Large sample low aspect ratio biopsy needle

Information

  • Patent Grant
  • 10149664
  • Patent Number
    10,149,664
  • Date Filed
    Tuesday, August 14, 2012
    12 years ago
  • Date Issued
    Tuesday, December 11, 2018
    6 years ago
Abstract
A high aspect ratio biopsy needle achieves reliable performance with large solid sample size by means of a variety of features and combinations thereof, including support to prevent bending, reinforcement of the needle, and cutting edges arranged to resist deformation.
Description
TECHNICAL FIELD

The present invention relates to biopsy needles and more particularly to small-diameter biopsy needles suited for automated sampling operation.


BACKGROUND ART

Often, it is either desirable or necessary to obtain specimens of tissue from humans and other animals, particularly in the diagnosis and treatment of patients with cancerous tumors, premalignant conditions, and other diseases or disorders. For example, when it is discovered that suspicious conditions exist, either by means of x-ray or ultrasound imaging in various tissues of the body, a physician typically performs a biopsy to determine if the cells at the suspected site are cancerous.


A biopsy can be done either by an open or percutaneous technique. Open biopsy is an invasive procedure using a scalpel, whereby either a portion (incisional biopsy) or the entire mass (excisional biopsy) is removed. Percutaneous biopsy is usually done with a needle-like instrument through a relatively small incision, and can be performed by fine needle aspiration (FNA) or through the taking of a core biopsy sample. In FNA biopsy, individual cells or clusters of cells are obtained for cytologic examination and can be prepared such as in a Papanicolaou smear. In a core biopsy, a core or fragment of the tissue is obtained for histologic examination.


Intact tissue from the organ, lesion, or tumor is preferred by medical personnel in order to arrive at a definitive diagnosis regarding the patient's condition. In most cases only part of the tissue in question needs to be sampled. The portions of tissue extracted must be indicative of the organ, lesion, or tumor as a whole. Often, multiple tissue samples from various locations of the mass being sampled may be taken.


The percutaneous biopsy procedure can be performed utilizing various techniques and devices. An example is a method and a device that employs a biopsy needle for cutting tissue sample as described in British Patent Publication No. GB 2018601A. In the described biopsy device, living tissue is drawn into a cutting region under vacuum. The vacuum is created in the needle by employing connecting lines to a vacuum generator situated outside of a hand piece that holds the cannula. The cutting of the sample is done using a cutting mechanism that moves axially over the cannula. After the needle is withdrawn from the host, the sample is flushed out from the tip of the needle. The vacuum established in the hollow needle is regulated externally from the hand-piece.


Another biopsy mechanism is described in European Patent Publication No. EP 0890 339 A1. A biopsy needle, with a cutting mechanism, is integrated into a hand piece. The needle is connected via connection lines to an external vacuum generator and controls. The cutting device is moveable axially in the hollow space of the biopsy needle. A rotary movement, combined with a manual lengthwise push causes the cutting device to sample the tissue from the host. The sample is transported in the hollow channel of the needle. A similar arrangement is also shown by U.S. Pat. No. 5,526,822.


A vacuum-assisted biopsy device is described in U.S. Patent Publication No. 2001/0011156 A1, provides for a compactly configured hand device, in whose housing all drive elements necessary for propelling the needle of the biopsy needle arrangement are provided. A partial vacuum source is provided separate from the hand device, which can be connected via an appropriate supply line to the needle arrangement inside the hand device at a suitable connection location.


US Patent Publication No. 20050203439, describes a biopsy device for taking tissue samples, which includes a housing, a removable element and a control panel. The removable part has a vacuum pump in the form of a syringe which is driven by a first motor and a biopsy needle which is driven by a separate motor under the control of a controller built into a permanent hand set. The needle and syringe are provided as a sterile package unit.


Small diameter biopsy needles are desirable because they have the potential to generate less tissue trauma in the host during use. Generally, biopsy needles use a cutting tip that slices tissue as the needle is advanced. Since biopsy needles need to be inserted a considerable distance before reaching the location of the tissue to be sampled, having a small diameter means less tissue is cut by the cutting tip.


It would be desirable for a biopsy needle of small diameter to provide greater sample size with less trauma than larger size needles. But small-diameter needles are believed to pose a greater design challenge because of the structural demands on a small diameter device.


DISCLOSURE OF INVENTION

A biopsy needle must endure significant loads, which makes it difficult to create biopsy needles with small diameters. If, for example, a 10 gauge needle is simply scaled down in size, every dimension, including wall thickness, length, the size of the sample recess, and the gaps between the stylet and the sheath, is reduced. If tolerances are not scaled, the gaps remain constant which means the stylet has to be reduced by a disproportionate amount in order to reduce the outside needle diameter. As a result, bending forces which are of little concern in a 10 gauge needle, are significant in a 14 gauge needle. In addition, the wall of the sample basket, which, reduced in thickness, must withstand the shearing forces caused by drawing tissue under vacuum into the sample recess. Typically, the constraints force design concessions. For example most 14 gauge needles are able to dissect samples that are only a tenth as large as a 10 gauge needle.


Although the following is not a comprehensive list of features, three major features the invention address the above problems permitting a reliable 14 gauge needle with large sample size. First, longitudinal cutting edges on the sides of the sample recess are located at a greater radial distance from the axis of the stylet than the inner diameter of the sample recess. This improves the ability of the walls of the sample recess to withstand shearing forces resulting from drawing tissue under vacuum into the sample recess. Second, the stylet is reinforced by an internal longitudinal reinforcement element, preferably along the entire length of the stylet proximal of the sample recess. Preferably, the reinforcement is affixed to the stylet, for example by welding. Third, the proximal end, along a substantial length thereof, is supported and constrained to resist bending thereof.


According to an embodiment, a biopsy device has a generally cylindrical hollow stylet having a uniform wall thickness. The stylet has an inner diameter, an outer diameter, and a longitudinal axis. The stylet has a distal end, and a proximal end, the distal and proximal ends being disposed on the axis. The stylet has a working length from the distal end that extends beyond a housing when inserted therein. A longitudinal recess forms a sample chamber that is positioned adjacent the distal end extending axially a distance of between 10 and 25% of the working length. More preferably, the sample chamber extends axially a distance of about 0.75 inch. A longitudinal insert is connected to the stylet such that additional bending-resisting reinforcement is provided to the stylet.


Preferably, the longitudinal insert is affixed within the stylet along a major fraction of the working length and more preferably, the longitudinal insert is affixed along most of the working length. Preferably, the longitudinal insert is a cylinder. The cylinder preferably has a lumen whose diameter is approximately 0.0025 in. The longitudinal insert is preferably affixed between the recess and a position proximal of the distal end. The stylet's ratio of wall diameter to the wall thickness is preferably less than 15 and more preferably about 10. Note that although other configurations of reinforcement inserts may be used, which have one or more channels or lumens, preferably, no single open area facing the sample chamber is greater than about 0.0025 in. equivalent diameter to prevent solid sample material being drawn into the one or more channels. Equivalent diameter is four times the open area divided by the internal perimeter of the open area.


According to another embodiment, a biopsy device has a generally cylindrical hollow stylet having a distal end with a sample recess configured to receive biopsy samples, and a proximal portion. A mounting member is configured to support the proximal portion of the stylet such that bending of the proximal portion is resisted by the mounting member supporting the proximal portion at at least three support points therealong. A longitudinal reinforcement is affixed at multiple affixation points to the stylet and extending along a major fraction of the stylet and also extending between the at least three support points, such that the reinforcement also resists bending. Preferably, the at least three support points are included in a continuous series of points of contact between a longitudinal reinforcement and the mounting member. Preferably, the stylet has a working length from the distal end that extends axially of the mounting member when held thereby. Preferably, the sample recess has cutting edges extending parallel to an axis joining the distal end and the proximal portion, the cutting edges being on lateral sides of the longitudinal recess. Preferably, the cutting edges define an apex angle of about 40°.


According to another embodiment, a biopsy device has a generally cylindrical hollow stylet having a uniform wall thickness, an inner diameter, an outer diameter, and a longitudinal axis. The stylet preferably has a distal end with a sample recess configured to receive biopsy samples. The stylet also has a proximal end, the distal and proximal ends being disposed on the axis. Preferably, a mounting structure holds the stylet, the stylet having a working length from the distal end that extends distally of the mounting structure when supported thereby. The longitudinal recess forms a sample chamber and positioned adjacent the distal end extending axially a distance of between 10 and 25% of the working length. The longitudinal recess preferably has cutting edges extending parallel to the axis on lateral sides of the longitudinal recess. The cutting edges preferably have a depth, perpendicular to the axis, of between 2.5 and 4 times the wall thickness. The distance between the cutting edges is preferably less than the outer diameter and greater than the inner diameter.


A longitudinal insert may also be included to provide additional reinforcement to the stylet. The longitudinal insert is preferably affixed within the stylet along a major fraction of the working length. The longitudinal insert is preferably affixed between the recess and a position distal of the proximal end. The ratio of the diameter to the wall thickness is preferably less than 15 and, more preferably, about 10.


According to another embodiment, a biopsy device has a generally cylindrical hollow stylet having a uniform wall thickness, an inner diameter, an outer diameter, and a longitudinal axis. The stylet has a distal end with a sample recess configured to receive biopsy samples, and a proximal end, the distal and proximal ends being disposed on the axis. A mounting structure holds the stylet, the stylet having a working length from the distal end that extends distally of the mounting structure when supported thereby. A longitudinal recess forms a sample chamber and positioned adjacent the distal end extending axially a distance of between 10 and 25% of the working length. A longitudinal insert is connected to the stylet such that additional bending-resisting reinforcement is provided to the stylet. The longitudinal insert is affixed within the stylet along a major fraction of the working length. The longitudinal insert may be a cylinder. The cylinder has a lumen whose diameter is approximately 0.0025 in. The longitudinal insert is affixed within the stylet along a major fraction of the working length.


According to another embodiment, a biopsy device has a generally cylindrical hollow stylet having a uniform wall thickness, an inner diameter, an outer diameter, and a longitudinal axis. The stylet has a distal end with a sample recess configured to receive biopsy samples, and a proximal end, the distal and proximal ends being disposed on the axis. A mounting structure holds the stylet, the stylet having a working length from the distal end that extends distally of the mounting structure when supported thereby. A longitudinal recess forms a sample chamber positioned adjacent the distal end extending axially along a portion of the stylet. A cylindrical longitudinal insert is connected to the stylet such that additional bending-resisting reinforcement is provided to the stylet along a major fraction of its length. Preferably, the cylinder has a lumen whose diameter is no more than 0.0025 in. and preferably about 0.0025 in. The reinforcement is preferably affixed within the stylet along a major fraction of the working length. The reinforcement is affixed between the recess and a position distal of the proximal end. The ratio of the diameter to the wall thickness is about 10.


According to another embodiment, a biopsy device has a generally cylindrical hollow stylet having a uniform wall thickness, an inner diameter, an outer diameter, and a longitudinal axis. The stylet has a distal end with a sample recess configured to receive biopsy samples and a proximal end, the distal and proximal ends being disposed on the axis. A mounting structure holds the stylet, the stylet having a working length from the distal end that extends distally of the mounting structure when supported thereby. A longitudinal recess forms a sample chamber positioned adjacent the distal end extending axially a distance of between 10 and 25% of the working length.


Preferably, the longitudinal recess has cutting edges extending parallel to the axis on lateral sides of the longitudinal recess. The cutting edges have planar faces that lie opposite each other on either side of the axis and define an angle such that the planar faces have a widest spacing at the cutting edge and taper toward the bases of the cutting edges where they widen to the wall thickness of the stylet. The distance between the cutting edges is less than the outer diameter and greater than the inner diameter. Preferably, a longitudinal insert provides additional reinforcement to the stylet. Preferably, the longitudinal insert is affixed within the stylet along a substantial fraction of the working length. Preferably, the longitudinal insert is affixed within the stylet along a most of the working length. Preferably, the longitudinal insert is affixed between the recess and a position distal of the proximal end. Preferably, the ratio of the diameter to the wall thickness is less than 15. More preferably, the ratio of the diameter to the wall thickness is about 10.


According to another embodiment, a biopsy device has a generally cylindrical hollow stylet having a uniform wall thickness, an inner diameter, an outer diameter, and a longitudinal axis. The stylet has a distal end with a sample recess configured to receive biopsy samples and a proximal end, the distal and proximal ends being disposed on the axis. A mounting structure holds the stylet, the stylet having a working length from the distal end that extends distally of the mounting structure when supported thereby. The longitudinal recess has cutting edges extending parallel to the axis on lateral sides of the longitudinal recess. The cutting edges define an apex angle of about 40°.


Preferably, the distance between the cutting edges is less than the outer diameter and greater than the inner diameter. Preferably, a longitudinal insert provides additional reinforcement to the stylet. Preferably, the longitudinal insert is affixed within the stylet along a substantial fraction of the working length. More preferably, the longitudinal insert is affixed within the stylet along a most of the working length. Preferably, the longitudinal insert is affixed between the recess and a position distal of the proximal end. Preferably, the ratio of the diameter to the wall thickness is less than 15. Preferably, the ratio of the diameter to the wall thickness is about 10. Preferably, the cutting edges having a depth, perpendicular to the axis, of between 2.5 and 4 times the wall thickness.


According to another embodiment, a biopsy device has a generally cylindrical hollow stylet having a distal end with a sample recess configured to receive biopsy samples, and a proximal end, the distal and proximal ends being disposed on an axis. A mounting structure is configured to support a proximal portion of the stylet such that bending of the proximal portion is resisted by supporting the proximal portion at multiple points along the proximal portion.


Preferably, the multiple points are a continuous series of points of contact between an axially-elongated support element within the mounting structure. Preferably, the axially-elongated support element is located at a distal end of the mounting structure. Preferably, the stylet has a working length from the distal end that extends distally of the mounting structure when supported thereby. Preferably, the longitudinal recess has cutting edges extending parallel to the axis on lateral sides of the longitudinal recess. Preferably, the cutting edges define an apex angle of about 40°.


Preferably, the distance between the cutting edges is less than the outer diameter and greater than the inner diameter. Preferably, a longitudinal insert providing additional reinforcement to the stylet. Preferably, the longitudinal insert is affixed within the stylet along a major fraction of the working length. Preferably, the longitudinal insert is affixed within the stylet along a most of the working length. Preferably, the longitudinal insert is affixed between the recess and a position distal of the proximal end. Preferably, the ratio of the diameter to the wall thickness is less than 15. More preferably, the ratio of the diameter to the wall thickness is about 10.


Preferably, the cutting edges having a depth, perpendicular to the axis, of between 2.5 and 4 times the wall thickness. Preferably, a vacuum pump is provided that is capable of drawing a vacuum of at least 21 in. Hg in the stylet. Preferably, the vacuum pump is capable of drawing a vacuum of at least 21 in. Hg in the sample recess.


According to another embodiment, a biopsy device has a generally cylindrical hollow stylet having a distal end with a sample recess configured to receive biopsy samples, a proximal end, the distal and proximal ends being disposed on an axis. A reinforcement element is affixed inside the stylet and located proximal of the sample recess, having at least one channel therethrough, the at least one channel having no single open area adjacent to the sample recess greater than about 0.0025 in. equivalent diameter. A mounting structure is preferably configured to support a proximal portion of the stylet such that bending of the proximal portion is resisted by supporting the proximal portion at multiple points along the proximal portion, at least several of the multiple points being supported at longitudinal locations that coincide with the reinforcement element.


According to another embodiment, a biopsy device has a 14 gauge needle having a generally cylindrical hollow stylet. The stylet has a distal end with a sample recess configured to receive biopsy samples. The sample recess has longitudinal cutting edges on lateral sides thereof, the cutting edges cutting the stylet at about 70% of the stylet outer diameter. Preferably, the cutting edges have internal faces that are angled such that the cutting edges are further apart at their apexes than at their bases.


According to another embodiment a biopsy device has a generally cylindrical hollow stylet having a distal end with a sample recess configured to receive biopsy samples, and a proximal portion. A mounting member is configured to support the proximal portion of the stylet such that bending of the proximal portion is resisted by the mounting member supporting the proximal portion at at least three support points therealong. A longitudinal reinforcement is affixed at multiple affixation points to the stylet and extending along a significant fraction of the stylet and also extending between the at least three support points, such that the reinforcement also resists bending.


According to an embodiment, a biopsy device has a generally cylindrical hollow stylet having a uniform wall thickness. The stylet has an inner diameter, an outer diameter, and a longitudinal axis. The stylet has a distal end, and a proximal end, the distal and proximal ends being disposed on the axis. The stylet has a working length from the distal end that extends beyond a housing when inserted therein. A longitudinal recess forms a sample chamber that extends axially along the working length. A cylindrical longitudinal insert is connected to the stylet such that additional bending-resisting reinforcement is provided to the stylet.


Preferably, the longitudinal insert is affixed within the stylet along a significant fraction of the working length and more preferably, the longitudinal insert is affixed along most of the working length. The insert, in the cylinder embodiment, has a lumen whose diameter is approximately 0.0025 in. The longitudinal insert is preferably affixed between the recess and a position distal of the proximal end. The stylet's ratio of wall diameter to the wall thickness is preferably less than 15 and greater than 4. More preferably, it is in the range of 9-12 and even more preferably, the ratio of the diameter to the wall thickness is about 10 for a stylet whose outer diameter is about 2 mm or a 14 gauge biopsy needle.


According to another embodiment, a biopsy device has a generally cylindrical hollow stylet having a uniform wall thickness. The stylet has an inner diameter, an outer diameter, and a longitudinal axis. The stylet has a distal end, and a proximal end, the distal and proximal ends being disposed on the axis. The stylet has a working length from the distal end that extends beyond a housing when inserted therein. The working length is defined by a distal-most support element attached to the stylet or a position where the stylet is supported along its length when inserted in a housing. A longitudinal recess forms a sample chamber that is positioned adjacent the distal end extending axially a distance of between 10 and 25% of the working length. The longitudinal recess has cutting edges extending parallel to the axis on lateral sides of the longitudinal recess. The cutting edges having planar faces that lie opposite each other on either side of the axis and define an angle such that the planar faces have a widest spacing at the cutting edge. The distance between the cutting edges is less than the outer diameter and greater than the inner diameter.


Preferably, the biopsy device also has a longitudinal insert providing additional reinforcement to the stylet. The longitudinal insert is preferably affixed within the stylet to multiple points separated by a significant fraction of the working length and more preferably, at the ends of the longitudinal insert. The means of affixation may be welding, adhesion, or any other bonding method. The insert may be compression-fitted by heating and subsequent cooling so that it is affixed along its entire length. The longitudinal insert is preferably affixed between the recess and a position distal of the proximal end. The ratio of wall diameter to the wall thickness is preferably less than 15. The ratio of the diameter to the wall thickness is more preferably about 10.


According to yet another embodiment, the biopsy device has a generally cylindrical hollow stylet having an axis, and a distal end with a sample recess configured to receive biopsy samples. At least one support fixture holds the stylet, the fixture having at least first and second support portions separated along the axis of the stylet. The stylet has a proximal portion extending from a point proximal of the sample recess to the first and second support portions. The proximal portion has a stiffness that is substantially greater than a tube whose diameter and wall thickness is the same as the diameter and wall thickness of the sample recess. Preferably, the support fixture has at least a third support portion to prevent bending of the stylet.


According to another embodiment, a biopsy device has a generally cylindrical hollow stylet with a uniform wall thickness, an inner diameter, and an outer diameter. The stylet also has a longitudinal axis and distal and proximal ends. The distal and proximal ends are disposed on the axis. The housing is configured to support a proximal portion of the stylet therewithin such that bending of the proximal portion is resisted by supporting the proximal portion at multiple points along the proximal portion.


According to another embodiment a biopsy device has a generally cylindrical hollow stylet with a uniform wall thickness, an inner diameter, an outer diameter, and a longitudinal axis. The stylet has a distal end and a proximal end. The distal and proximal ends are disposed on the axis. The stylet has a working length from the distal end that extends beyond a housing when inserted therein. The stylet has a longitudinal recess with cutting edges extending parallel to the axis on lateral sides of the longitudinal recess, with the cutting edges defining an apex angle of about 40°.


According to another embodiment, a biopsy device has a generally cylindrical hollow stylet having a distal end with a sample recess configured to receive biopsy samples, and a proximal portion. A mounting member is configured to support the proximal portion of the stylet such that bending of the proximal portion is resisted by the mounting member supporting the proximal portion at at least three support points therealong. The at least three support points may be included in a continuous series of points of contact between a longitudinal reinforcement and the mounting member.


A longitudinal reinforcement may be affixed at multiple affixation points to the stylet and extending along a substantial fraction of the stylet and also extending between the at least three support points, such that the reinforcement also resists bending.


The stylet can have a working length from the distal end that extends axially of the mounting member when held thereby. The sample recess preferably has cutting edges extending parallel to an axis joining the distal end and the proximal portion, the cutting edges being on lateral sides of the longitudinal recess. The cutting edges preferably define an apex angle of about 40°.


According to another embodiment, a biopsy device has a generally stylet having a distal end with a sample recess configured to receive biopsy samples, and a proximal portion. A mounting member is configured to support the proximal portion of the stylet such that bending of the proximal portion is resisted by the mounting member supporting the proximal portion at at least three support points therealong. The proximal portion extends from a point proximal of the sample recess continuous to and between the at least three support points, the proximal portion having a stiffness substantially greater than a portion distal thereto. The proximal portion has a lumen extending to the sample recess. The proximal portion is a cylinder with a lumen therein, the lumen having a substantially smaller equivalent diameter than the sample recess.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A is a partial section view of a biopsy needle stylet with a sample chamber.



FIG. 1B is a side view of a biopsy needle showing support points.



FIGS. 2A and 2B illustrate a section view of the sample chamber of FIG. 1 and features thereof.



FIG. 3 illustrates a detail taken at a proximal end of the stylet of FIG. 1.



FIG. 4 illustrates a detail of a biopsy needle stylet and sample chamber at a distal end of the biopsy needle.



FIGS. 5A and 5B illustrate an assembly including the needle of FIG. 1



FIG. 6 illustrates a detail of the stylet near a proximal end of a sample chamber.



FIG. 7 illustrates an alternative reinforcement and tissue block.



FIGS. 8A through 8F illustrate a type of cutting sheath and operational aspects.



FIG. 9 shows a stylet and another type of cutting sheath in a modular consumable component that includes the stylet of the foregoing figures.



FIG. 10 shows a biopsy needle stylet with a single-piece reinforced section over the length that is proximal of the sample chamber.



FIG. 11 shows a biopsy needle stylet with a composite reinforced section over the length that is proximal of the sample chamber.



FIGS. 12A and 12B are illustrations for purposes of discussing various kinds of reinforcement components.



FIGS. 13A and 13B illustrate overconstraining of the stylet to reduce flexion in the needle.





MODE(S) FOR CARRYING OUT THE INVENTION

Various driving mechanisms for biopsy needles are known and many are suitable for use with the invention disclosed below. A preferred type of drive mechanism is a self-contained unit disclosed in U.S. patent application Ser. No. 10/500,522, published as U.S. 2005/0203439 (referred to in the background section) filed in the U.S. on Apr. 6, 2005, now U.S. Pat. No. 8,109,885, and U.S. patent application Ser. No. 10/500,518, published as U.S. 2005/0165328, filed in the U.S. on Mar. 1, 2005 (now U.S. Pat. No. 8,002,713), both of which are hereby incorporated by reference as if fully set forth herein.


Referring to FIGS. 1 to 7, a biopsy needle stylet 100 has a sample chamber opening 113 with sloping edges 107 and 109 and sides defined by an internal surface 103 of the stylet 100. The biopsy needle stylet 100 has a fully circular cross-section over most of its length except along the sample chamber opening 113 whose interior surface is indicated at 103. Along the sample chamber opening 113, the stylet 100 has an approximately semicircular cross-section as shown at 100A.


The edges of the sample chamber opening 113 are chamfered to form cutting edges 114 on either side of the sample chamber opening 113. The outsides 114A of the cutting edges 114 are defined by the cylindrical surface 116 of the stylet 100 whereas the inside surfaces 114B of the cutting edges 114 are defined by flat surfaces, also indicated at 114B. The flat surfaces 114B can be created by machining, for example.


The ratios and dimensions discussed below and elsewhere in the present application are preferable for a 14 gauge stylet 100, which preferably includes a cutting sheath as described below. Preferably, the sample chamber opening 113 has a width that is between the outer diameter M of the stylet 100 and the inner diameter N1 of the stylet 100. In addition, preferably, the inside surfaces 114B of the cutting edges 114 slope away from a plane of symmetry 114D such that they are wider apart at the cutting edges 114 than the lines 114C where the inside surfaces 114B of the cutting edges 114 meet the inside surface 103 of the stylet 100.


Note that the inside surfaces 114B of the cutting edges 114 can be flat or curved to achieve substantially the same configuration. Preferably, the distance between the lines 114C, on opposite sides of the inside surface 103 of the stylet, are separated by a distance approximately equal to the inside diameter N1 of the stylet. Preferably, the angle K is greater than 10 degrees and more preferably it is greater than 15° and even more preferably, it is about 19 degrees. Preferably the cutting edges 114 have a height L that is between 2.5 and 4 times the wall thickness J (or M-N1) of the stylet 100. Preferably, in the embodiments of FIGS. 1-7, the ratio of wall thickness J to outer diameter M is between less than 15 and greater than 4. More preferably the ratio of wall thickness J to outer diameter M is about 10. By providing the angle K and the cutting edges 114 at the heights indicated, the nominal apex angle of the cutting angle can be about 40° , which is a desirable angle for cutting edge 114 integrity and sharpness and also for allowing it to withstand the forces generated by a vacuum which pulls tissue into the sample chamber 313 despite relatively thin walls.


The cutting edges 114 lie over the centers of the stylet 100 walls and are not aligned with the inner surface 103. That is, it will be observed that each of the cutting edges 114 lies between inner surface 103 and the outer cylindrical surface 116. In this particular example, it will be observed that the sloping side 114B, the surface 114A and the horizontal line intersecting the line 114C form, approximately, a symmetrical triangle 170. Preferably, the cutting edge 114 lies at a radial distance from the longitudinal axis that is less than the inner radius of the basket inner surface 103. In the example, the cutting edge lies well over the base 114D (the base coinciding with a diametric line as in the illustrations) of the triangle 170 so that the angle K is a substantial angle, i.e., is well above zero. As noted, since the walls are thin, and preferably, as discussed below, vacuum levels relatively high, the forces on the cutting edges can be substantial. The forces are compensated by a force with a component directed toward the center of the stylet so the blade edges 114 tend to be pulled together. Thus, providing the cutting edges with the illustrated shape, with the substantial slope ensured by providing a nonzero, positive angle K, helps to supply this compensating force with less risk of bending. Also, the height N2 of the cutting edges, which is low to help to reduce these forces but not overly so, helps ensure large sample size. In the preferred embodiment, the ratio of the height N2 to outer diameter of the stylet is about 70% (i.e., N2 divided by the diameter of inner surface 103 is about 0.7). Another way of stating this is that the plane defined by the two parallel cutting edges cuts the stylet longitudinally at about 70% of its diameter.


Note that the cutting edge 114 can have multiple angles at the apex and the foregoing is an average at the approach to the apex.


The ratio of the length B of the sample chamber opening 113 to working length (W, defined, according to convention, as the length of the stylet 100 extending beyond the apparatus used to handle the needle, such as a hand-held driver unitary device—not shown—as disclosed in US Patent Publication No. 20050203439) is in the range of 0.10 to 0.25 and more preferably, the ratio is about 0.1 to 0.2. Preferably, the axial length of the sample recess is between 0.7 and 1 inch and more preferably, about 0.75 inches. Referring in particular to FIG. 1B, a needle, including stylet 100 and cutting sheath 172, is provided with first and second support elements 98 and 99. However, the supports may be parts of a handheld or machine-held biopsy device. The working length W is the portion of the stylet 100 extending beyond the most distal support and outside the housing (not shown in FIG. 1B). As discussed further below, additional bend-resisting support is preferably provided as indicated at 99A.


In terms of absolute dimensions, the stylet 100 wall thickness J is preferably between 0.005 in. and 0.007 in. and preferably it is about 0.006 in. Preferably the working length is between about 3.5 and 6.5 inches and more preferably, 5.5 inches. This may be varied depending on particular details of the application. For example, for stereotactic applications, the working length is preferably about 140 mm and for handheld applications, the working length can be as low as about 90 mm Angle C is preferably, between 60 and 65 degrees and 120 degrees and angle F is preferably about 120 degrees. A proximal end 120 of the stylet 100 has a taper forming an angle H of approximately 20 degrees. The total length A of the stylet 100 may be chosen based on the connected driver. In a representative embodiment, the total length A of the stylet 100 is about 10 in.


Stresses on 14 gauge biopsy needles (the gauge specification being based on the diameter of the stylet 100, not the stylet with an overlying cutting sheath, to be describe further on) are high, due to the small diameter. This can make ensuring the smooth and reliable operation of the needle difficult. For example, a longitudinally-advancing cutting sleeve (See for example, U.S. Pat. No. 7,025,732, hereby incorporated by reference as if fully set forth herein), turning around the stylet 100, may warp the stylet 100 or any bending attending normal manual or machine-held use may cause jamming Various means of addressing these issues are discussed herein, including preventing bending and reinforcing the stylet, but it has also proved useful to provide a lubricant between the stylet and the cutting sheath. Preferably, such a lubricant is sterile and biocompatible. Many lubricants are known, for example, mineral oil, silicone, or Hyaluronan-based lubricants may be used. Preferably, a lubricant is provided as part of a sterile-prepackaged disposable biopsy needle consumable unit.


Another preferred mechanism for helping to ensure reliable and smooth operation of a thin needle is to employ a reinforcement in the needle. Preferably this is done without compromising the sample size such as by providing at least one reinforcement element over most of the length of the stylet 100 but not including the sample chamber 113 such that any reinforcement does not reduce the size of the sample chamber 113. In a preferred configuration, the stylet 100 is provided with an insert 127 along a portion of the stylet 100 that is proximal of the sample chamber 113. The insert 127 may take the form of an annular cylindrical tube (also indicated at 127). The insert 127 may be affixed to the stylet 100 with adhesive, by welding, by compression fit, or by nesting. Preferably, the affixation of the reinforcement is affixed at at least two points that are separated by a substantial axial distance. Preferably the insert 127 has a relatively narrow tubular lumen 105 or other channel to allow fluids to be conveyed to and from the sample chamber 113, such as air (vacuum) and saline (for flushing samples out of the chamber 113). The distal end of the insert 127 may have a beveled surface 107 that coincides with the chamfered end of the sample chamber 113. Preferably, the insert 127 runs along most of the length of the stylet 100. The insert 127 preferably has an internal diameter of 0.025 or less, at least at the distal end thereof to act as a tissue block, preventing tissue from being drawn into the lumen 105 when the sample chamber is subjected to a vacuum by drawing fluid through the lumen 105.


A trocar 111 or other type of cutting tip may be proved at the distal end of the stylet. The beveled end 115 of the stylet 100 may be press-fitted into a hub 151. The beveled end 115, so-fitted, may extend into a recess portion 115 of the hub 151 to provide a portion of a connector. For example, the bevel may stretch a flexible annular adapter (not shown) to form a seal. An alternative insert 167 is shown in FIG. 7. The alternative insert 167 may be formed by extrusion, for example, and may be affixed to the stylet 100 wall 101 as discussed above.


Note that although in the above embodiments, the biopsy needle was described as being used with a cutting sheath that advances and rotates to cut a sample, it is possible to employ a rotating sheath with a blade that is parallel to the sheath axis, or nearly so. FIGS. 8A to 8F illustrate a biopsy needle 201 with an outer sheath 206. Referring to FIG. 8A, the outer sheath 206, in the present embodiment, is cylindrical and has an opening 251 with at least one sharp edge defining a blade 221. A cylinder-shaped inner sheath 236 has a port 231, which, in FIG. 8A, is aligned with the opening 251. The port 231 provides access to a sample chamber 226 which is defined by a volume within the inner sheath 236. A trocar 212 is affixed to a distal end of the inner sheath 236. A handle (not shown) is presumed to be provided, opposite the trocar 212, to support the biopsy needle 200. Note that the sample chamber 226 is not shown with the preferred dimensions as discussed above with reference to FIGS. 2A and 2B but is indicated figuratively here for purposes of discussing the cutting sheath operation.



FIGS. 8B through 8F show, in section D-D, the needle 201 of FIG. 8A in successive stages of a sampling operation. These stages occur after the needle 201 is inserted into living tissue, a sample of which is to be excised for a biopsy. In FIG. 8B, the outer sheath 206 begins in a position in which it covers the port 231. The needle 201 is inserted while the outer sheath 206 is in this position relative to the inner sheath 236. Once the biopsy needle 201 is in position for sampling, the outer sheath 206 is rotated progressively in a counter-clockwise direction. The counter-clockwise rotation of the outer sheath 206 proceeds progressively through the stages indicated by FIGS. 8B through 8F. The outer sheath 206 may be driven by any suitable drive mechanism.


While the biopsy needle is in the insertion position shown in FIG. 8B, and after insertion into the tissue to be sampled (not shown), a vacuum is generated in the sample chamber 226 by drawing air through the inner sheath 236. The vacuum may be generated by any suitable device. Once a vacuum has been generated, the outer sheath 206 begins to rotate in the counter-clockwise direction. In FIG. 8C, the opening 251 is shown after having moved partly toward a position of coincidence with the port 231. As the rotation proceeds, the blade 221 advances toward the port 231. In this position, the vacuum, created in the sample chamber 226, draws tissue to be sampled through the opening 251 and port 231 until it begins to enter the sample chamber 226. The outer sheath 206, at this point, moves counter-clockwise toward the position shown in FIG. 8D where the port 231 is fully uncovered, the opening 251 having moved into coincidence with the opening 231. The vacuum causes tissue to be drawn into the sample chamber 226 and the outer sheath 206 continues rotating in the counter-clockwise direction to the position shown in FIG. 8E.


As the outer sheath 206 rotates toward the position shown in FIG. 8E, the blade 221 partly slices the tissue that has been drawn into the sample chamber 226. As the blade 221 continues toward the position of FIG. 8F, the tissue sample is completely severed from the host and held within the sample chamber 226 while a portion of the outer sheath 206 behind the blade 221 covers the port 231. The biopsy needle 201 can then be withdrawn from the inserted position as it retains the sample.


To remove the tissue sample, the operation depicted in FIGS. 8B through 8F may be repeated. However, in this case, a positive pressure may be generated in sample chamber 226 before starting the cycle. As the outer sheath 206 rotates clockwise through the successive positions starting with the one shown in FIG. 8F, a pressure is applied to the sample chamber 226 and the port 231 is uncovered. This causes the pressure in sample chamber 226 to force the tissue sample out through the uncovered port (about the position shown in FIG. 8D). The cycle may then continue to the point shown in FIG. 8B.


As in the previous embodiments, the outer sheath 206 could rotate in either direction, or both directions, in alternative embodiments. For example, the port 231 could be uncovered by rotating in one direction and the cutting operation and covering could occur after reversing the direction of rotation immediately after uncovering the port 231. This alternative may be provided for all of the embodiments described herein. In addition, the blade 221 may be on either or both sides of the opening 251. As in the previous embodiments, the speed of rotation of the outer sheath 206 may be constant or variable. For example, to reduce amplify torque from the drive mechanism, a reduced force/torque transmission ratio of the drive may be provided to level the prime mover load through the cutting phase. The port 231 may be angled to help reduce the instantaneous torque load on the outer sheath 206 drive mechanism (not shown).


The other type of cutting sheath discussed above is illustrated in FIGS. 1B and 9. The stylet 100 lies within the cutting sheath 301 and both are held in a frame 305. The stylet 100 extends all the way to the hub 151 which is held in a single longitudinal position relative to the frame 305, thereby preventing the stylet 100 from moving axially. The cutting sheath 301 simultaneously rotates and advances and retracts relative to the frame 305 when a gear 307 is correspondingly driven rotationally by a drive, which is shown figuratively at 174 in FIG. 1B. The gear 307 is attached to the cutting sheath 301 and a threaded cylinder 309 in mesh with a nut 311 affixed to the frame 305. Thus, the rotation of the gear 307 causes axial translation of the cutting sheath 301 as well as rotation thereof. The device shown in FIG. 9 may form part of a disposable unit that fits into a reusable drive.


Referring to FIG. 10, a biopsy needle stylet 400 is similar to the biopsy needle stylet of FIG. 4, having a sample chamber opening 413 with sloping edges 407 and 409 and an interior 403 formed from a cylindrical element 401. The proximal part 427 of the cylindrical element 401 receives an extension 408 of a heavy stylet portion 428. The thick-walled heavy stylet portion 428 provides an element which is substantially stiffer than a cylinder whose wall thickness and diameter is the same as that coinciding with the sample recess 412 such that this embodiment may avoid the need for an additional reinforcement. Other features are similar to the embodiment of FIG. 4. Referring to FIG. 11, in a further variation, the reinforcement is obtained in a main portion of the stylet 403 by means of a composite reinforcement element such as a carbon fiber wind layer 422. Here, the element 425 may be thinner-walled than in previous embodiments due to the additional stiffness provided by the composite support 422.


The internal reinforcement elements described in the foregoing can have various cross-sectional shapes, for example a cross-shape as indicated at 434, which may provide vacuum-transmitting lumens at the corners 432 or may include a central lumen 431 for that purpose. Other shapes such as triangular, square, pentagonal or lobed structures may be employed, again, with or without a centrally-located lumen.


The issue of rigidity is also preferably addressed by means of a constraining support structure that helps to prevent the bending of the stylet. FIGS. 13A and 13B show stylet 443 with a working portion B and a supported portion proximal (remainder of the stylet 443 to the left in the drawings) thereof. Typically needles have a substantial length in the proximal part, which extends well into the body of the support, and control apparatus with which it interoperates. Support for the needle is typically provided by holding the needle at it rear end where it engages a support apparatus. For example, many biopsy needles have a needle shooting mode in which the needle is driven into, or adjacent, the tissue mass to be sampled by a spring or other paroxysmal actuator. So the proximal terminal end of the needle would ordinarily be held by such a component, which is illustrated figuratively as the support points 448 and 454 in both of FIGS. 13A and 13B. The distal support is indicated at 442 in FIG. 13A in a typical configuration. Support of the stylet 443 may be provided by a part of a permanent reusable structure, a part of a disposable, limited use structure, or a combination of the permanent reusable structure and the disposable structure. For example, see U.S. application Ser. No. 10/500,522 (published as U.S. 2005/0203439), now U.S. Pat. No. 8,109,885, and Ser. No. 10/500,518 (published as U.S. 2005/0165328), now U.S. Pat. No. 8,002,713, incorporated by reference above which show that the needle is carried by a plastic carrier that accompanies the non-reusable unit.


Preferably, additional or modified supports are provided as discussed below. Both embodiments of FIGS. 13A and 13B have a cutting sheath 444 driven by a drive 490, which can be either rotational or axial or both as discussed above and in the documents incorporated by reference. The cutting sheath tightly encloses the stylet 443 so that support of the cutting sheath 444 provides support of the stylet 443 therewithin. In the present embodiment, additional support is provided by the supports 450, which are approximately equidistant between supports 442 and 448. Additional supports or alternative locations for the additional support are indicated at 452. The result of the additional support is to constrain the ability of the stylet 443 and sheath 444 combination to bend.


The most effective location for the additional supports 450 is midway between the supports 440 and 448 but this may or may not be possible given other packaging requirements, depending on the particulars of the application. A compromise on the position of additional supports may therefore be required. Additional supports 452 and the strength and rigidity provided by the supports may be combined to aid in preventing bending. In addition or alternatively, as illustrated in embodiment of FIG. 13B, an elongate support 446 may be provided to constrain the bending of the stylet 443 and sheath 444 combination. The supports may be provided in the design of the biopsy needle in a variety of fashions. They may include collars, recesses in fixed bulkheads, protrusions in the housing, or any functional element that constrains movement and bending of the stylet 443 and sheath 444 combination. It has been found that for smaller diameter needles, such as a 14 gauge needle, that the additional constraint of the needle is important compensation for the thinness of the needle and has resulted in higher operational reliability than when the support is provided without significantly constraining bending. Preferably, at least a multiple of the supports 448, 452, 450, 442, or a major fraction of support 446 should coincide with the longitudinal extent of the reinforcement or nearly so, so that the fixity of the supports is transmitted through the reinforcement's rigidity, to the stylet.


To assist in securing large sample size, the magnitude of the vacuum used to draw samples into the sample chamber is preferably at least 21 in. Hg and more preferably at least 22 in. Hg.


While the present invention has been disclosed with reference to certain preferred exemplary embodiments, numerous modifications, alterations, and changes to the described exemplary embodiments are possible without departing from the sphere and scope of the present invention. Accordingly, it is intended that the present invention not be limited to the described exemplary embodiments, but that it have the full scope of the following claims and the equivalents thereof.

Claims
  • 1. A biopsy device, comprising: a cylindrical hollow stylet having a proximal portion, and having a distal end portion with a closed distal end and a sample recess configured to define a side opening distal to the proximal portion to receive biopsy samples;a mounting member configured to support the proximal portion of the cylindrical hollow stylet at multiple points such that bending of the proximal portion is resisted by the mounting member supporting the proximal portion at at least three discontinuous spaced support points, the cylindrical hollow stylet coincides with each of the at least three discontinuous spaced support points; anda longitudinal reinforcement insert having a longitudinal length, the longitudinal reinforcement insert positioned within the cylindrical hollow stylet inside the proximal portion of the cylindrical hollow stylet and immovably connected to the cylindrical hollow stylet, the longitudinal reinforcement insert having an elongate channel that extends along the longitudinal length of the longitudinal reinforcement insert within the proximal portion of the cylindrical hollow stylet and is configured to maintain a fluid passageway through the cylindrical hollow stylet, the longitudinal reinforcement insert having a continuous extent portion along the longitudinal length that coincides with each of the at least three discontinuous spaced support points, such that the longitudinal reinforcement insert and the cylindrical hollow stylet resist bending, wherein the longitudinal reinforcement insert has a distal terminal end proximal to the side opening.
  • 2. The biopsy device of claim 1, wherein the longitudinal reinforcement insert is immovably affixed at spaced positions to the cylindrical hollow stylet, and a portion of the longitudinal reinforcement insert internal to the cylindrical hollow stylet has a non-circular cross-sectional shape configured to effect the fluid passageway across the longitudinal reinforcement insert.
  • 3. The biopsy device of claim 1, wherein the sample recess is a longitudinal opening in a side wall of the cylindrical hollow stylet, the longitudinal opening having longitudinally oriented cutting edges on lateral sides of the longitudinal opening, wherein each of the longitudinally oriented cutting edges has a height that is between 2.5 and 4 times a wall thickness of the side wall, the longitudinally oriented cutting edges define a pair of angled opposed inside surfaces, and each of the longitudinally oriented cutting edges define an apex angle measured from a respective inside surface of the pair of angled opposed inside surfaces of the longitudinally oriented cutting edges.
  • 4. The biopsy device of claim 1, wherein the distal terminal end of the longitudinal reinforcement insert has a beveled surface; and wherein the beveled surface coincides with the sample recess.
  • 5. A biopsy device, comprising: a hollow stylet having a side wall and a distal end portion with a sample recess extending through the side wall to define a sample chamber, and a proximal end portion proximal to the sample recess, the distal end portion and the proximal end portion being disposed on a longitudinal axis;a mounting structure configured to define at least three discontinuous longitudinally spaced support points, the hollow stylet simultaneously coinciding with each of the at least three discontinuous longitudinally spaced support points; anda longitudinal reinforcement having a distal terminal end, the longitudinal reinforcement having at least one longitudinal channel along the longitudinal axis, the longitudinal reinforcement located at the proximal portion of the hollow stylet, the distal terminal end of the longitudinal reinforcement being proximal to the sample recess, the longitudinal reinforcement configured to maintain a fluid passageway through the hollow stylet via the at least one longitudinal channel, and the longitudinal reinforcement having a continuous extent portion configured to reinforce the hollow stylet at the at least three discontinuous longitudinally spaced support points of the mounting structure.
  • 6. The biopsy device of claim 5, wherein one of the at least three discontinuous longitudinally spaced support points is included in an axially-elongated support element located at a distal end of the mounting structure.
  • 7. The biopsy device of claim 5, wherein the hollow stylet has a first cross-sectional shape, and the longitudinal reinforcement is a longitudinal insert having a portion positioned internal to the hollow stylet, the portion having a second cross-sectional shape different from the first cross-sectional shape of the hollow stylet.
  • 8. The biopsy device of claim 5, wherein the hollow stylet has a central lumen, the central lumen defining an inner surface, wherein the longitudinal reinforcement is a longitudinal insert having an outer surface, and the longitudinal insert is positioned in the central lumen at the proximal end portion of the hollow stylet, wherein the outer surface of the longitudinal insert is immovably affixed to the inner surface of the central lumen of the hollow stylet.
  • 9. The biopsy device of claim 5, wherein the longitudinal reinforcement is a longitudinally continuous insert, the longitudinally continuous insert in its entirety being located within the proximal end portion of the hollow stylet and immovably affixed to the hollow stylet.
  • 10. The biopsy device of claim 5, wherein a ratio of a diameter of the hollow stylet to a wall thickness of the hollow stylet is less than 15:1 and greater than 4:1.
  • 11. The biopsy device of claim 5, wherein the hollow stylet has a working length that extends distally from the mounting structure.
  • 12. The biopsy device of claim 5, wherein the sample recess is a longitudinal recess having cutting edges that extend parallel to the longitudinal axis on lateral sides of the longitudinal recess.
  • 13. The biopsy device of claim 12, wherein the cutting edges have a depth, perpendicular to the longitudinal axis, of between 2.5 and 4 times a thickness of the side wall.
  • 14. The biopsy device of claim 12, wherein each of the cutting edges has a height that is between 2.5 and 4 times a wall thickness of the side wall, the cutting edges define a pair of angled opposed inside surfaces, and each of the cutting edges define an apex angle measured from a respective inside surface of the pair of angled opposed inside surfaces of the cutting edges.
  • 15. The biopsy device of claim 12, wherein a distance between the cutting edges is less than an outer diameter of the hollow stylet.
  • 16. The biopsy device of claim 5, wherein the at least one longitudinal channel is a single longitudinal channel, the single longitudinal channel having a length that is the same as an entire length of the longitudinal reinforcement, and the single longitudinal channel located to pass through the longitudinal reinforcement along the entire length of the longitudinal reinforcement.
  • 17. A biopsy device, comprising: a mounting structure configured to define at least three discontinuous longitudinally spaced support points;a hollow stylet having a lumen, a proximal portion, and a distal portion, the proximal portion having a proximal end, the distal portion having a side sample chamber opening configured to receive biopsy samples and a trocar tip distal to the side sample chamber opening, the hollow stylet having a fluid passageway between the proximal end and the side sample chamber opening, the proximal portion simultaneously coinciding with each of the at least three discontinuous spaced support points; anda longitudinal reinforcement insert located in the lumen at the proximal portion of the stylet, and the longitudinal reinforcement insert being immovably affixed to the proximal portion of the hollow stylet, the longitudinal reinforcement insert having a longitudinal length, the longitudinal reinforcement insert defining a longitudinal fluid path through the longitudinal length of the longitudinal reinforcement insert, the longitudinal fluid path configured to maintain the fluid passageway between the proximal end of the proximal portion of the hollow stylet and the side sample chamber opening of the distal portion of the hollow stylet, the longitudinal reinforcement insert configured to reinforce the proximal portion of the hollow stylet at the at least three discontinuous longitudinally spaced support points of the mounting structure, wherein the longitudinal reinforcement insert has a distal terminal end proximal to the side sample chamber opening.
  • 18. The biopsy device of claim 17, wherein the side sample chamber opening is a longitudinal opening in a side wall of the hollow stylet, the longitudinal opening having longitudinally oriented cutting edges on lateral sides of the longitudinal opening, wherein each of the longitudinally oriented cutting edges has a height that is between 2.5 and 4 times a wall thickness of the side wall, the longitudinally oriented cutting edges define a pair of angled opposed inside surfaces, and each of the longitudinally oriented cutting edges define an apex angle measured from a respective inside surface of the pair of angled opposed inside surfaces of the longitudinally oriented cutting edges.
  • 19. The biopsy device of claim 17, further comprising a vacuum pump coupled in fluid communication with the side sample chamber opening of the hollow stylet via the longitudinal reinforcement insert at the proximal portion of the hollow stylet.
  • 20. A biopsy device, comprising: a hollow stylet having a single side wall and a distal end portion with a sample recess extending through the single side wall to define a sample chamber, and a proximal end portion proximal to the sample recess, the distal end portion and the proximal end portion being disposed on a longitudinal axis;a mounting structure configured to define at least three discontinuous longitudinally spaced support points, the hollow stylet simultaneously coinciding with each of the at least three discontinuous longitudinally spaced support points; anda longitudinal reinforcement having a length and a distal terminal end, the longitudinal reinforcement located inside the proximal portion of the hollow stylet with the distal terminal end being proximal to the sample recess of the hollow stylet, the longitudinal reinforcement being immovably connected to the single side wall of the hollow stylet and configured with an elongate passageway that extends along an entirety of the length of the longitudinal reinforcement to maintain a fluid passageway through the hollow stylet, the longitudinal reinforcement configured to reinforce the hollow stylet and simultaneously coincide with each of the at least three discontinuous longitudinally spaced support points of the mounting structure, such that the hollow stylet resists bending.
  • 21. The biopsy device of claim 20, wherein the sample recess is a longitudinal recess having cutting edges that extend parallel to the longitudinal axis on lateral sides of the longitudinal recess, wherein the cutting edges define an apex angle of about 40°.
  • 22. The biopsy device of claim 20, further comprising a cutting cannula, the hollow stylet being received in the cutting cannula, the cutting cannula being movable relative to the hollow stylet.
PRIORITY CLAIM AND INCORPORATION BY REFERENCE

This application is a division of U.S. patent application Ser. No. 12/446,664 filed Apr. 22, 2009, now U.S. Pat. No. 8,262,586, which is a U.S. national phase of International Application No. PCT/US2007/082259, filed Oct. 23, 2007, which claims priority to U.S. Provisional Application Serial No. 60/862,723, filed Oct. 24, 2006, which is hereby incorporated by reference in its entirety.

US Referenced Citations (565)
Number Name Date Kind
737293 Summerfeldt Aug 1903 A
1585934 Muir May 1926 A
1663761 Johnson Mar 1928 A
2953934 Sundt Sep 1960 A
3019733 Braid Feb 1962 A
3224434 Molomut et al. Dec 1965 A
3289669 Dwyer et al. Dec 1966 A
3477423 Griffith Nov 1969 A
3512519 Hall May 1970 A
3561429 Jewett et al. Feb 1971 A
3565074 Foti Feb 1971 A
3606878 Kellogg Sep 1971 A
3727602 Hyden et al. Apr 1973 A
3732858 Banko May 1973 A
3785380 Brumfield Jan 1974 A
3800783 Jamshidi Apr 1974 A
3844272 Banko Oct 1974 A
3882849 Jamshidi May 1975 A
3889682 Denis et al. Jun 1975 A
3916948 Benjamin Nov 1975 A
4275730 Hussein Jun 1981 A
4282884 Boebel Aug 1981 A
4306570 Matthews Dec 1981 A
4354092 Manabe et al. Oct 1982 A
4393879 Milgrom Jul 1983 A
4445509 Auth May 1984 A
4490137 Moukheibir Dec 1984 A
4549554 Markham Oct 1985 A
4577629 Martinez Mar 1986 A
4589414 Yoshida et al. May 1986 A
4603694 Wheeler Aug 1986 A
4605011 Naslund Aug 1986 A
4616215 Maddalena Oct 1986 A
4617430 Bryant Oct 1986 A
4620539 Andrews et al. Nov 1986 A
4643197 Greene et al. Feb 1987 A
4645153 Granzow et al. Feb 1987 A
4678459 Onik et al. Jul 1987 A
4696298 Higgins et al. Sep 1987 A
4702260 Wang Oct 1987 A
4706687 Rogers Nov 1987 A
4776346 Beraha et al. Oct 1988 A
4792327 Swartz Dec 1988 A
4832044 Garg May 1989 A
4844064 Thimsen et al. Jul 1989 A
4844087 Garg Jul 1989 A
4850354 McGurk-Burleson et al. Jul 1989 A
4893635 de Groot et al. Jan 1990 A
4907598 Bauer Mar 1990 A
RE33258 Onik et al. Jul 1990 E
4940061 Terwilliger et al. Jul 1990 A
4952817 Bolan et al. Aug 1990 A
4958625 Bates et al. Sep 1990 A
4967762 DeVries Nov 1990 A
4986278 Ravid et al. Jan 1991 A
4986279 O'Neill Jan 1991 A
4986807 Farr Jan 1991 A
4989614 Dejter, Jr. et al. Feb 1991 A
5025797 Baran Jun 1991 A
5048538 Terwilliger et al. Sep 1991 A
5057822 Hoffman Oct 1991 A
5078603 Cohen Jan 1992 A
5125413 Baran Jun 1992 A
5138245 Mattinger et al. Aug 1992 A
5146921 Terwilliger et al. Sep 1992 A
5156160 Bennett Oct 1992 A
5158528 Walker et al. Oct 1992 A
5172702 Leigh et al. Dec 1992 A
5176628 Charles et al. Jan 1993 A
5183052 Terwilliger Feb 1993 A
5197484 Kornberg et al. Mar 1993 A
5211627 William May 1993 A
5223012 Best et al. Jun 1993 A
5225763 Krohn et al. Jul 1993 A
5234000 Hakky et al. Aug 1993 A
5236334 Bennett Aug 1993 A
5242404 Conley et al. Sep 1993 A
5249583 Mallaby Oct 1993 A
5254117 Rigby Oct 1993 A
5282476 Terwilliger Feb 1994 A
5282477 Bauer Feb 1994 A
5290253 Kira Mar 1994 A
5305762 Acorn et al. Apr 1994 A
5324306 Makower et al. Jun 1994 A
5334183 Wuchinich Aug 1994 A
5335671 Clement Aug 1994 A
5368029 Holcombe et al. Nov 1994 A
5368045 Clement et al. Nov 1994 A
5383874 Jackson et al. Jan 1995 A
5397462 Higashijima et al. Mar 1995 A
5400798 Baran Mar 1995 A
5439474 Li Aug 1995 A
5458112 Weaver Oct 1995 A
5469860 DeSantis Nov 1995 A
5471994 Guirguis Dec 1995 A
5479486 Saji Dec 1995 A
5485917 Early Jan 1996 A
5492130 Chiou Feb 1996 A
5496860 Matsumoto et al. Mar 1996 A
5511556 DeSantis Apr 1996 A
5526822 Burbank et al. Jun 1996 A
5535755 Heske Jul 1996 A
5546957 Heske Aug 1996 A
5554151 Hinchliffe Sep 1996 A
5560373 De Santis Oct 1996 A
5564436 Hakky et al. Oct 1996 A
5569284 Young et al. Oct 1996 A
5575293 Miller et al. Nov 1996 A
5591170 Spievack et al. Jan 1997 A
5601583 Donahue et al. Feb 1997 A
5601585 Banik et al. Feb 1997 A
5602449 Krause et al. Feb 1997 A
5612738 Kim Mar 1997 A
5617874 Baran Apr 1997 A
5649547 Ritchart et al. Jul 1997 A
5655542 Weilandt Aug 1997 A
5655657 Roshdy Aug 1997 A
5665101 Becker et al. Sep 1997 A
5669394 Bergey et al. Sep 1997 A
5699909 Foster Dec 1997 A
5700265 Romano Dec 1997 A
5709697 Ratcliff et al. Jan 1998 A
5720760 Becker et al. Feb 1998 A
5735264 Siczek et al. Apr 1998 A
5752923 Terwilliger May 1998 A
5755714 Murphy-Chutorian May 1998 A
5766135 Terwilliger Jun 1998 A
5769086 Ritchart et al. Jun 1998 A
5769795 Terwilliger Jun 1998 A
5775333 Burbank et al. Jul 1998 A
5779649 Herbert Jul 1998 A
5788651 Weilandt Aug 1998 A
5792167 Kablik et al. Aug 1998 A
5807282 Fowler Sep 1998 A
5817033 DeSantis et al. Oct 1998 A
5817034 Milliman et al. Oct 1998 A
5823970 Terwilliger Oct 1998 A
5827305 Gordon Oct 1998 A
5830219 Bird et al. Nov 1998 A
D403405 Terwilliger Dec 1998 S
5857982 Milliman et al. Jan 1999 A
5871699 Ruggeri Feb 1999 A
5879365 Whitfield et al. Mar 1999 A
5908233 Heskett et al. Jun 1999 A
5913857 Ritchart et al. Jun 1999 A
5916198 Dillow Jun 1999 A
5916229 Evans Jun 1999 A
5928164 Burbank et al. Jul 1999 A
5944673 Gregoire et al. Aug 1999 A
5951490 Fowler Sep 1999 A
5951575 Bolduc et al. Sep 1999 A
5964716 Gregoire et al. Oct 1999 A
5971939 DeSantis et al. Oct 1999 A
5976164 Bencini et al. Nov 1999 A
5980469 Burbank et al. Nov 1999 A
5980545 Pacala et al. Nov 1999 A
6007495 Matula Dec 1999 A
6007497 Huitema Dec 1999 A
6007556 Kablik et al. Dec 1999 A
6017316 Ritchart et al. Jan 2000 A
6018227 Kumar et al. Jan 2000 A
6019733 Farascioni Feb 2000 A
6022324 Skinner Feb 2000 A
6022325 Siczek et al. Feb 2000 A
6027458 Janssens Feb 2000 A
6032673 Savage et al. Mar 2000 A
6036657 Milliman et al. Mar 2000 A
6050955 Bryan et al. Apr 2000 A
6055870 Jaeger May 2000 A
6071247 Kennedy Jun 2000 A
6077230 Gregoire et al. Jun 2000 A
6083176 Terwilliger Jul 2000 A
6083237 Huitema et al. Jul 2000 A
6086544 Hibner et al. Jul 2000 A
6106484 Terwilliger Aug 2000 A
6110129 Terwilliger Aug 2000 A
6120462 Hibner et al. Sep 2000 A
6123957 Jernberg Sep 2000 A
6126617 Weilandt et al. Oct 2000 A
6142955 Farascioni et al. Nov 2000 A
6162187 Buzzard et al. Dec 2000 A
6165136 Nishtala Dec 2000 A
6193673 Viola et al. Feb 2001 B1
6196978 Weilandt et al. Mar 2001 B1
6213957 Milliman et al. Apr 2001 B1
6220248 Voegele et al. Apr 2001 B1
6231522 Voegele et al. May 2001 B1
6241687 Voegele et al. Jun 2001 B1
6267759 Quick Jul 2001 B1
6273861 Bates et al. Aug 2001 B1
6273862 Privitera et al. Aug 2001 B1
6280398 Ritchart et al. Aug 2001 B1
6283925 Terwilliger Sep 2001 B1
6322523 Weilandt et al. Nov 2001 B2
6328701 Terwilliger Dec 2001 B1
6331166 Burbank et al. Dec 2001 B1
6358217 Bourassa Mar 2002 B1
6402701 Kaplan et al. Jun 2002 B1
6419641 Mark et al. Jul 2002 B1
6428486 Ritchart et al. Aug 2002 B2
6428487 Burdorff et al. Aug 2002 B1
6432064 Hibner et al. Aug 2002 B1
6432065 Burdorff et al. Aug 2002 B1
6434507 Clayton et al. Aug 2002 B1
6436054 Viola et al. Aug 2002 B1
6461302 Thompson Oct 2002 B1
6471659 Eggers et al. Oct 2002 B2
6482158 Mault Nov 2002 B2
6485436 Truckai et al. Nov 2002 B1
6488636 Bryan et al. Dec 2002 B2
6494844 Van Bladel et al. Dec 2002 B1
6527736 Attinger et al. Mar 2003 B1
6540694 Van Bladel et al. Apr 2003 B1
6540761 Houser Apr 2003 B2
6544194 Kortenbach et al. Apr 2003 B1
6551255 Van Bladel et al. Apr 2003 B2
6554779 Viola et al. Apr 2003 B2
6585664 Burdorff et al. Jul 2003 B2
6585694 Smith et al. Jul 2003 B1
6586585 Bastian Jul 2003 B1
6592530 Farhadi Jul 2003 B1
6626849 Huitema et al. Sep 2003 B2
6632182 Treat Oct 2003 B1
6638235 Miller et al. Oct 2003 B2
6656133 Voegele et al. Dec 2003 B2
6659105 Burbank et al. Dec 2003 B2
6659338 Dittmann et al. Dec 2003 B1
6683439 Takano et al. Jan 2004 B2
6689072 Kaplan et al. Feb 2004 B2
6695786 Wang et al. Feb 2004 B2
6702832 Ross et al. Mar 2004 B2
6712773 Viola Mar 2004 B1
6712774 Voegele et al. Mar 2004 B2
6752768 Burdorff et al. Jun 2004 B2
6753671 Harvey Jun 2004 B1
6755802 Bell Jun 2004 B2
6758824 Miller et al. Jul 2004 B1
6764495 Lee et al. Jul 2004 B2
6832990 Kortenbach et al. Dec 2004 B2
6849080 Lee et al. Feb 2005 B2
6850159 Mudge Feb 2005 B1
6860860 Viola Mar 2005 B2
6875183 Cervi Apr 2005 B2
6887210 Quay May 2005 B2
6908440 Fisher Jun 2005 B2
D508458 Solland et al. Aug 2005 S
6926676 Turturro et al. Aug 2005 B2
6984213 Homer et al. Jan 2006 B2
7004174 Eggers et al. Feb 2006 B2
7010332 Irvin et al. Mar 2006 B1
7025732 Thompson et al. Apr 2006 B2
D525583 Vu Jul 2006 S
7108660 Stephens et al. Sep 2006 B2
7153274 Stephens et al. Dec 2006 B2
7156814 Williamson, IV et al. Jan 2007 B1
7182754 Brigham et al. Feb 2007 B2
7189206 Quick et al. Mar 2007 B2
7189207 Viola Mar 2007 B2
7219867 Kalis et al. May 2007 B2
7226424 Ritchart et al. Jun 2007 B2
7252641 Thompson et al. Aug 2007 B2
7276032 Hibner Oct 2007 B2
7328794 Lubs et al. Feb 2008 B2
7347828 Francese et al. Mar 2008 B2
7347829 Mark et al. Mar 2008 B2
7374544 Freeman et al. May 2008 B2
7390306 Mark Jun 2008 B2
7397654 Mori Jul 2008 B2
7402140 Spero et al. Jul 2008 B2
7405536 Watts Jul 2008 B2
7407054 Seiler et al. Aug 2008 B2
7419472 Hibner et al. Sep 2008 B2
7432813 Postma Oct 2008 B2
7452367 Rassman et al. Nov 2008 B2
7458940 Miller Dec 2008 B2
7464040 Joao Dec 2008 B2
7473232 Teague Jan 2009 B2
7481775 Weikel, Jr. Jan 2009 B2
7490048 Joao Feb 2009 B2
7491177 Hibner Feb 2009 B2
7494473 Eggers et al. Feb 2009 B2
7497833 Miller Mar 2009 B2
7510534 Burdorff et al. Mar 2009 B2
7513877 Viola Apr 2009 B2
7517321 McCullough et al. Apr 2009 B2
7517322 Weikel, Jr. et al. Apr 2009 B2
7549978 Carlson et al. Jun 2009 B2
7575557 Morton et al. Aug 2009 B2
7648466 Stephens et al. Jan 2010 B2
7670299 Beckman et al. Mar 2010 B2
7717861 Weikel et al. May 2010 B2
7727164 Cicenas et al. Jun 2010 B2
7740594 Hibner Jun 2010 B2
7740596 Hibner Jun 2010 B2
7740597 Cicenas et al. Jun 2010 B2
7758515 Hibner Jul 2010 B2
7762961 Heske et al. Jul 2010 B2
7806834 Beckman et al. Oct 2010 B2
7828746 Teague Nov 2010 B2
7841991 Douglas et al. Nov 2010 B2
7846109 Parihar et al. Dec 2010 B2
7854706 Hibner Dec 2010 B2
7862517 Tsonton et al. Jan 2011 B2
7862518 Parihar Jan 2011 B2
7871384 Thompson et al. Jan 2011 B2
7883476 Miller et al. Feb 2011 B2
7883494 Martin Feb 2011 B2
7906076 Fischer Mar 2011 B2
7914462 Hutchins et al. Mar 2011 B2
7974681 Wallace et al. Jul 2011 B2
8002713 Heske et al. Aug 2011 B2
8016844 Privitera et al. Sep 2011 B2
8052615 Reuber et al. Nov 2011 B2
8057402 Hibner et al. Nov 2011 B2
8073008 Mehta et al. Dec 2011 B2
8075495 Andreyko et al. Dec 2011 B2
8083671 Boulais et al. Dec 2011 B2
8083687 Parihar Dec 2011 B2
8109885 Heske et al. Feb 2012 B2
8118755 Hibner et al. Feb 2012 B2
8172771 Miller et al. Mar 2012 B2
8152738 Li et al. Apr 2012 B2
8187204 Miller et al. May 2012 B2
8190238 Moll et al. May 2012 B2
8206409 Privitera et al. Jun 2012 B2
8251916 Speeg et al. Aug 2012 B2
8262586 Anderson et al. Sep 2012 B2
8277393 Miller et al. Oct 2012 B2
8287465 Hardin et al. Oct 2012 B2
8313444 Thompson et al. Nov 2012 B2
8343069 Uchiyama et al. Jan 2013 B2
8430825 Mark Apr 2013 B2
8430827 Nicoson et al. Apr 2013 B2
8956306 Hibner Feb 2015 B2
20010007925 Ritchart et al. Jul 2001 A1
20010011156 Viola et al. Aug 2001 A1
20010012919 Terwilliger Aug 2001 A1
20010014779 Burbank et al. Aug 2001 A1
20010034530 Malackowski et al. Oct 2001 A1
20010044595 Reydel et al. Nov 2001 A1
20010047183 Privitera et al. Nov 2001 A1
20020000403 Tanaka et al. Jan 2002 A1
20020029007 Bryan et al. Mar 2002 A1
20020045840 Voegele et al. Apr 2002 A1
20020065474 Viola May 2002 A1
20020067151 Tanishita Jun 2002 A1
20020068878 Jasonni et al. Jun 2002 A1
20020082518 Weiss et al. Jun 2002 A1
20020107043 Adamson et al. Aug 2002 A1
20020115942 Stanford et al. Aug 2002 A1
20020120212 Ritchart et al. Aug 2002 A1
20020143269 Neuenfeldt Oct 2002 A1
20020151822 Burdorff et al. Oct 2002 A1
20020156395 Stephens et al. Oct 2002 A1
20030023188 Kritzman et al. Jan 2003 A1
20030023239 Burbank et al. Jan 2003 A1
20030073929 Baltschun et al. Apr 2003 A1
20030093103 Malackowski et al. May 2003 A1
20030130593 Gonzalez Jul 2003 A1
20030130677 Whitman et al. Jul 2003 A1
20030163142 Paltieli et al. Aug 2003 A1
20030229293 Hibner et al. Dec 2003 A1
20030233101 Lubock et al. Dec 2003 A1
20040015079 Berger et al. Jan 2004 A1
20040019297 Angel Jan 2004 A1
20040030367 Yamaki et al. Feb 2004 A1
20040034280 Privitera et al. Feb 2004 A1
20040049128 Miller et al. Mar 2004 A1
20040054299 Burdorff et al. Mar 2004 A1
20040082915 Kadan Apr 2004 A1
20040092980 Cesarini et al. May 2004 A1
20040092992 Adams et al. May 2004 A1
20040162505 Kaplan et al. Aug 2004 A1
20040167428 Quick et al. Aug 2004 A1
20040186393 Leigh et al. Sep 2004 A1
20040210161 Burdorff et al. Oct 2004 A1
20040215103 Mueller, Jr. et al. Oct 2004 A1
20040220495 Cahir et al. Nov 2004 A1
20040230135 Merkle Nov 2004 A1
20040230188 Cioanta Nov 2004 A1
20040249278 Krause Dec 2004 A1
20040267157 Miller et al. Dec 2004 A1
20050004492 Burbank et al. Jan 2005 A1
20050004559 Quick et al. Jan 2005 A1
20050010131 Burbank et al. Jan 2005 A1
20050020909 Moctezuma de la Barrera et al. Jan 2005 A1
20050027210 Miller Feb 2005 A1
20050049489 Foerster et al. Mar 2005 A1
20050049521 Miller et al. Mar 2005 A1
20050054947 Goldenberg Mar 2005 A1
20050065453 Shabaz et al. Mar 2005 A1
20050080355 Mark Apr 2005 A1
20050085838 Thompson et al. Apr 2005 A1
20050088120 Avis Apr 2005 A1
20050101879 Shidham et al. May 2005 A1
20050113715 Schwindt et al. May 2005 A1
20050113716 Mueller, Jr. et al. May 2005 A1
20050124914 Dicarlo et al. Jun 2005 A1
20050124915 Eggers et al. Jun 2005 A1
20050165328 Heske et al. Jul 2005 A1
20050165329 Taylor et al. Jul 2005 A1
20050177117 Crocker et al. Aug 2005 A1
20050193451 Quistgaard et al. Sep 2005 A1
20050203439 Heske Sep 2005 A1
20050209530 Pflueger Sep 2005 A1
20050215921 Hibner et al. Sep 2005 A1
20050275378 Canino et al. Dec 2005 A1
20050277829 Tsonton et al. Dec 2005 A1
20050277871 Selis Dec 2005 A1
20050288605 Pellegrino et al. Dec 2005 A1
20060030784 Miller et al. Feb 2006 A1
20060074344 Hibner Apr 2006 A1
20060074345 Hibner Apr 2006 A1
20060074350 Cash Apr 2006 A1
20060113958 Lobert et al. Jun 2006 A1
20060116603 Shibazaki et al. Jun 2006 A1
20060122535 Daum Jun 2006 A1
20060129063 Thompson et al. Jun 2006 A1
20060149162 Daw et al. Jul 2006 A1
20060178666 Cosman et al. Aug 2006 A1
20060184063 Miller Aug 2006 A1
20060200042 Weikel, Jr. Sep 2006 A1
20060241515 Jones et al. Oct 2006 A1
20060258956 Haberstich et al. Nov 2006 A1
20060260994 Mark et al. Nov 2006 A1
20070016101 Feldman et al. Jan 2007 A1
20070027407 Miller Feb 2007 A1
20070032741 Hibner et al. Feb 2007 A1
20070032743 Hibner Feb 2007 A1
20070055173 DeLonzor et al. Mar 2007 A1
20070073326 Miller et al. Mar 2007 A1
20070090788 Hansford et al. Apr 2007 A1
20070106176 Mark May 2007 A1
20070118048 Stephens et al. May 2007 A1
20070118049 Viola May 2007 A1
20070123797 Krause May 2007 A1
20070161925 Quick et al. Jul 2007 A1
20070167736 Dietz et al. Jul 2007 A1
20070167782 Callahan et al. Jul 2007 A1
20070167828 Saadat Jul 2007 A1
20070167943 Janssen et al. Jul 2007 A1
20070179401 Hibner Aug 2007 A1
20070213590 Squicciarini Sep 2007 A1
20070213630 Beckman et al. Sep 2007 A1
20070213632 Okazaki et al. Sep 2007 A1
20070219572 Deck et al. Sep 2007 A1
20070236180 Rodgers Oct 2007 A1
20070239067 Hibner et al. Oct 2007 A1
20070255173 Hibner Nov 2007 A1
20070270710 Frass et al. Nov 2007 A1
20070276288 Khaw Nov 2007 A1
20070287933 Phan et al. Dec 2007 A1
20070292858 Chen et al. Dec 2007 A1
20070293788 Entrekin et al. Dec 2007 A1
20070293830 Martin Dec 2007 A1
20080004545 Garrison Jan 2008 A1
20080007217 Riley Jan 2008 A1
20080015429 Tsonton et al. Jan 2008 A1
20080021487 Heisler Jan 2008 A1
20080021488 Berberich Jan 2008 A1
20080030170 Dacquay et al. Feb 2008 A1
20080064925 Gill et al. Mar 2008 A1
20080064984 Pflueger Mar 2008 A1
20080071193 Reuber et al. Mar 2008 A1
20080079391 Schroeck et al. Apr 2008 A1
20080103411 Van Bladel et al. May 2008 A1
20080110261 Randall et al. May 2008 A1
20080125634 Ryan et al. May 2008 A1
20080135443 Frojd et al. Jun 2008 A1
20080146962 Ritchie et al. Jun 2008 A1
20080146965 Privitera et al. Jun 2008 A1
20080154151 Ritchart et al. Jun 2008 A1
20080161682 Kendrick et al. Jul 2008 A1
20080161718 Schwindt Jul 2008 A1
20080161719 Miller et al. Jul 2008 A1
20080161720 Nicoson et al. Jul 2008 A1
20080183099 Jorgensen et al. Jul 2008 A1
20080195066 Speeg et al. Aug 2008 A1
20080200833 Hardin et al. Aug 2008 A1
20080200836 Speeg et al. Aug 2008 A1
20080208194 Bickenbach Aug 2008 A1
20080214955 Speeg et al. Sep 2008 A1
20080215056 Miller et al. Sep 2008 A1
20080221443 Ritchie et al. Sep 2008 A1
20080221444 Ritchie et al. Sep 2008 A1
20080221478 Ritchie et al. Sep 2008 A1
20080221479 Ritchie et al. Sep 2008 A1
20080221480 Hibner et al. Sep 2008 A1
20080228104 Uber et al. Sep 2008 A1
20080232604 Dufresne et al. Sep 2008 A1
20080234715 Pesce et al. Sep 2008 A1
20080281225 Spero et al. Nov 2008 A1
20080287826 Videbaek et al. Nov 2008 A1
20080306406 Thompson et al. Dec 2008 A1
20080308607 Timm et al. Dec 2008 A1
20080319341 Taylor et al. Dec 2008 A1
20090015208 White et al. Jan 2009 A1
20090030405 Quick et al. Jan 2009 A1
20090048532 Stephens et al. Feb 2009 A1
20090048533 Miller Feb 2009 A1
20090062624 Neville Mar 2009 A1
20090082695 Whitehead Mar 2009 A1
20090087249 Flagle et al. Apr 2009 A1
20090088666 Miller et al. Apr 2009 A1
20090112118 Quick, Jr. et al. Apr 2009 A1
20090125062 Arnin May 2009 A1
20090137927 Miller May 2009 A1
20090171242 Hibner Jul 2009 A1
20090204022 Schwindt Aug 2009 A1
20090227893 Coonahan et al. Sep 2009 A1
20090281453 Tsonton et al. Nov 2009 A1
20100030020 Sanders et al. Feb 2010 A1
20100030108 Anderson et al. Feb 2010 A1
20100063416 Cicenas et al. Mar 2010 A1
20100106053 Videbaek et al. Apr 2010 A1
20100152610 Parihar et al. Jun 2010 A1
20100152611 Parihar et al. Jun 2010 A1
20100160820 Weikel, Jr. et al. Jun 2010 A1
20100160823 Parihar et al. Jun 2010 A1
20100210966 Videbaek Aug 2010 A1
20100222700 Hibner Sep 2010 A1
20100234760 Almazan Sep 2010 A1
20100292607 Moore et al. Nov 2010 A1
20100312140 Smith et al. Dec 2010 A1
20100324449 Rostaing et al. Dec 2010 A1
20110004119 Hoffa et al. Jan 2011 A1
20110054350 Videbaek Mar 2011 A1
20110077551 Videbaek Mar 2011 A1
20110087131 Videbaek Apr 2011 A1
20110105945 Videbaek et al. May 2011 A1
20110105946 Sorensen et al. May 2011 A1
20110152715 Delap et al. Jun 2011 A1
20110160611 Ritchart et al. Jun 2011 A1
20110208085 McCullough et al. Aug 2011 A1
20110224577 Park Sep 2011 A1
20110295150 McCullough et al. Dec 2011 A1
20120071787 Reuber et al. Mar 2012 A1
20120095366 Heske et al. Apr 2012 A1
20120130275 Chudzik et al. May 2012 A1
20120184873 Jorgensen et al. Jul 2012 A1
20120191009 Hoon et al. Jul 2012 A1
20120203135 Heske et al. Aug 2012 A1
20120215130 Field et al. Aug 2012 A1
20120238905 Heske et al. Sep 2012 A1
20120310109 Almazan Dec 2012 A1
20120323120 Taylor et al. Dec 2012 A1
20120323140 Taylor et al. Dec 2012 A1
20120330185 Coonahan et al. Dec 2012 A1
20130023791 Thompson et al. Jan 2013 A1
20130289441 Videbaek et al. Oct 2013 A1
20140228706 Mccullough et al. Aug 2014 A1
20140371585 Thompson et al. Dec 2014 A1
20150025415 Videbaek et al. Jan 2015 A1
20150073301 Videbaek et al. Mar 2015 A1
20150094613 Jorgensen et al. Apr 2015 A1
20150133814 Almazan May 2015 A1
20150148702 Heske et al. May 2015 A1
20150190124 Mccullough et al. Jul 2015 A1
20150238174 Reuber et al. Aug 2015 A1
20150342579 Heske et al. Dec 2015 A1
20160256138 Videbaek et al. Sep 2016 A1
20160367229 Jorgensen et al. Dec 2016 A1
20160374650 Heske et al. Dec 2016 A1
20170042517 Heske et al. Feb 2017 A1
20170181732 Videbaek et al. Jun 2017 A1
Foreign Referenced Citations (55)
Number Date Country
101011268 Aug 2007 CN
101032420 Sep 2007 CN
3924291 Jan 1991 DE
4041614 Oct 1992 DE
3924291 Jul 2000 DE
10034297 Apr 2001 DE
10026303 Feb 2002 DE
20204363 May 2002 DE
20209525 Nov 2002 DE
10235480 Feb 2004 DE
0433717 Jun 1991 EP
0890339 Jan 1999 EP
0995400 Apr 2000 EP
1074271 Feb 2001 EP
1520518 Apr 2005 EP
1579809 Sep 2005 EP
1604615 Dec 2005 EP
1665989 Jun 2006 EP
1829487 Sep 2007 EP
2095772 Sep 2009 EP
2106750 Oct 2009 EP
1569561 Oct 2010 EP
1345429 Dec 1963 FR
2739293 Apr 1997 FR
2018601 Oct 1979 GB
1-126957 Sep 1987 JP
H10508504 Aug 1998 JP
2005530554 Oct 2005 JP
2006509545 Mar 2006 JP
2006528907 Dec 2006 JP
2007502159 Feb 2007 JP
9508945 Apr 1995 WO
9628097 Sep 1996 WO
9734531 Sep 1997 WO
9825522 Jun 1998 WO
9831285 Jul 1998 WO
9835615 Aug 1998 WO
9846290 Oct 1998 WO
9933501 Jul 1999 WO
0004832 Feb 2000 WO
0030546 Jun 2000 WO
0059378 Oct 2000 WO
0172230 Oct 2001 WO
0222023 Mar 2002 WO
0232318 Apr 2002 WO
02069808 Sep 2002 WO
2005013830 Feb 2005 WO
2006015302 Feb 2006 WO
2007047128 Apr 2007 WO
2007095330 Aug 2007 WO
2007112751 Oct 2007 WO
2008021687 Feb 2008 WO
2008040812 Apr 2008 WO
2008131362 Oct 2008 WO
2011019343 Feb 2011 WO
Non-Patent Literature Citations (4)
Entry
Affix, www.merriam-webster.com/dictionary/affix, printed Feb. 8, 2016, 4 pages.
Definition of Channel by Merriam-Webster, www.merriam-webster.com/dictionary/channel, printed Jan. 4, 2017 (15 pages).
Definition of Therethrough by Merriam-Webster, www.merriam-webster.com/dictionary/therethrough, printed Jan. 4, 2017 (10 pages).
“Elongate”, www.merriam-webster.com/dictionary/elongate, printed out on Dec. 5, 2017, 13 pages.
Related Publications (1)
Number Date Country
20130023789 A1 Jan 2013 US
Provisional Applications (1)
Number Date Country
60862723 Oct 2006 US
Divisions (1)
Number Date Country
Parent 12446664 US
Child 13585238 US