1. Field of the Invention
The present invention relates to a large-scale display device employing PTAs (plasma tube arrays).
2. Description of the Related Art
A gas discharge tube including a glass tube having a diameter of about 1 mm and filled with a discharge gas with opposite ends thereof sealed and a fluorescent layer provided on an interior surface of the glass tube is generally called “plasma tube”. A display panel including a multiplicity of such plasma tubes regularly arranged, a plurality of transparent display electrodes provided on a front side thereof as extending perpendicularly to the plasma tubes and data electrodes (address electrodes) provided on a back side thereof as extending parallel to the plasma tubes is generally called “plasma tube array (PTA)”. In the PTA, electric discharge is caused by applying given operating voltages to the display electrodes and the data electrodes, and vacuum UV radiation generated by the electric discharge excites a fluorescent material, which in turn emits visible light for display.
In principle, the size of the display device employing the PTAs is determined by the length and number of the plasma tubes. If a large-scale display panel is produced from a single PTA, however, it is difficult to transport the display panel from a plant into an installation site. To cope with this, a plurality of smaller-size PTA unit modules each having a smaller thickness and a light weight are produced, and assembled at the installation site to be connected to each other with the use of a module connection structure.
The PTA unit modules basically each have a screen size of about 1 m×1 m. The use of the PTA unit modules makes it possible to construct large-scale display devices having various screen sizes. Where six unit modules are arrayed in a 3×2 matrix, for example, the resulting display device has a screen size of 3 m×2 m. In this case, however, connection portions present between the PTA unit modules should be concealed in order to serve the unit modules as a single panel display device. A known method for concealing the connection portions is to minimize the width of the connection portions by keeping vertically aligned unit modules into abutment with each other (see, for example, JP-A-2006-164635).
A large-scale display device employing a plurality of flat display devices such as LCDs or PDPs instead of the PTAs is also known (see, for example, JP-A-9(1997)-130701). In the large-scale display device, the flat display devices each include a driving section disposed along one or two peripheral edges of a rectangular image display region thereof, and are arrayed so that peripheral edges thereof not provided with the driving sections abut with each other to make their seams inconspicuous and the driving sections are covered with the image display regions to be concealed.
Where the PTA unit modules abut with each other in the large-scale display device, however, ends of the plasma tubes abut against each other. This causes the ends of the glass tubes to be abraded by each other, so that the glass tubes are liable to be damaged to be broken. If the glass tube of a plasma tube is broken, the discharge gas is escaped from the plasma tube. Therefore, the electric discharge is no longer established in that plasma tube, so that a defect occurs on the display screen to significantly reduce the display quality.
Further, opposite end portions of the glass tube are closed with a sealing material for sealing the discharge gas in the plasma tube. Therefore, seal portions of the plasma tubes sealed with the sealing material are each defined as a non-display region in which the electric discharge does not occur. If the thickness of the seal portion is reduced to reduce the size of the non-display region, the probability of the escape of the discharge gas is correspondingly increased.
In view of the foregoing, it is an object of the present invention to provide a large-scale display device including a plurality of PTA unit modules arrayed without abutment between ends of plasma tubes thereof.
According to the present invention, there is provided a large-scale display device including: a plurality of display units which each include a plurality of elongated plasma tubes each filled with a discharge gas, and at least one pair of display electrodes disposed outside the plasma tubes; and voltage applying means which applies a drive voltage to the display electrodes to cause electric discharge in the plasma tubes for display; wherein vertically adjoining ones of the display units respectively have adjoining portions which are offset thicknesswise from each other for prevention of contact between the plasma tubes of the vertically adjoining display units; wherein the voltage applying means is disposed away from the adjoining portions of the vertically adjoining display units.
According to the present invention, the vertically adjoining display units are offset thicknesswise from each other, so that the display units can be arrayed without abutment between ends of the plasma tubes. This prevents the breakage of the plasma tubes.
a) to 7(c), 8(a) to 8(c) and 9(a) to 9(c) are diagrams for explaining the appearances of the unit modules according to the present invention.
a) to 10(c) are sectional views as seen in an arrow direction A-A in
A large-scale display device according to one aspect of the present invention includes: a plurality of display units which each include a plurality of elongated plasma tubes each filled with a discharge gas, and at least one pair of display electrodes disposed outside the plasma tubes; and voltage applying means which applies a drive voltage to the display electrodes to cause electric discharge in the plasma tubes for display; wherein vertically adjoining ones of the display units respectively have adjoining portions which are offset thicknesswise from each other for prevention of contact between the plasma tubes of the vertically adjoining display units; wherein the voltage applying means is disposed away from the adjoining portions of the vertically adjoining display units.
The vertically adjoining display units may overlap each other to respectively have overlap portions.
The large-scale display device may further include a sheet structure provided between the overlap portions of the vertically adjoining display units to prevent direct contact between the vertically adjoining display units.
The sheet structure is preferably previous to light.
The vertically adjoining display units are preferably continuous through the overlap portions thereof to define a single display screen.
A non-display region is defined by the overlap portions of the vertically adjoining display units.
A large-scale display device according to another aspect of the present invention includes a plurality of plasma tube arrays (PTAs) arranged in a matrix, and a support member which supports the PTAs so that PTAs aligned in a row direction of the matrix adjoin each other with no step therebetween and PTAs aligned in a column direction of the matrix adjoin each other with a step therebetween, wherein the PTAs each include a plurality of plasma tubes extending parallel to each other in the column direction, a plurality of display electrodes extending parallel to each other perpendicularly to the plasma tubes, and a plurality of address electrodes extending parallel to each other along the plasma tubes.
The PTAs are intrinsically flexible, and supported as being curved in the row direction by the support member.
The support member supports the PTAs so that each two adjacent PTAs aligned in the column direction overlap each other.
The large-scale display device preferably further includes a connection member which electrically connects display electrodes of each two adjacent PTAs aligned in the row direction in series.
The large-scale display device may further include a display electrode drive circuit which is connected to display electrodes of a PTA located at an end of each row of the matrix to apply a common signal voltage to PTAs located in the each row, and an address electrode drive circuit which is connected to address electrodes of each PTA to apply an independent signal voltage to the each PTA.
Basic Construction of Plasma Tube Array (PTA)
Red (R), green (G) and blue (B) fluorescent layers 41R, 41G, 41B are respectively formed on rear interior surface portions of the plasma tubes 11. A discharge gas is filled in the plasma tubes 11, and opposite ends of each of the plasma tubes 11 are sealed.
The address electrodes 3 are provided on a front surface or an inner surface of the back side support plate 32 as extending longitudinally of the plasma tubes 11. The address electrodes 3 are arranged at the same pitch as the plasma tubes 11, and the pitch is typically 1 to 1.5 mm. The plurality of display electrode pairs P are provided on a rear surface or an inner surface of the front side support plate 31 as extending perpendicularly to the address electrodes 3. The electrodes X, Y each have a width of 0.75 mm, for example. The electrodes X, Y of each of the display electrode pairs P are spaced, for example, a distance of 0.4 mm from each other. An elongated non-display region or a non-discharge gap, for example, having a width D of 1.1 mm is provided between each two adjacent display electrode pairs P.
When the PTA 100 is assembled, the address electrodes 3 are brought into intimate contact with lower outer peripheral surface portions of the respective plasma tubes 11, and the display electrodes 2 are brought into intimate contact with upper outer peripheral surface portions of the respective plasma tubes 11. An adhesive may be provided between the outer peripheral surface portions of the plasma tubes 11 and the address and display electrodes 3, 2 for improvement of the adhesion between the plasma tubes 11 and the address and display electrodes 3, 2.
Intersections between the address electrodes 3 and the display electrode pairs P as seen in plan from the front side of the PTA 10 are each defined as a unit light emitting region. For display, a light emitting region is selected by establishing a selection discharge at an intersection between a scanning electrode Y and an address electrode 3, and a display discharge is established by wall charges generated in the light emitting region on the interior surface of the tube to cause a fluorescent layer to emit light. The selection discharge is an opposed discharge established in the plasma tube 11 between the scanning electrode Y and the address electrode 3. The display discharge is a surface discharge established in the plasma tube 11 between a sustain electrode X and the scanning electrode Y disposed parallel to each other in a plane.
Drive Circuits for PTA
Therefore, as shown in
In the reset operation in the reset period RP, a reset pulse is applied between the sustain electrodes X and the scanning electrodes Y of the respective display electrode pairs P to cause electric discharge for erasing the wall charges in the respective display cells. In the address operation in the address period AP, a scan pulse is sequentially applied to the scanning electrodes Y, and an address pulse is applied to address electrodes A corresponding to display cells to be energized in synchronization with the application of the scan pulse, whereby the address discharge is established in display cells located at addresses defined by intersections between the scanning electrodes Y and the address electrodes A to generate wall charges in these display cells. In the display operation in the sustain period SP, a sustain pulse (sustain voltage) is applied to the sustain electrodes X and the scanning electrodes Y of the respective display electrode pairs P to establish a sustain discharge in the display cells or the unit light emitting regions in which the wall charges are generated.
Gradation display is achieved by changing the duration of the display period SP (the number of times of the discharge) during which the display operation is performed in each of the subframes according to display data. Where the ratio of the numbers of the times of the discharge in the eight subframes is set to 1:2:4:8:16:32:64:128, for example, each unit light emitting region has 256 gradation levels. Each pixel is defined by three unit light emitting regions, so that full color display of about 16.77 (=256×256×256) million color tones can be achieved.
PTA Unit Modules
In these figures, a PTA 100a corresponds to the PTA 100 shown in
a), 7(b) and 7(c) are a front view, a rear view and a top view, respectively, showing the appearance of the unit module Ma. In the unit module Ma, as shown in these figures, the PTA 100a is supported from the back side by a PTA support frame 110, and the first drive circuit unit 101a and the third drive circuit unit 103a are mounted on the support frame 110.
a), 8(b) and 8(c) are a front view, a rear view and a top view, respectively, showing the appearance of the unit module Mb. In the unit module Mb, as shown in these figures, the PTA 100a is supported from the back side by a support frame 110, and a third drive circuit unit 103a is mounted on the support frame 110.
a), 9(b) and 9(c) are a front view, a rear view and a top view, respectively, showing the appearance of the unit module Mc. In the unit module Mc, as shown in these figures, the PTA 100a is supported from the back side by a support frame 110, and a second drive circuit unit 102a and a third drive circuit unit 103a are mounted on the support frame 110.
a), 10(b) and 10(c) are sectional views as seen in an arrow direction A-A in
In the PTA 100a shown in
In the PTA 100a shown in
In the PTA 100a shown in
A method for the flat sealing of the end of the plasma tube is disclosed in JP-A-2006-164635.
Large-Scale Display Device Employing PTAs
In the PTA device 200 shown in these figures, two sets of three unit modules Ma, Mb, Mc are supported by support stands 300a, 300b, 300c via positioning mechanisms 301, so that six PTAs 100a are arrayed in a 2×3 matrix.
The six PTAs 100a arrayed in the matrix as shown in
In
In
Referring to
In adjoining portions of each two adjacent PTAs 100a aligned in the row direction, as shown in
The electrodes X1 to Xn of the respective modules Ma, Mb, Mc aligned in the first row are driven by a common first drive circuit unit 101a. The electrodes Y1 to Yn of the respective modules Ma, Mb, Mc aligned in the first row are driven by a common second drive circuit unit 102a.
Similarly, the electrodes X1 to Xn of the respective modules Ma, Mb, Mc aligned in the second row are driven by a common first drive circuit unit 101a, and the electrodes Y1 to Yn of the respective modules Ma, Mb, Mc aligned in the second row are driven by a common second drive circuit unit 102a.
In this case, flexible printed circuit boards are used as the third drive circuit units, and are mounted in a curved state on the support frame 110. The PTA device 200a has substantially the same construction as the PTA device 200 shown in
Number | Date | Country | Kind |
---|---|---|---|
2008-130991 | May 2008 | JP | national |
This application is a continuation of U.S. application Ser. No. 12/326,700, filed Dec. 2, 2008, which claims priority under 35 USC §119 to Japanese patent application No. 2008-130991, filed May 19, 2008, the entire disclosures of which are herein incorporated by this reference.
Number | Name | Date | Kind |
---|---|---|---|
8305292 | Tamura et al. | Nov 2012 | B2 |
20040222941 | Wong et al. | Nov 2004 | A1 |
20060044215 | Brody et al. | Mar 2006 | A1 |
20070001927 | Ricks et al. | Jan 2007 | A1 |
Number | Date | Country |
---|---|---|
2004-351784 | May 1997 | JP |
2005017738 | Jan 2005 | JP |
2004-351784 | Jun 2006 | JP |
2006278161 | Oct 2006 | JP |
WO2008050445 | May 2008 | WO |
Entry |
---|
Machine translation of JP2001-265256. |
Number | Date | Country | |
---|---|---|---|
20130021222 A1 | Jan 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12326700 | Dec 2008 | US |
Child | 13631188 | US |