Pursuant to 35 U.S.C. ยง119 and the Paris Convention Treaty, this application claims the foreign priority benefit of Chinese Patent Application No. 201510218651.2 filed May 4, 2015, the contents of which, are incorporated herein by reference. Inquiries from the public to applicants or assignees concerning this document or the related applications should be directed to: Matthias Scholl P.C., Attn.: Dr. Matthias Scholl Esq., 245 First Street, 18th Floor, and Cambridge, Mass. 02142.
Field of the Invention
The invention relates to a large-sized underwater towing device and a method using the same for underwater towing.
Description of the Related Art
Existing towing devices are small-sized, and unable to carry large experimental equipment. In addition, the disposition of the towing devices is inconvenient and occupies much storage space on the deck of a ship.
In view of the above-described problems, it is one objective of the invention to provide a large-sized underwater towing device and a method using the same for underwater towing. The underwater towing device has a reasonable structure and can be conveniently mounted on the deck to lift up, lower down, and draw an object with appropriate floating state and direction stability.
To achieve the above objective, in accordance with one embodiment of the invention, there is provided a large-sized underwater towing device, comprising an underwater towing assembly and a fixing mechanism of the underwater towing assembly. The underwater towing assembly comprises a first floating body, a second floating body, and a third floating body. The first floating body, the second floating body, and the third floating body are connected together via a fixing frame. The first floating body, the second floating body, and the third floating body have streamlined and bilaterally symmetrical shapes and all are hollow to accommodate experimental equipment. The first floating body is a cylinder having a drop-shaped horizontal cross-section. An upper part of the first floating body is provided with a buoyancy reserve tank having an elliptic horizontal cross-section.
Between the first floating body and the buoyancy reserve tank is provided with an adapter. A tail of the second floating body is provided with first vertical guiding spoilers and a first horizontal guiding spoilers. A tail of the third floating body is provided with second vertical guiding spoilers and a second horizontal guiding spoilers. The fixing frame comprises an upper frame and a lower frame; the upper frame is fixedly connected to the lower frame. The upper frame comprises an upper rectangular frame and a first circular tube on a diagonal of the upper rectangular frame. The first floating body is fixed on a center of the first circular tube, and four diagonal braces are connected to the first floating body and four corners of the upper rectangular frame. The lower frame comprises six second circular tubes horizontally arranged, a lower rectangular frame, four third circular tubes vertically arranged, three fourth circular tubes which are arc-shaped and collision-proof, two sleigh-shaped members, and two seat boards. The second circular tubes, the lower rectangular frame, the third circular tubes, the fourth circular tubes, the sleigh-shaped members, and the seat boards are fixedly connected together. The second floating body and the third floating body are fixedly connected to the lower frame.
The fixing mechanism comprises a fairlead carrier and two supports disposed on two sides of the fairlead carrier. One end of the fairlead carrier is fixed on the deck of a stern, and another end of the fairlead carrier is connected to a diagonal tie bar of the fairlead carrier. A top of the fairlead carrier is provided with a fairlead. One end of a towing steel cable passes through the fairlead and is connected to a steel cable connecting hole on the sleigh-shaped members, and another end of the towing steel cable is connected to a winch. The supports are supported by a vertical support rob on a central part of the supports. One end of the supports is fixed on the deck of the stern, and another end of the supports is connected to lifting hooks corresponding to two lifting hook holes on the sleigh-shaped members via a hoist cable. A vertical slab of a tail end of a ship hull is provided with a bumper pad.
In a class of this embodiment, a first ear plate of the upper rectangular frame is fixedly connected to a second ear plate of the lower rectangular frame via a first pair of screw bolt and nut.
In a class of this embodiment, a third ear plate of the second floating body is fixedly connected to a fourth ear plate of the second circular tubes via a second pair of screw bolt and nut.
In a class of this embodiment, a fifth ear plate of the third floating body is fixedly connected to a sixth ear plate of an extended circular tube via a third pair of screw bolt and nut.
A method for underwater towing using the underwater towing device comprises the following steps:
1) in the initial state, connecting the two lifting hooks of the supports to the two lifting hook holes of one of the sleigh-shaped members of the underwater towing assembly; allowing one end of the towing steel cable to wind the fairlead and connect to the steel cable connecting hole on the sleigh-shaped members;
2) actuating the winch to tension the towing steel cable and lift the underwater towing assembly up; disconnecting the two lifting hooks from the lifting hook holes; actuating the winch reversely to loosen the towing steel cable and lower down the underwater towing assembly into the water; allowing the ship hull to tow the underwater towing assembly, and performing an experiment;
3) actuating the winch to tension the towing steel cable and lift the underwater towing assembly up; connecting the two lifting hooks to the lifting hook holes; actuating the winch reversely to loosen the towing steel cable; hanging the underwater towing assembly by the two lifting hooks, thus the underwater towing assembly turns at ninety degrees; allowing the underwater towing assembly to lean against the bumper pad disposed on the vertical slab of the tail end of the ship hull.
Advantages of the underwater towing device according to embodiments of the invention are summarized as follows: the large-sized underwater towing device comprises an underwater towing assembly and a fixing mechanism. The underwater towing assembly comprises a first floating body, a second floating body, and a third floating body. The first floating body, the second floating body, and the third floating body are connected together via a fixing frame. The fixing frame comprises an upper frame and a lower frame; the upper frame is fixedly connected to the lower frame. The upper frame comprises an upper rectangular frame and a first circular tube on a diagonal of the upper rectangular frame. The first floating body is fixed on a center of the first circular tube. The second floating body and the third floating body are fixedly connected to the lower frame. The fixing mechanism comprises a fairlead carrier and two supports disposed on two sides of the fairlead carrier. A towing steel cable passes through the fairlead and is connected to a steel cable connecting hole on the sleigh-shaped members. The supports are connected to lifting hooks corresponding to two lifting hook holes on the sleigh-shaped members via a hoist cable. A vertical slab of a tail end of a ship hull is provided with a bumper pad. The underwater towing device has a reasonable structure and can be conveniently mounted on the deck to lift up, lower down, and draw an object with appropriate floating state and direction stability.
The invention is described hereinbelow with reference to the accompanying drawings, in which:
In the drawings, the following reference numbers are used: 1. Buoyancy reserve tank; 2. Adapter; 3. First floating body; 4. Diagonal braces; 5. Upper rectangular frame; 5a. First circular tube; 6. First ear plate; 7. Second ear plate; 7a. Fourth ear plate; 7b. Sixth ear plate; 8. Screw bolt; 9. Nut; 10. Second circular tubes; 11. Lower rectangular frame; 12. Third circular tubes; 13. Fourth circular tubes; 14. Second floating body; 15. First vertical guiding spoilers; 16. First horizontal guiding spoilers; 17. Sleigh-shaped members; 17a. Steel cable connecting hole; 17b. Lifting hook holes; 18. Third ear plate; 19. Third floating body; 20. Second vertical guiding spoilers; 21. Second horizontal guiding spoilers; 22. Extended circular tube; 23. Fifth ear plate; 24. Seat boards; 25. Towing steel cable; 26. Winch; 27. Supports; 28. Vertical support rob; 29. Hoist cable; 30. Lifting hooks; 31. Diagonal tie bar; 32. Fairlead carrier; 33. Broken-line-shaped Board; 34. Axle; 35. Fairlead; 36. Bumper pad; 37. Ship hull; and 38. Deck.
For further illustrating the invention, experiments detailing a large-sized underwater towing device and a method using the same for underwater towing are described below. It should be noted that the following examples are intended to describe and not to limit the invention.
A method for underwater towing using the large-sized underwater towing device comprises the following steps:
1) In the initial state, connecting the two lifting hooks 30 of the supports 27 to the two lifting hook holes 17b of one of the sleigh-shaped members 17 of the underwater towing assembly; allowing one end of the towing steel cable 25 to wind the fairlead 35 and connect to the steel cable connecting hole 17a on the sleigh-shaped members 17;
2) Actuating the winch 26 to tension the towing steel cable 25 and lift the underwater towing assembly up; disconnecting the two lifting hooks 30 from the lifting hook holes 17b; actuating the winch 26 reversely to loosen the towing steel cable 25 and lower down the underwater towing assembly into the water; allowing the ship hull 37 to tow the underwater towing assembly, and performing an experiment;
3) Actuating the winch 26 to tension the towing steel cable 25 and lift the underwater towing assembly up; connecting the two lifting hooks 30 to the lifting hook holes 17b; actuating the winch 26 reversely to loosen the towing steel cable 25; hanging the underwater towing assembly by the two lifting hooks 30, thus the underwater towing assembly turns at ninety degrees; allowing the underwater towing assembly to lean against the bumper pad 36 disposed on the vertical slab of the tail end of the ship hull 37.
While particular embodiments of the invention have been shown and described, it will be obvious to those skilled in the art that changes and modifications may be made without departing from the invention in its broader aspects, and therefore, the aim in the appended claims is to cover all such changes and modifications as fall within the true spirit and scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2015 1 0218651 | May 2015 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
4055138 | Klein | Oct 1977 | A |
4586452 | Lapetina | May 1986 | A |
7666045 | Nigel | Feb 2010 | B2 |
Number | Date | Country | |
---|---|---|---|
20160325805 A1 | Nov 2016 | US |