the conveyor becomes full. All of these limitations require increased attention from an operator. Often, an operator is forced to shut down the entire inserting machine so that he or she can catch up with the emptying of the conveyor. Obviously, this drastically reduces the overall throughput of envelopes.
These mail inserters may run at speeds, for example, from several hundred filled envelopes per hour to approximately 18,000 envelopes per hour. These speeds have created a need on the end of the inserters to collect the filled envelopes in such a way as to allow the operator to load them into mail trays or other forms of storage quickly and efficiently. In addition, since these envelopes are often prearranged in special zip code order, this order must be maintained by the operator and then separated into different trays depending on these zip code groupings.
This area has proven to be the “bottleneck” of the mail insertion process. Many times, the operator has a difficult time keeping up with the inserter. Additionally, the envelopes are not presented in such a way that the zip code breaks can be read easily. The operator may develop fatigue, possibly even carpal tunnel syndrome, because of excess handling of envelopes. One means to assist here is the inclusion of an envelope stacking apparatus at the end of the system to secure the sorted mail pieces in a stacked position to facilitate the orderly removal of the processed mail pieces from the system.
One feature of many on-edge stacking conveyors is the ability to offset the registered edge of a horizontal envelope stack so as to easily identify the zip code change or count to the offloading operator. This is typically accomplished by a printing, such as a zip code, bar code, optical mark, etc., on the envelope, read by an electronic reading device, as the envelope enters the on-edge stacking apparatus. This data is then used to index an offsetting device that causes the front perimeter edge of the envelope stack to create an offset from the envelopes previously received in the stack. That is, a series of envelopes is first stacked against a register wall. When a new zip code break is read, the offset device causes new envelopes to be offset by a small amount. The result is an indexed stack with zip code breaks easily identified. In present systems, after a set of envelopes has been offset by the offset device and a new zip code break is read, the next set of envelopes coming in no longer is required to be offset. However, the first incoming envelope of a new set may drag the prior, offset, envelope back to the register wall due to frictional drag. This occurs particularly when the offset device is withdrawn too soon. This may be overcome by delaying, for example, via software, the moment when the parallel wall of the offset device is retracted to several inches before the new envelope gets to the offset device. This solution is only partially successful because the retraction of the offset device must be started early because the front lip of the offset must be clear before the new envelope passes it. Because there are still several inches of travel for the incoming envelope, there is still some frictional drag of the prior envelope.
The present invention is directed to these limitations in past systems.
Many other attendant features of this invention will become readily appreciated as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings.
All references cited herein are incorporated herein by reference in their entireties.
A stacking apparatus for stacking a plurality of flat articles on edge is provided where each article has a front perimeter edge, a bottom edge and two faces. The stacking apparatus is adapted to receive each of the plurality of flat articles as each article enters the stacking apparatus where the articles are moving in a direction generally parallel to the faces of each article. The stacking apparatus includes an article receiver that is adapted to receive articles when the faces of the article are in a vertical position. The article receiver includes a stop wall to receive the front perimeter edge of each article and stop horizontal motion of the article and to align the front perimeter edge of each article. The article receiver further includes a rotatable segmented roller for receiving the bottom edge of each article.
The segmented roller includes an elongated cylinder rotatable about a horizontal central axis of the cylinder and at least one planar surface that is substantially parallel to the horizontal central axis of the cylinder. The planar surface forms a shelf to receive the bottom edge of each flat article when each article enters the article receiver when the planar surface is rotated to a horizontal position. The segmented roller has a generally cylindrical outer surface.
The stacking apparatus further includes a stacking conveyor bed.
The segmented roller is rotatable from a stopped position to a rotating configuration. When the segmented roller is in the stopped position, the planar surface is in the horizontal position to form a shelf and wherein the planar surface forms a gap to receive the bottom edge of one article at a time. When the segmented roller is in a rotating configuration, the cylindrical outer surface of the segmented roller drives the article against the stacking conveyor bed. The segmented roller is then rotatable back to the stopped position wherein the planar surface is back in the horizontal position to receive the bottom edge of another article.
Preferably, the stacking apparatus includes a belt turn-up mechanism to turn the article from a position wherein the faces of the article are in a position other than vertical to a position wherein the faces are in a vertical position, for receipt into the article receiver. Additionally, in a preferred embodiment, an article face receiver on the stacking conveyor bed is included that is indexed on the conveyor bed to provide for an incremental amount of space for additional articles received on the conveyor bed.
A stack pressure sensor may be included on the conveyor bed wherein the article face receiver is indexed when the stack pressure sensor senses sufficient pressure caused by a stack of articles on the conveyor bed. Preferably, the conveyor bed is movable along a conveyor to provide additional space, as required, for articles and to provide a compressive force to the stack of articles.
In a preferred configuration, the article receiver comprises a front guide and a back wall and the segmented roller includes a single planar surface which is adapted to rotate three hundred sixty degrees for each article received.
Preferably, the segmented roller is stationary during the receiving of each article and subsequently rotates to drive that article against the stacking conveyor bed. However, the segmented roller may rotate at a continuous rate.
An article stack offset device may be included to periodically move the stop wall to provide a mark for a change in an article parameter such as a zip code. The article stack offset device may provide a mark for a change in an article parameter such as a zip code, or at specific article counts or when a signal is received.
The invention will be described in conjunction with the following drawings in which like reference numerals designate like elements and wherein:
The invention will be illustrated in more detail with reference to the following embodiments, but it should be understood that the present invention is not deemed to be limited thereto.
Referring now to the drawing figures wherein like part numbers refer to like elements throughout the several views, there is shown in
As seen in
As seen in
When each article 12 passes through the belt turn-up mechanism 46 into the article receiver 22, the segmented roller 32 has been rotated to a stopped position such that the planar surface 38 is in the (upper) horizontal position such that the planar surface 38 forms a gap 50 and receives the bottom edge 16 of each article. Once the article 12 is fully received into the article receiver 22, the segmented roller 32 rotates such that the cylindrical outer surface 42 of the segmented roller 32 drives the article 12 down to the stacking conveyor bed 44. The segmented roller 32 continues to rotate for a full three hundred sixty degrees (in a configuration where only one planar surface 38 is present on the segmented roller 32) back to the stopped position wherein the planar surface 38 is in a horizontal position to receive the bottom edge 16 of another article 12.
As best seen in
Another desirable feature of the stacking apparatus 10 is an ability to offset the registered edge of the horizontal article stack 26 so to easily identify parameters, for example, a zip code change, article count, or electronic signal to an offloading operator. This is accomplished, for example, by a printing (zip code, bar code, optical mark, and the like) being read on the article 12 by a separate reading device (not shown) as the article 12 enters or leaves the belt turn-up mechanism 46. This data is then used to index a motor to cause the register edge, e.g., the front perimeter edge 14, of the article stack to be offset from the articles received earlier stack 26. This is taught, for example, in U.S. Pat. No. 6,682,067, the complete specification of which is hereby fully incorporated by reference. See
The article face receiver 56 on the stacking conveyor bed 44 is indexed on the conveyor bed 44 to provide for an incremental amount of space for additional articles received on the conveyor bed 44 as articles enter the stack 26. When the sensor 52 senses that the faces 18, 20 of the articles 12 are sufficiently tight against one another, the conveyor bed belt 54 indexes to allow for more space for additional articles 12.
Optionally, the segmented roller 32 may be rotated at a continuous rate. Here however, the input of articles 12 by the belt turn-up mechanism 46 into the article receiver 22 must be perfectly timed to provide for each article 12 to enter the article receiver 22 while the planar surface 38 is horizontal.
While the invention has been described in detail and with reference to specific embodiments thereof, it will be apparent to one skilled in the art that various changes and modifications can be made therein without departing from the spirit and scope thereof.
Number | Name | Date | Kind |
---|---|---|---|
582593 | Waite | May 1897 | A |
2841394 | Stobb | Jul 1958 | A |
3342481 | Kaplan | Sep 1967 | A |
4432540 | Akers et al. | Feb 1984 | A |
4570922 | Akers | Feb 1986 | A |
4705157 | Bowles | Nov 1987 | A |
4718660 | Daboub | Jan 1988 | A |
4903955 | Manzke | Feb 1990 | A |
4940219 | Volat | Jul 1990 | A |
5029832 | Orsinger et al. | Jul 1991 | A |
5129503 | Belec et al. | Jul 1992 | A |
5201504 | Fallos et al. | Apr 1993 | A |
5211384 | Orsinger et al. | May 1993 | A |
5217218 | Ricciardi | Jun 1993 | A |
5221080 | Ricciardi | Jun 1993 | A |
5368287 | Belec et al. | Nov 1994 | A |
5372360 | Ricciardi | Dec 1994 | A |
5411250 | Belec et al. | May 1995 | A |
5429249 | Belec et al. | Jul 1995 | A |
5485989 | McCay et al. | Jan 1996 | A |
5709525 | Marzullo et al. | Jan 1998 | A |
5960963 | Chodack et al. | Oct 1999 | A |
5971161 | Branecky et al. | Oct 1999 | A |
6241460 | Werner | Jun 2001 | B1 |
6398204 | Keane et al. | Jun 2002 | B1 |
6540223 | Keane et al. | Apr 2003 | B2 |
6634639 | Kuroda et al. | Oct 2003 | B2 |
6682067 | Keane et al. | Jan 2004 | B1 |
6793212 | Holbrook | Sep 2004 | B2 |
Number | Date | Country |
---|---|---|
519942 | Nov 1953 | BE |
1 289 491 | Feb 1969 | DE |
406 127784 | May 1994 | JP |
WO 9318996 | Sep 1993 | WO |