The disclosed embodiments relate generally to wireless network communications, and, more particularly, to large-scale fading coefficient estimation for wireless massive multi-user multiple-input multiple-output (MU-MIMO) systems.
A cellular mobile communication network in which each serving base station (BS) is equipped with an M-antenna array, is referred to as a large-scale multiuser multiple-input multiple-output (MIMO) system or a massive MIMO system if M>>1 and M>>K, where K is the number of active user antennas within its serving area. A massive MIMO system has the potential of achieving transmission rate much higher than those offered by current cellular systems with enhanced reliability and drastically improved power efficiency. It takes advantage of the so-called channel-hardening effect that implies that the channel vectors seen by different users tend to be mutually orthogonal and frequency-independent. As a result, linear receiver is almost optimal in the uplink and simple multiuser pre-coders are sufficient to guarantee satisfactory downlink performance.
To achieve such performance, channel state information (CSI) is needed for a variety of link adaptation applications such as precoder, modulation and coding scheme (SCM) selection. CSI in general includes large-scale fading coefficients (LSFCs) and small-scale fading coefficients (SSFCs). LFCSs summarize the pathloss and shadowing effects, which are proportional to the average received-signal-strength (RSS) and are useful in power control, location estimation, handover protocol, and other application. SSFCs, on the other hand, characterize the rapid amplitude fluctuations of the received signal. While all existing MIMO channel estimation focus on the estimation of the SSFCs and either ignore or assume perfect known LFCSs, it is desirable to know SSFCs and LSFCs separately. This is because LSFCs can not only be used for the aforementioned applications, but also be used for the accurate estimation of SSFCs.
LSFCs are long-term statistics whose estimation is often more time-consuming than SSFCs estimation. Conventional MIMO CSI estimation usually assume perfect LSFC information and deal solely with SSFCs. For co-located MIMO systems, it is reasonable to assume that the corresponding LSFCs remain constant across all spatial sub-channels and the SSFC estimation can sometime be obtained without the LSFC information. Such assumption is no longer valid in a multiuser MIMO system, where the user-BS distances spread over a large range and the SSFCs cannot be derived without the knowledge of LSFCs.
In the past, the estimation of LSFC has been largely neglected, assuming somehow perfectly known prior to SSFC estimation. When one needs to obtain a joint LSFC and SSFC estimate, the minimum mean square error (MMSE) or least squares (LS) criterion is not directly applicable. The expectation-maximization (EM) approach is a feasible alternate but it requires high computational complexity and convergence is not guaranteed. A solution for efficiently estimating LSFCs with no aid of SSFCs is sought in a massive multiuser MIMO system.
Efficient algorithms for estimating LSFCs with no aid of SSFCs by taking advantage of the channel hardening effect and large spatial samples available to a massive MIMO base station (BS) are proposed. The LSFC estimates are of low computational complexity and require relatively small training overhead. In the uplink direction, mobile stations (MSs) transmit orthogonal uplink pilots for the serving BS to estimate LSFCs. In the downlink direction, the BS transmits either pilot signal or data signal intended to the MSs that have already established time domain and frequency domain synchronization. The proposed uplink and downlink LSFC estimators are unbiased and asymptotically optimal as the number of BS antennas tends to infinity.
In one embodiment, a base station (BS) receives radio signals transmitted from K mobile stations (MSs) in a massive MIMO uplink channel where M>>K. The BS vectorizes the received radio signals denoted as a matrix YεM×T. The transmitted radio signals are orthogonal pilot signals denoted as a matrix Pε
K×T transmitted from the K MSs, and T≧K is the pilot signal length. The BS derives an estimator of large-scale fading coefficients (LSFCs) of the uplink channel without knowing small-scale fading coefficients (SSFCs) of the uplink channel. The BS may also receive pilot signals that are transmitted for J times over coherent radio resource blocks from the K MS. The BS then derives a more accurate estimator of the LSFCs of the uplink channel based on the multiple pilot transmissions. In addition, the BS calculates element-wise expression of the LSFCs for each of the kth uplink channel based on the LSFCs estimator.
In another embodiment, a mobile station (MS) receives radio signals transmitted from a base station (BS) having M antennas in a massive MIMO system. The transmitted radio signals are denoted as a matrix Q transmitted from the BS to K MS and M>>K. The MS determines a received radio signal denoted as a vector xk received by the MS that is the kth MS associated with a kth downlink channel. The kth MS derives an estimator of a large-scale fading coefficient (LSFC) of the kth downlink channel without knowing a small-scale fading coefficient (SSFC) of the kth downlink channel. In a semi-blind LSFC estimation, matrix Q is a semi-unitary matrix consisting of orthogonal pilot signals, and the LSFC of the kth downlink channel is derived based on xk and the transmitting power of the pilot signals. In a blind LSFC estimation, matrix Q represents pre-coded data signals transmitted to K′ MS that are different from the K MS. The LSFC of the kth downlink channel is derived based on xk and the transmitting power of the data signals with unknown data information and unknown beamforming or precoding information.
Other embodiments and advantages are described in the detailed description below. This summary does not purport to define the invention. The invention is defined by the claims.
Reference will now be made in detail to some embodiments of the invention, examples of which are illustrated in the accompanying drawings.
Notation: (.)T, (.)H, (.)* represent the transpose, conjugate transpose, and conjugate of the enclosed items, respectively, vec(.) is the operator that forms one tall vector by stacking columns of the enclosed matrix, whereas Diag(.) translate a vector into a diagonal matrix with the vector entries being the diagonal terms. While E{.}, ∥.∥, and ∥.∥F, denote the expectation, vector l2-norm, and Frobenius norm of the enclosed items, respectively, and ⊙ respectively denote the Kronecker and Hadamard product operator. Denoted by IL, 1L, and 0L respectively, are the (L×L) identity matrix, L-dimensional all-one and all-zero column vectors, whereas 1L×S and 0L×S are the matrix counterparts of the latter two. Almost surely convergence is denoted by
and the Kronecker delta function denoted by
In the example of
M×T at the BS can be expressed as:
where
We invoke the assumption that independent users are relatively far apart (with respect to the wavelength) and the kth uplink channel vector is independent of the lth vector, ∀l≠k. We assume that {tilde over (h)}k are i.i.d. and the SSFC H remains constant during a pilot sequence period, i.e., the channel's coherence time is greater than T, while the LSFC β varies much slower.
Unlike most of the existing works that focus on the estimation of the composite channel matrix HDβ1/2, or equivalently, ignore the LSFC, it is beneficial for system performance to know H and Dβ1/2 separately. Even though the decoupled treatment of LSFCs and SSFCs has been seen recently, the assumption that the former is well known is usually made. In ordinary MIMO systems, MMSE or LS criterion cannot be used directly to jointly estimate LSFC and SSFC owing to their coupling, and EM algorithm is a feasible alternative. However, EM has high computational complexity and convergence is not guaranteed. In accordance with one novel aspect, a timely accurate LSFC estimator for uplink massive MIMO without the prior knowledge of SSFC is proposed.
Finally, in step 314, the BS derives an estimator of LSFC {circumflex over (β)} by multiplying it with Diag(∥p1∥−4, . . . , ∥pk∥−4)·((1TTP)⊙(P*
1TT). The derivation of LSFC {circumflex over (β)} is as follows:
where due to the large number of BS antennas M, the large sample size of the receive signal shows the following convergence:
By exploiting the properties of massive MIMO, the proposed LFSC estimator has low computational complexity while outperform the one derived from EM algorithm. The proposed LFSC estimator is of low complexity, as no matrix inversion is needed when orthogonal pilots are used and does not require any knowledge of SSFCs. Furthermore, the configuration of massive MIMO makes the estimator robust against noise.
This estimator coincides with our prediction that the instantaneous received signal strength minus the noise power, ∥yk∥2−M, is approximately equal to the strength of the desired signal and thus fairly reflects the gain provided by large-scale fading if it is divided by M sk2, the total power emitted by user k (sk2) times the number of copies received at the BS (M).
Finally, in step 614, the BS derives an estimator of LSFC {circumflex over (B)} by multiplying it with Diag(∥p1∥−4, . . . , ∥pK∥−4)·((1TTP)⊙(P*
1TT)). If the J coherent resource blocks on time-frequency domain in which the LSFCs remain constant are available, then we have:
While the diagonal pilots give lower computational burden, the requirement that an MS needs to transmit all pilot power in a time slot to achieve the same performance shows a risk of disobeying the maximum user output power constraint. The decision of a suitable uplink pilot pattern is a trade-off between the computational complexity and maximum user output power. In one alternative example, a Hadamard matrix is adopted as the pilot pattern. A Hadamard matrix is a square matrix whose rows or columns are mutually orthogonal and of ±1 entries. It is conjectured that a Hadamard matrix or rows of it as the pilot matrix P, the computation effort can be reduced significantly due to the fact that the calculation of Ypk in equation (2) or Yipk in equation (5) involves only column additions and subtractions of Y/Yi.
M×T, the transmitted radio signals are orthogonal pilot signals denoted as a matrix Pε
K×T transmitted from the K MSs, and T≧K is the pilot signal length. In step 1103, the BS derives an estimator of large-scale fading coefficients (LSFCs) of the uplink channel without knowing small-scale fading coefficients (SSFCs) of the uplink channel. In step 1104, the BS receives pilot signals that are transmitted for J times over coherent radio resource blocks from the K MS. In step 1105, the BS derives a more accurate estimator of the LSFCs of the uplink channel based on the multiple pilot transmissions. In step 1106, the BS calculates element-wise expression of the LSFCs for each of the kth uplink channel based on the LSFCs estimator.
XH=[x1, . . . ,xK]H=Dβ1/2GHQ+ZH
where
We invoke the assumption that independent users are relatively far apart (with respect to the wavelength) and the kth downlink channel vector is independent of the lth vector, ∀l≠k. We assume that {tilde over (g)}k are i.i.d. and the SSFC G remains constant during a pilot/data sequence period, i.e., the channel's coherence time is greater than T, while the LSFC β varies much slower. In accordance with one novel aspect, several accurate LSFC estimators for downlink massive MIMO without the prior knowledge of SSFC are proposed. By exploiting the properties of massive MIMO, it has low computational complexity.
where Q is a semi-unitary matrix and MS knows nothing but pilot power ∥Q∥F2.
In the embodiment of
In the example of
if T→∞, and ∥xk∥2≈βkgkHQQHgk+∥zk∥2. In addition,
is because
E{|gik|2}=PT if T→∞.
where each MS using only statistics of unknown broadcast signal to estimate {circumflex over (β)}k.
In the embodiment of
Q=WD
where
In the example of N×1 has two properties: i)
and ii)
Thus, with large dimensions of {tilde over (g)}k's, di's,
and
Although the present invention has been described in connection with certain specific embodiments for instructional purposes, the present invention is not limited thereto. Accordingly, various modifications, adaptations, and combinations of various features of the described embodiments can be practiced without departing from the scope of the invention as set forth in the claims.
This application claims priority under 35 U.S.C. §119 from U.S. Provisional Application No. 61/904,076, entitled “Large-Scale Fading Coefficient Estimation in Wireless Massive MIMO Systems,” filed on Nov. 14, 2013, the subject matter of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
20070058590 | Wang | Mar 2007 | A1 |
20080101437 | Janani et al. | May 2008 | A1 |
20080130674 | Ahmed-Ouameur et al. | Jun 2008 | A1 |
20110058632 | Siti et al. | Mar 2011 | A1 |
20130070621 | Marzetta et al. | Mar 2013 | A1 |
20160197658 | Jindal | Jul 2016 | A1 |
Number | Date | Country |
---|---|---|
101523735 | Oct 2006 | CN |
101621813 | Jul 2009 | CN |
10223327 | Jul 2011 | CN |
2293483 | Sep 2009 | EP |
Entry |
---|
The Multicell Multiuser MIMO Uplink with Very Large Antenna Arrays and a Finite-Dimensional Channel Hien Quoc Ngo, Student Member, IEEE, Erik G. Larsson, Senior Member, IEEE, and Thomas L. Marzetta, Fellow, IEEE. |
International Search Report and Written Opinion of International Search Authority for PCT/CN2014/091148 dated Feb. 17, 2015 (13 pages). |
Ngo, Hien Quaoc et al.; The Multicell Multiuser MIMO Uplink with Very Large Antenna Arrays and a Finite-Dimensional Channel IEEE Transactions on Communications, Jun. 30, 2013 vol. 61 No. 6; p. 2350 left column; p. 2351 left column paragraph 1, right column paragraphs 3-4; p. 2352 right column; p. 2354 left column paragraph 2; p. 2360 left column paragraph 1. |
Chen, Ko-Feng et al.; On Composite Channel Estimation in Wireless Massive MIMO Systems Globecom 2013 workshop—Emerging Technologies for LTE—Advanced and Beyong—4G; Dec. 13, 2013 sections II-III. |
EPO, Search Report for the EP patent application 14861915.8 dated Dec. 20, 2016 (9 pages). |
Ko-Feng Chen et al., On Composite Channel Estimation in Wireless Massive MIMO Systems, Globecom 2013 Workshop—Emerging Technologies for LTE-Advanced and Beyong-4G (5 pages). |
Fredrik Rusek et al., Scaling Up MIMO: Opportunities and Challenges with Very Large Arrays, IEEE Signal Porcessing Magazine, Jan. 2013 (21 pages). |
Hien Quoc Ngo et al., Energy and Spectral Efficiency of Very Large Multiuser MIMO Systems, IEEE Transactions on Communications, vol. 61, No. 4, Apr. 2013 (14 pages). |
Number | Date | Country | |
---|---|---|---|
20150131580 A1 | May 2015 | US |
Number | Date | Country | |
---|---|---|---|
61904076 | Nov 2013 | US |