The present disclosure relates generally to surgical devices and, more specifically, to an actuation assembly for a tissue recruiting device that allows for improved tissue recruitment to facilitate closure of large defects.
Tissue recruiting and grasping devices are used in various parts of the body, including the gastrointestinal, urinary, and vascular systems, to treat internal bleeding or defects. These devices may be deployed using an endoscope, such as a flexible endoscope, and may be provided in a variety of forms and may be used with hemostatic devices, including clamps, clips, staples, sutures, and the like. One or more hemostatic devices may be deployed around tissue in the body to apply constrictive forces to blood vessels and surrounding tissue, such as to control and prevent bleeding.
In some cases, a hemostatic device may be deployed around a growth of tissue, such as a polyp. The hemostatic device may be used to close the defect after the growth has been removed, such as to prevent or otherwise reduce bleeding. In other cases, target tissue may be grasped and recruited, such as into a pseudo-polyp, and the hemostatic device may be used to close the defect after the recruited tissue has been cut or severed, such as to remove the defect. The target tissue could be dysplasia, a defect, or the like. However, in some cases, particularly those involving larger defects and fibrotic tissue, it can be difficult to utilize conventional hemostatic devices to successfully close the defect.
Most hemostatic devices rely on variations of conventional tissue recruiting techniques to recruit tissue before the hemostatic device is deployed. Conventional tissue recruiting techniques often involve extending a tissue recruiting device through an endoscope to the desired location to recruit tissue. However, conventional tissue recruitment techniques can sometimes fail to adequately recruit tissue before the hemostatic device is deployed. For example, conventional tissue recruitment techniques may fail to adequately grasp and recruit multiple sides of a defect. Accordingly, there is an unmet need for an improved recruiting device that utilizes separate, independently controlled graspers to improve tissue recruitment.
This summary is meant to provide some examples and is not intended to be limiting of the scope of the invention in any way. For example, any feature included in an example of this summary is not required by the claims, unless the claims explicitly recite the features. Also, the features, components, steps, concepts, etc. described in examples in this summary and elsewhere in this disclosure can be combined in a variety of ways. The description herein relates to systems, assemblies, methods, devices, apparatuses, combinations, etc. that may be utilized for recruiting tissue, such as tissue defects. Various features and steps as described elsewhere in this disclosure may be included in the examples summarized here. Further, the treatment techniques, methods, operations, steps, etc. described or suggested herein can be performed on a living animal or on a non-living simulation, such as on a cadaver, simulator (e.g., with the body parts, tissue, etc. being simulated), etc.
In one example embodiment, an actuation assembly of a tissue recruiting device operable to independently control first and second grasping devices to grasp tissue is provided. The actuation assembly has a body defining a first channel and a second channel, a first actuation element extending through the first channel and coupled with the first grasping device, and a second actuation element extending through the second channel and coupled with the second grasping device. The actuation assembly has at least one first control actuator operable to control the translation and rotation of the first grasping device to grasp tissue via the first actuation element and at least one second control actuator operable to control the translation and rotation of the second grasping device to grasp tissue via the second actuation element. The at least one first control actuator is operable to control the translation and rotation of the first grasping device independently from the second grasping device.
In one example embodiment, a tissue recruiting device is provided. The tissue recruiting device includes a first grasping device and a second grasping device, with each grasping device being operable to grasp tissue. The tissue recruiting device also has a first actuation element extending through a first channel of a body with a proximal end of the first actuation element being coupled to a first control actuator and a distal end of the first actuation element being coupled to the first grasping device. The tissue recruiting device also has a second actuation element extending through a second channel of the body with a proximal end of the second actuation element being coupled to a second control actuator and a distal end of the second actuation element being coupled to the second grasping device. The first control actuator is independently operable to translate and rotate the first gasping device to grasp tissue via the first actuation element. The second control actuator is independently operable to translate and rotate the second grasping device to grasp tissue via the second actuation element.
In one example embodiment, a method for treating a defect with a tissue recruiting device is provided. The method includes the steps of positioning a first grasping device above a first side of the defect, moving a first control actuator to control the translation and rotation of the first grasping device via a first actuation element, grasping the first side of the defect with the first grasping device, positioning a second grasping device above a second side of the defect, moving a second control actuator to control the translation and rotation of the second grasping device via a second actuation element, grasping the second side of the defect with the second grasping device, and retracting the actuation elements to recruit the grasped tissue.
These and other objects, features, and advantages of the present disclosure will become apparent from the following detailed description of illustrative embodiments thereof, which is to be read in connection with the accompanying drawings.
To further clarify various aspects of implementations of the present disclosure, a more particular description of the certain examples and implementations will be made by reference to various aspects of the appended drawings. These drawings depict only example implementations of the present disclosure and are therefore not to be considered limiting of the scope of the disclosure. Moreover, while the Figures can be drawn to scale for some examples, the Figures are not necessarily drawn to scale for all examples. Examples and other features and advantages of the present disclosure will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
The following description refers to the accompanying drawings, which illustrate specific embodiments of the present disclosures, and describes exemplary embodiments in accordance with the general inventive concepts and is not intended to limit the scope of the invention or the claims in any way. Indeed, the invention as described by the claims is broader than and not limited by the exemplary embodiments set forth herein, and the terms used in the claims have their full ordinary meaning.
The general inventive concepts will be understood more fully from the detailed description given below and from the accompanying drawings of the various exemplary aspects and implementations of the disclosure. This should not be taken to limit the general inventive concepts to the specific aspects or implementations, which are being provided for explanation and understanding only. Example embodiments of the present disclosure are directed to devices and methods for recruiting tissue. Various embodiments of devices and systems for recruiting tissue are disclosed herein, and any combination of these options can be made unless specifically excluded. In other words, individual components of the disclosed devices and systems can be combined unless mutually exclusive or otherwise physically impossible.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art encompassing the general inventive concepts. The terminology set forth in this detailed description is for describing particular embodiments only and is not intended to be limiting of the general inventive concepts. As used in this detailed description and the appended claims, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise.
As described herein, when one or more components are described as being connected, joined, affixed, coupled, attached, or otherwise interconnected, such interconnection can be direct as between the components or can be indirect such as through the use of one or more intermediary components. Also, as described herein, reference to a “member,” “component,” or “portion” shall not be limited to a single structural member, component, or element, but can include an assembly of components, members, or elements.
Unless otherwise indicated, all numbers, such as for example, numbers expressing measurements or physical characteristics, used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless otherwise indicated, the numerical properties set forth in the specification and claims are approximations that may vary depending on the suitable properties sought to be obtained in embodiments of the invention. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the general inventive concepts are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical values, however, inherently contain certain errors necessarily resulting from error found in their respective measurements. Also, as described herein, the terms “substantially” and “about” are defined as at least close to (and includes) a given value or state (preferably within 10% of, more preferably within 1% of, and most preferably within 0.1% of).
In discussing the exemplary embodiments herein, the terms “proximal” and “distal” may often be used. These terms are used to describe a position or a direction with reference to the operator of the instrument. For example, the proximal position or proximal direction is toward the user or operator of the instrument, and the distal position or direction is away from the user or operator of the instrument, i.e., position or direction toward the object which the operator is attempting to grasp, retain, and/or view.
The present invention provides a tissue recruiting device to be used through an endoscope. The tissue recruiting device is controllable by an actuation assembly. The tissue recruiting device may be configured to better approximate tissue than standard tissue recruiting devices. The tissue recruiting device may also be configured to recruit tissue over larger defects than standard tissue recruiting devices. For example, the tissue recruiting device of the present disclosure may be configured to approximate tissue defects having a width or diameter between about 1 cm and about 10 cm. In some embodiments, the tissue recruiting device is configured to approximate tissue defects larger than 10 cm in width or diameter. The tissue recruiting device of the present disclosure may also be configured to simultaneously approximate multiple sides of a defect, such as to achieve more consistent and circumferential closure of defects. The tissue recruiting device may be configured to achieve a more consistent and circumferential closure of a tissue defect, such as when a hemostatic device is deployed around the tissue recruited by the tissue recruiting device. While the tissue recruiting device may also be used to grasp intact tissue, such as dysplastic or cancerous tissue. In some embodiments, the tissue recruiting device may be a sterile, single use device such as to reduce cost.
A functional block diagram for a tissue recruiting device 100 is illustrated in
The proximal end of each grasping device 104 may be coupled with an actuation element 208 of the actuation assembly 200. Each actuation element 208 is configured to control the position and rotation of the attached grasping device 104, such as via operation of the actuation assembly 200. Each actuation element 208 may be configured to transfer both translational movement to position the grasping device 104 and torque or rotational movement to rotate the grasping device 104. Each actuation element 208 may be a solid cable, a hollow tube, or other suitable elongated object or combination of objects, such as a drive cable, a torque cable, a hypotube, spring sheath, or a catheter, configured to control the grasping device 104.
In the illustrated embodiment, the tissue recruiting device 100 has two grasping devices 104 each coupled with an actuation element 208. However, the device 100 may have other assemblies and configurations. For example, the tissue recruiting assembly 102 may have one or three or more grasping devices 104 and the actuation elements 208 may be coupled to two or more grasping devices 104.
The catheter sheath assembly 300 includes one or more catheters 302 operably connected to the distal end of the actuation assembly 200. The tissue grasping devices 104 and the actuation elements 208 may extend through one or more lumens of the one or more catheters 302. The proximal ends of the actuation elements 208 may extend through the proximal end of the catheters 302 to operably couple with other components of the actuation assembly 200, as described below. The one or more catheters 302 may be sized, shaped, and configured such that each grasping device 104 may be distally extended beyond the distal end of the one or more catheters 302 via the actuation elements 208 extending therethrough. In some embodiments, the catheter sheath assembly 300 is flexible to allow for adequate endoscope maneuverability without compromising the purchase of the tissue recruiting assembly 102, such as the purchase of the tissue recruiting assembly 102 has on multiple edges of a tissue defect.
As shown in
In some embodiments, the one or more catheters 302 comprise polyether ether-ketone (PEEK), a thermo-plastic material, nylon, Pellethane, polytetrafluoroethylene (PTFE), polyimide, composite metal and polymer tubing, metal tubing, metal coils, or similar constructions known in the art, or combinations thereof. In a preferred embodiment, the catheters 302 are metal spring sheaths configured to resist compression and operational forces exerted on the catheters 302 by the actuation elements 208 and/or operational elements as described below. In some embodiments, the catheters 302 include a liner or coating, such as a PTFE liner and/or coating, disposed in the one or more lumens to increase the resiliency of the catheters 302 and/or to decrease friction between the actuation elements 208 and the catheter 302.
In some embodiments, as shown in
While the catheter sheath assembly 300 of
Referring back to
The device 100 can be used with any suitable or conventional endoscope or laparoscopic surgical equipment. For purposes of this disclosure, the device 100 is described in the context of use with an endoscope/colonoscope/sigmoidoscope type apparatus of conventional or suitable construction. However, the device may also be used in other manners, such as in any minimally invasive procedure with a suitable natural or artificially created orifice in the body. The scope is provided with an elongated body having a controllably flexible projecting end region. Surgical instruments, such as the device 100, may be introduced through an instrument channel, such as an accessory channel, which extends through the scope body, for recruiting tissue targeted by the surgeon manipulating the scope. The grasping devices 104 may be sized, shaped, and configured such that all the grasping devices 104 may be disposed through the same instrument or accessory channel of the endoscope.
Each grasping device 104 is configured to grasp tissue, such as defected tissue, such that the tissue recruiting device 100 may recruit the grasped tissue. The grasping devices 104 may be any suitable device for grasping tissue. For example, the grasping devices 104 may be forceps, clamps, hooks, pins, talons, helixes, or the like. Each of the tissue grasping devices 104 may be controlled by the actuation assembly 200, such as via the actuation element 208 to which the grasping device 104 is attached. In some embodiments, the grasping devices 104 are independently controllable via the actuation assembly 200.
The actuation assembly 200 may be operably connected to each grasping device 104 via one or more actuation elements 208. The actuation element 208 may be configured to control the translational and rotational movements of the respective grasping device 104. For example, the actuation elements 208 may be configured such that a user may position the grasping device 104, such as on a side of a defect, and deploy or otherwise manipulate the grasping device 104, such as to grasp tissue. The actuation elements 208 may be stiff or rigid enough to translate rotational and linear force to the grasping device 104, such as to aim and maintain the grasping device 104 at various positions and angles, during operation. The actuation elements 208 may also be flexible enough such that the actuation elements 208 may be disposed through a channel of the endoscope and/or the catheter 302 to the desired location and such that deployed or actuated grasping devices 104 may continue to grasp tissue as the endoscope and/or catheter sheath assembly 300 are manipulated. In some embodiments, the actuation elements 208 comprise polymers, such as ABS, PC, acrylic, or the like, plastic, or metals, such as stainless steel, Nitinol, or combinations thereof.
The actuation elements 208 may also be flexible enough such that the actuation elements 208 and the tissue recruiting assembly 102 may be extended to the desired location in a body, such as through the endoscope, and such that the endoscope may be maneuvered with the actuation elements 208 extending therethrough. The actuation elements 208 may also be stiff enough such that the actuation elements 208 may be operated to grasp tissue, such as described below. In some embodiments, the actuation elements 208 are solid core Nitinol wires with a diameter between about 0.018 inches (0.46 mm) and about 0.030 inches (0.76 mm), such as about 0.024 inches (0.61 mm). In some embodiments the actuation elements 208 provide one-to-one torque response over an endoscopic length, such that the distal end of the actuation element 208 rotates equivalently to rotation of the proximal end of the actuation element 208.
In the illustrated embodiment, the actuation assembly 200 is operably connected to each grasping device 104 via a single actuation element 208. However, it will be understood that the tissue recruiting device 100 may have other suitable configurations. For example, the actuation assembly 200 may be operably connected to each grasping device 104 via multiple actuation elements 208, such as an actuation element 208 configured to control the translation of the grasping device 104 and an actuation element 208 configured to control the rotation of the grasping device 104.
In some embodiments, as shown in
The proximal end of each sheath 304 may be operably connected or otherwise coupled with the actuation assembly 200. The distal end of each sheath 304 may extend toward the respective grasping device 104. The sheaths 304 may be sized, shaped, or configured to accommodate the actuation elements 208 therethrough. For example, the sheaths 304 may be hollow to at least partially cover the actuation element 208. In some embodiments, such as in embodiments in which one of the grasping devices 104 is operated via an operational element, the sheaths 304 may also be sized, shaped, or configured to accommodate the operational element therethrough.
In some embodiments, such as in embodiments in which one or more grasping device 104 may be operated (e.g., opened and closed), the actuation element 208 may be hollow, shaped, or sized to at least partially encompass an operational element 290 coupled with the grasping device 104 and configured to operate the grasping device 104. The operational element 290 may be a drive cable, a torque cable, a hypotube, spring sheath, a catheter, or other suitable member configured to control the grasping device 104. For example, each operational element 290 may be configured to convey translational and/or rotational force to actuate the grasping device 104.
The operational element 290 may be movable, such as linearly movable and rotationally movable, relative to the actuation element 208 to control the function or operation of the grasping device 104 (e.g., opening and closing) separately from the translation and/or rotation of the grasping device 104. A proximal end of the operational element 290 may be operably coupled with the actuation assembly 200 such that a user may control the operation of the grasping device 104 via the actuation assembly 200. Each operational element 290 may be a metal actuation wire or tether configured to impart a translational force which controls the operation of the grasping device 104. For example, the grasping device 104 may include distal jaws normally disposed in a closed position, such as by a spring or other biasing element, and the distal movement of the operational element 290 relative to the grasping device 104 may open the jaws. When the operational element 290 is retracted relative to the grasping device 104 the jaws may move back to the closed position, such as to grasp tissue.
In the illustrated embodiment, the device 100 includes an operational element 290 disposed through one of the actuation elements 208. However, it will be understood that the device 100 may have other configurations and assemblies. For example, the device 100 may not include an operational element 290 or an operational element 290 may be disposed through or alongside each of the actuation elements 208.
The actuation assembly 200 includes a body 202 configured to be grasped by a user. The proximal ends of the actuation elements 208 and the optional operational elements 290 may extend into or through the body 202. The actuation assembly 200 also includes a plurality of control actuators 230 operable to control the position, rotation, and operation of the grasping devices 104 via the actuation elements 208. Each of the actuation elements 208 and each of the operational elements 290 may be coupled with one or more control actuators 230 such that a user may control the position, rotation, and operation of the grasping devices via the control actuators 230. The control actuators 230 may be any suitable device by which a user may actuate to control the position and/or rotation of one of the actuation elements 208 or one of the operational elements 290. For example, the control actuators 230 may be push buttons, toggles, switches, levers, triggers, sliders, or the like.
In the illustrated embodiment, the actuation assembly 200 may include first or translational control actuators 230a operable to control the linear or translational position of one of the actuation elements 208, second or rotational control actuators 230b operable to control the rotational position of one of the actuation elements 208, and operational control actuators 230c operable to control the linear or translational position of one of the operational elements 290. For example, an operator may use the translational and rotational control actuators 230a, 230b to control the translational and rotational position of the grasping devices 104 via the actuation elements 208, such as to deploy the grasping devices 104 at the desired location. Optionally, an operator may also use the operational control actuators 230c to control the operation of the grasping devices 104 via the operational elements 290, such as to open and/or close the grasping devices 104 to grasp tissue.
In the illustrated embodiment, the actuation assembly 200 includes two translational control actuators 230a, two rotational control actuators 230b, and one operational control actuator 230c. However, the actuation assembly 200 may have other suitable configurations and assemblies. For example, the actuation assembly 200 may include any suitable number of translational control actuators 230a, rotational control actuators 230b, and operational control actuators 230c.
In the illustrated embodiment, each translational control actuator 230a is disposed near a proximal end of one of the actuation elements 208 proximally from the body 202 and each rotational control actuator 230b is disposed at the proximal end of one of the actuation elements 208 proximally from the translational control actuator 230a. Each translational control actuator 230a may be translationally fixed to the respective actuation element 208 such that translational movement of the translational control actuator 230a translates to translational movement of the actuation element 208. The actuation element 208 may be rotationally decoupled from the translational control actuator 230a such that the actuation element 208 may rotate independently from the translational control actuator 230a. The translational control actuator 230a may be depressed or otherwise moved toward the body 202, such as by a user, to distally extend the actuation element 208 and thereby position the grasping device 104.
The rotational control actuator 230b may be rotationally coupled with the respective actuation element 208 such that rotational movement of the rotational control actuator 230b translates to rotational movement of the actuation element 208. The rotational control actuator 230b may be rotated, such as by a user, to rotate the actuation element 208 and thereby rotate the grasping device 104. The rotational control actuator 230b may be rotated independently from the translational control actuator 230a.
The operational control actuator 230c may be disposed on a proximal side of the body 202, such as proximally to the translational and rotational control actuators 230a, 230b. The operational control actuator 230c may be directly or indirectly coupled with the operational element 290 to operate the operational element 290 to actuate the grasping device 104. The operational control actuator 230c may be coupled with the operational element 290 such that depression or activation of the operational control actuator 230c translates the operational element 290 to actuate the respective grasping device 104, such as to open or close the grasping device 104. The operational control actuator 230c may be coupled with the operational element 290 via a biasing element such that the operational control actuator 230c returns to the unactuated position when a user releases the operational control actuator 230c, thereby retracting the operational element 290.
However, it will be understood that the actuation assembly 200 may have other suitable shapes, assemblies, and configurations. For example, the operational control actuator 230c may be disposed a different side of the body 202 from the other control actuators 230a, 230b, one or more of the control actuators 230 may be disposed along the body 202, the translational control actuators 230a may not be aligned with the rotational control actuators 230b, and/or the translational and rotational control actuators 230a, 230b may be coupled to the respective grasping device 104 via separate actuation elements 208. Additionally, one or more of the translational control actuators 230a, rotational control actuators 230b, and operational control actuators 230c may be combined. For example, the translational and rotational control actuators 230a, 230b may be combined into a single control actuator 230 operable to control the translational and rotational position of the grasping device 104 via the actuation element 208.
In operation, the actuation assembly 200 may be operated, such as by a user, to control the tissue recruiting assembly 102, such as to recruit tissue with one or more grasping devices 104. The grasping devices 104 may be disposed through a distal end of an endoscope (not shown) and the catheter sheath assembly 300. The actuation assembly 200 may be operated by a user at a proximal end of the endoscope via the actuation elements 208 and/or operational elements 290 extending through a channel located within and extending through the endoscope. The endoscope and/or the grasping devices 104 may be inserted through the subject such that the grasping devices 104 are disposed in a desired position, such as above an identified defect. Each grasping device 104 may be moved via the respective translational control actuator 230a, rotated via the respective rotational control actuator 230b, and/or actuated by the respective operational control actuator 230c to grasp the tissue. For example, a user may control the position of the grasping device 104 by positioning the distal end of the endoscope and sliding or otherwise moving the translational control actuator 230a to extend and/or retract the actuation element 208. The user may control the rotation of the grasping device 104 by rotating the respective rotational control actuator 230b. Optionally, the user may also control the operation of the grasping device 104, such as the opening and closing of the grasping device 104, by engaging and disengaging the operational control actuator 230c. After the grasping devices 104 grasp the tissue, the actuation assembly 200 may be used to recruit the grasped tissue proximally, such as to close a defect or to appose two sides of a defect such that a hemostatic device may be used to close the defect, such as by proximally retracting the translational control actuators 230a.
An exemplary method of operating the grasping devices 104 of the tissue recruiting assembly 102 is schematically illustrated in
As shown in
As shown in
While the device 100 has been described as deploying two grasping devices 104a, 104b to grasp tissue, it will be understood that more than two grasping devices 104 may be deployed on multiple sides of the defect. For example, the device 100 may include more than two grasping devices 104 or more grasping device 104 may be loaded into the device 100 to be subsequently deployed after the first two grasping devices 104a, 104b are deployed to grasp tissue.
As shown in
After the grasping devices 104a, 104b have been retracted to recruit the targeted tissue, a tissue closure mechanism, such as a cinch or clip, may be disposed around the recruited tissue to treat and/or substantially close the defect. The tissue closure mechanism may be deployed around the grasping devices 104a, 104b grasping tissue. For example, the tissue recruiting assembly 102 may be used with an over-the-scope (OTS) clip or a through-the-scope (TTS) clip to close the defect. In embodiments including an OTS clip, the grasping devices 104 may retract and recruit tissue into the OTS housing. In embodiments including a TTS clip, the grasping devices 104 may recruit the tissue into the distal end of the catheter 302. The OTS clip may be released (deployed) via the actuation assembly 200 or may be released via a separate controller.
In some embodiments, after the recruited tissue has been cinched with a tissue closure mechanism, such as an OTS or TTS clip, the grasping devices 104 and/or the actuation elements 208 may be decoupled or otherwise disengaged from the tissue. For example, the operational element 290 may be actuated to open the grasping device 104 to release the tissue. The grasping devices 104 and/or the actuation elements 208 may be withdrawn or otherwise retracted from the closed defect.
The grasping devices 104 may be end effectors capable of grasping target tissue, such as via one or more actuation elements 208 and/or one or more operational elements 290. As shown in
The first grasping device 104a may be operated via a first actuation element 208a operable to translate and rotate the first grasping device 104a such that the first grasping device 104a grasps tissue. For example, the first actuation element 208a may translate and rotate the first grasping device 104a, such as via the actuation assembly 200, such that the first grasping device 104a spirals or screws into tissue such that the first grasping device 104a grasps the tissue.
The second grasping device 104b may be operated via a second actuation element 208b and an operational element 290. The second actuation element 208b may translate and rotate the second grasping device 104b, such as via the actuation assembly 200, such that the second grasping device 104b is properly positioned above target tissue. The operational element 290 may be distally extended, such as by actuation of the operational control actuator 230c, such that the second grasping device 104b grasps tissue, such as tissue on the other side of a defect from the first grasping device 104a. The distal extension of the operational element 290 may rotate the movable jaw 113 about a pivot such that the movable jaw 113 opens to grasp tissue. After the tissue is positioned between the movable jaw 113 and the remainder of the second grasping device 104b, the operational element 290 may be proximally retracted (e.g., the operational control actuator 230c may be released) such that the movable jaw 113 pivots closed with the tissue grasped between the movable jaw 113 and the remainder of the second grasping device 104b. Further, the grasping device 104 may have more than one movable jaw 113, such as two movable jaws 114 that rotate about a central pivot. In the illustrated schematic, the operational element 290 extends outside the actuation element 208. However, it will be understood that the operational element 290 may extend through the interior of the actuation element 208.
While the illustrated embodiment includes a first grasping device 104a with helical coils 114 operable by one actuation element 208a and a second grasping device 104b with a movable jaw 113 operable by an actuation element 208b and an operational element 290, it will be understood that the device 100 may have other assemblies and configurations.
Referring now to
The actuation assembly 200 may be operable to independently control two grasping devices 104, such as grasping devices 104 with helical coils 114 (e.g.,
In some embodiments, as shown in
Optionally, as shown in
The first channel 210 defines a first proximal opening 212 (e.g.,
The first and second channels 210, 214 may each include a first portion 218 extending distally from the respective proximal opening 212, 216. The first portions 218 of the first and second channels 210, 214 may extend substantially straight from the respective proximal opening 212, 216. The first and second channels 210, 214 may each also include a second portion 220 extending distally from the first portion 218. The second portions 220 of the first and second channels 210, 214 may be curved or otherwise angled such that the distal ends of the first and second channels 210, 214 are disposed adjacent to each other at the distal end 206 of the body 202. The first portions 218 of the first and second channels 210, 214 may have a width larger than a width of the second portions 220. For example, the second portions 220 of the channels 210, 214 may be sized to receive one of the actuation elements 208 therethrough and the first portions 218 may be sized to receive one of the actuation elements 208 and an additional component, such as an actuation sheath, therethrough.
The second portions 220 of the first and second channels 210, 214 may terminate at a distal opening 222. The distal opening 222 may be sized, shaped, and configured such that actuation elements 208 may extend from each of the first and second channels 210, 214 through the distal opening 222. While the body 202 has been described as including a single distal opening 222, it will be understood that the body 202 may include a distal opening 222 for each channel 210, 214.
The actuation assembly 200 may also include a control actuator 230 coupled with the proximal end of each actuation element 208. Each control actuator 230 may be operable to control the position and rotation of one of the actuation elements 208 grasping devices 104, as described below. Each control actuator 230 may be operable to independently control the position and rotation of the respective actuation element 208. Each control actuator 230 may be fixed to the proximal end of the respective actuation element 208. In some embodiments, each control actuator 230 is welded to the proximal end of the respective actuation element 208. In other embodiments, the control actuators 230 are coupled to the proximal ends of the actuation elements 208 via adhesives, fasteners, over-molding, press-fitting, snap-fitting, or other similar methods.
Each control actuator 230 may be sized, shaped, and configured such that it may be twisted by a user, such as between the user's thumb and first finger, to control the rotation of the grasping device 104. The control actuators 230 may be sized, shaped, and configured to be ergonomic for the user, make it easier to rotate and translate the control actuators 230 and actuation elements 208, and make it easier for a user to complete a rotation without straining his/her fingers or hand. Each control actuator 230 may also have a width larger than the proximal openings 212, 216 such that abutment between the control actuator 230 and the proximal end 204 of the body 202 may prevent the proximal end of the respective actuation element 208 from being extended distally into the body 202. As shown in
While the actuation assembly 200 has been described as having two channels 210, 214 and two control actuators 230, it will be understood that the actuation assembly 200 may have other suitable configurations. For example, the actuation assembly 200 may have one or three or more channels and one or three or more control actuators 230, such as corresponding to the number of grasping devices 104.
As shown in
In some embodiments, the proximal openings 212, 216 have a narrower diameter than the first portions 218 of the channels 210, 214. The proximal openings 212, 216 may be sized such that the actuation sheaths 224 (or actuation element 208 in embodiments without actuation sheaths 224) may translate and rotate within the channels 210, 214. The narrower size of the proximal openings 212, 216 may center the actuation sheath 224 and/or the actuation element 208 in the channel 210, 214 such that the actuation element 208 and/or actuation sheath 224 is spaced apart from the walls of the channels 210, 214. The reduced contact with the walls of the channel 210, 214 may reduce the friction between the channels 210, 214 and the actuation sheaths 224 and/or actuation elements 208. The narrower proximal openings 212, 216 may also help ensure that the actuation element 208 and/or actuation sheath 224 stays in the channel 210, 214.
The actuation sheaths 224 may each be a substantially hollow tube with an inner diameter configured to permit the proximal end of the actuation element 208 to extend therethrough. Each actuation sheath 224 may comprise stainless steel. Additionally or alternatively, the actuation sheaths 224 comprise polyetheretherketone (PEEK), high density polyethylene (HDPE), low density polyethylene (LDPE), or ultra high molecular weight polyethylene (UHMW), polycarbonate (PC), acrylonitrile butadiene styrene (ABS), acrylic, a composite structure of these materials, or other suitable materials that allow for adequate stiffness for actuation, or combinations thereof. The proximal ends of the actuation element 208 and the actuation sheath 224 may be fixed to the control actuator 230 such that the actuation element 208 and actuation sheath 224 each translate and rotate with the translation and rotation of the control actuator 230. In some embodiments, the proximal end of the actuation element 208 is molded into the respective actuation sheath 224.
In some embodiments, as shown in
In some embodiments, as shown in
In some embodiments, as shown in
As shown in
In some embodiments, the catheter 302 may be configured to increase the compressive resistance of the catheter 302 during operation. As shown in
The catheter 302 may also include a plurality of struts 305 extending across the cross-section of the catheter 302 at predetermined intervals. The struts 305 may be formed by bending the coil across the cross-section of the catheter 302 which may create the compressions 303. The struts 305 may be substantially aligned such that the struts 305 separate the catheter 302, such as into lumens, such as to prevent the actuation elements 208 from tangling during operation. The struts 305 may define pseudo-lumens extending through the catheter 302. In some embodiments, only the distal coil of the catheter 302 is bent to form a strut 305, such as to separate the actuation elements 208 at the distal end of the device 100 and prevent the actuation elements 208 from tangling during operation.
As shown in
Referring now to
As shown in
As shown in
The first actuation sheath 224a may control the translational distance of the first actuation element 208a and the grasping device 104. The first actuation sheath 224a may be sized, shaped, or configured such that the actuation sheath 224 may translate and rotate within the first portion 218 of the first channel 210 and such that the first actuation sheath 224a is prevented from translating into the second portion 220 of the first channel 210. For example, the first actuation sheath 224a may have an outer diameter larger than the diameter of the second portion 220 of the first channel 210. The narrower diameter of the second portion 220 may prevent the first actuation sheath 224a from being distally extended beyond the first portion 218 of the first channel 210. The abutment of the distal end of the first actuation sheath 224 and the proximal end of the second portion 220 of the first channel 210 may prevent further distal movement of the first actuation sheath 224 and the first actuation element 208a, such as to control the linear actuation distance of the first control actuator 230a, thereby controlling the translational movement of the grasping element 104a.
As shown in
While the actuation assembly 200 has been described as deploying the first grasping device 104a via the first control actuator 230a and then deploying the second grasping device 104b via the second control actuator 230b, it will be understood that the actuation assembly 200 may be actuated in other manners. For example, the second control actuator 230b may be actuated to deploy the second grasping device 104b before the first grasping device 104a is deployed, the first and second control actuators 230a, 230b may be operated substantially simultaneously, or one or both of the control actuators 230a, 230b may be operated in reverse to detach the grasping devices 104a, 104b, such as if the grasping device 104a, 104b was not properly deployed, in which case, the control actuator 230a, 230b may be subsequently actuated to maneuver the grasping device 104a, 104b to grasp or otherwise reacquire tissue.
In some embodiments, the actuation assembly 200 may be operated to release the grasp of one or both of the grasping devices 104 from the tissue, such as if one or both of the grasping device 104a, 104b are improperly disposed or positioned in tissue. If it is determined that one or both of the grasping devices 104a, 104b are improperly positioned, the control actuators 230a, 230b may be manipulated, such as by a user, to release the grasp of the one or more grasping devices 104a, 104b on the tissue. To release each grasping device 104, the respective control actuator 230 may be proximally retracted from the body 202 such that the grasping devices 104 are retracted from the tissue and/or the control actuator 230 may be rotated such that the grasping devices 104 are released from the tissue. For example, the control actuator 230 may be rotated in the direction opposite from the direction that the control actuator 230 is rotated to engage tissue.
In some embodiments, after the actuation assembly 200 has been moved to the fully actuated position such that the grasping devices 104 grasp tissue on multiple sides of a defect, the actuation assembly 200 may be operated to recruit the grasped tissue, such as to deploy a closure mechanism. After the grasping devices 104 have been properly deployed in tissue, the control actuators 230 may be translated proximally such that the actuation elements 208 and the grasping devices 104 are retracted toward the actuation assembly 200. The control actuators 230 may be retracted back to the unactuated position (
Referring now to
As shown in
In some embodiments, the body 202 includes a biasing element receiving portion 236 configured to receive the biasing element 234. The biasing element receiving portion 236 may be disposed substantially between the channels 210, 214 near the proximal end 204 of the body 202. The biasing element receiving portion 236 may be a recess extending into the adjacent faces of the first and second halves 202a, 202b of the body 202. The biasing element receiving portion 236 may be sized, shaped, and configured to receive the biasing element 234 in a normal or unbiased position such that the lateral sides of the biasing element 234 extend into each of the channels 210, 214. The biasing element receiving portion 236 may also be sized, shaped, and configured to permit the biasing element 234 to depress or otherwise conform when the actuation element 208 and/or the actuation sheath 224 is extended through the channel 210, 214 such that the biasing element 234 may exert a biasing force on the actuation element 208 and/or the actuation sheath 224. The biasing element receiving portion 236 may also retain the biasing element 234 such that the biasing element 234 is held in place at a proximal portion of the body 202 and prevents the biasing element 234 from moving around in the body 202.
In some embodiments, the actuation assembly 200 also includes a cap 238 configured to be inserted or otherwise disposed in the proximal end 204 of the body 202. The cap 238 may be configured to couple the first and second halves 202a, 202b of the body 202 together. The cap 238 may also leave space in the body 202 for the biasing element 234 to be inserted after the halves 202a, 202b have been locked together, such as for ease of manufacturing. As shown in
The cap 238 may also close the proximal end 204 of the body 202 and assist in aligning the actuation elements 208. In some embodiments, the cap 238 includes a cutout 242 on each side of the cap 238. Each cutout 242 may define an edge or side of one of the proximal openings 212, 216. In some embodiments, the cap 238 may abut or otherwise contact the biasing element 234 such that the biasing element 234 remains in the desired position within the body 202, such as in the biasing element receiving portion 236. For example, the cap 238 may abut the biasing element 234 such that the biasing element 234 remains in position within the body 202 when the biasing element 234 moves between the relaxed position and the biasing position. The cap 238 may include a ledge 244 extending between the prongs 240 and defining a space, such as a slot, between the ledge 244 and the proximal end of the cap 238. The proximal end of the biasing element 234 may include projections extending radially inwardly toward a center of the body 202 and separated by a gap. When the biasing element 234 is disposed in the biasing element receiving portion 236 and the cap 238 is coupled to the proximal end 204 of the body 202, the radially inward projections of the biasing element 234 may extend around the ledge 244 and into the gap between the ledge 244 and the proximal portion of the cap 238. The disposition of the projections of the biasing element 234 in the gap of the cap 238 may maintain the biasing element 234 in the biasing element receiving portion 236 as the biasing element 234 is moved between the relaxed position and the biasing position, such as to ensure the radially inward projections of the biasing element 234 are in a bent position to maintain the shape of the biasing element 234.
In some embodiments, as shown in
While the actuation assembly 200 has been described as including a single, leaf spring biasing element 234 disposed in the biasing element receiving portion 236, it will be understood that the actuation assembly 200 may have other suitable configurations and assemblies to maintain the translational and/or rotational positions of the actuation elements 208 and/or actuation sheaths 224 extending through the channels 210, 214. For example, the biasing element 234 may be a helical spring, a coil spring, a worm gear, or an assembly thereof, or other device configured to exert a biasing force on the one or more actuation elements 208 and/or actuation sheaths 224 or may be a portion of the body 202, as described below. Additionally, while the actuation assembly 200 has been described as including a single biasing element 234 configured to exert a biasing force on each of the actuation elements 208, it will be understood that the actuation assembly 200 may include one or more biasing elements 234 configured to exert a biasing force on one or more actuation elements 208.
The actuation assembly 200 may also include one or more biasing elements 234 configured to prevent accidental operation of the actuation assembly 200 and/or to return the control actuator 230 to the starting position, such as to recruit the grasped tissue toward the catheter 302. As shown in
While the actuation assembly 200 has been described as including an additional biasing element 234 operable to impart a biasing force on the actuation elements 208 which may maintain the position and rotation of the actuation element 208, the actuation assembly 200 may include other configurations and assemblies for maintaining the position and rotation of the actuation elements 208, such as when the user releases the control actuators 230. Additionally or alternatively, as shown in
The biasing projections 248 may be biased or otherwise configured to normally project radially inwardly in the channels 210, 214 to engage the actuation element 208 and/or actuation sheath 224 disposed through the respective channel 210, 214. In some embodiments, the top surface of the biasing projection 248 includes an engagement portion configured to engage the outer surface of the actuation element 208 and/or actuation sheath 224 disposed in the channel 210, 214. When the biasing projections 248 engage with the actuation elements 208 and/or the actuation sheaths 224, the biasing projections 248 may exert a compressive and/or frictional force on the actuation elements 208, thereby preventing or otherwise restricting the actuation elements 208 and/or the actuation sheaths 224 from translating and/or rotating. In some embodiments, the biasing projections 248 have a surface that is sized, shaped, or otherwise configured to correspond to the size and shape of the actuation elements 208 or the actuation sheaths 224 such that the biasing projections 248 prevent or otherwise restrict the actuation elements 208 and/or the actuation sheaths 224 from translating and/or rotating when the biasing projections 248 are engaged with the actuation elements 208 and/or the actuation sheaths 224. The biasing projections 248 are configured to flex or otherwise bend radially outwardly from the channel 210, 214 when the actuation element 208 is manipulated by a user. When the biasing projections 248 are flexed away or otherwise disengaged from the actuation element 208, the actuation element 208 may translate and rotate within the channel 210, 214.
Additionally or alternatively, the actuation elements 208, the actuation sheaths 224, and/or the channels 210, 214 of the body may be sized, shaped, and configured to maintain the position and rotation of the actuation elements 208, such as when the user releases the control actuators 230. For example, each actuation element 208 and/or actuation sheath 224 may include one or more radially outward extending protrusions and/or one or more radially extending indents disposed along the length and around the outer surface of the proximal portion of the actuation element 208. The protrusions and indents may be formed by creating grooves or channels in the actuation element 208 and/or actuation sheath 224. The body 202 may correspondingly include one or more radially inward extending indents and one or more radially outward extending protrusions disposed along the length and around the inner surface of the channels 210, 214. The protrusions and/or indents of the actuation element 208 may correspond with the indents and/or protrusions of the body 202 at various positions and rotations of the actuation element 208 with respect to the body 202. The interaction of the protrusions and/or indents of the actuation element 208 with the indents and/or protrusions of the body 202 may prevent or otherwise restrict the linear and rotational movement of the actuation element 208 from such a position. The interaction may also provide detectable feedback to a user regarding the movement of the actuation element 208 and/or actuation sheath 224, as described below.
Referring now to
As shown in
Additionally or alternatively, the actuation assembly 200 may include a clamp 250 configured to be disposed around the control actuators 230 to maintain the translational and/or rotational position of the actuation elements 208. The clamp 250 may include one or more bores configured to receive the control actuator 230. Each bore may be sized, shaped, and configured to be placed over one of the control actuators 230 and to impart a frictional force on the control actuator 230 to prevent or otherwise restrict the control actuator 230 from rotating. The inner surface of each bore may have a liner, such as an elastomer liner, configured to impart a frictional force on the respective control actuator 230. Additionally or alternatively, the inner surface of each bore may include teeth or gripping members which engage the control actuators 230. The clamp 250 may be disposed around the control actuator 230, such as after the actuation elements 208 have been rotationally positioned, and the clamp 250 may impart a frictional force on the control actuators 230 sufficient to maintain the rotational position of the actuation elements 208.
As shown in
After one of the control actuators 230 has been manipulated and the respective clamp 250 has been moved to maintain the position of the respective actuation element 208, the process may be repeated with the other control actuator 230 and the other clamp 250. Additionally, either or both clamps 250 may be proximally retracted from the respective proximal opening 212, 216 such that the actuation elements 208 may be translated and/or rotated via the respective control actuator 230. In some embodiments, the inner and/or outer surface of the clamps 250 include protrusions or slots which correspond with protrusions and slots of the channels 210, 214, the proximal openings 212, 216, the actuation elements 208, and/or the actuation sheaths 224 such that the clamp 250 operably interlocks with the body 202, the actuation element 208, and/or the actuation sheath 224 to prevent or otherwise restrict the translation and rotation of the actuation element 208.
As shown in
Each clamp 250 may be independently movable, such as to independently lock either actuation element 208. In some embodiments, the clamps 250 are slidable by a user. In other embodiments, the clamps 250 are biased, such as by a spring, toward the actuation elements 208 such that the clamps 250 engage the actuation elements 208 without user manipulation. Additionally, any of the clamps 250 of
Additionally or alternatively, the actuation assembly 200 may include other configurations or assemblies configured to retain the position and/or rotation of the actuation elements 208. In some embodiments, the actuation assembly 200 includes a clasp disposed around the actuation elements 208 distal to the body 202 and operable to engage with the body 202. The clasp may be operably engaged with the actuation elements 208 to prevent or otherwise restrict the movement and/or rotation of the actuation elements 208, such as via friction or an interference fit with the actuation elements 208. The actuation assembly 200 may also include an engagement element, such as a slider, button, or the like, disposed on an outer surface of the body 202 or cover 228 and operable to engage one of the one or more clamps 250 with the actuation elements 208 and/or actuation sheaths 224. For example, the actuation assembly 200 may include an engagement element on the proximal end 204 of the body 202 and operable to laterally engage and disengage a clamp 250 around the outer surface of the respective actuation element 208 and/or actuation sheath 224 to maintain the position and rotation of the actuation element 208.
Additionally or alternatively, the channels 210, 214 of the body 202 may be sized, shaped, and configured to impart a frictional force on the actuation elements 208 to maintain the linear and/or rotational position of the actuation elements 208 without input from a user. For example, the inner surface of the channels 210, 214 or a liner placed on the inner surface of the channels 210, 214 may include a plurality of protrusions or teeth which impart a frictional force on the actuation elements 208 and/or actuation sheath 224. The liner may be a woven wire which is disposed through the channel 210, 214. The protrusions or teeth may be disposed on opposing sides of the channel 210, 214 such that protrusions or teeth impart a compressive or frictional force on opposing sides of the actuation element 208 and/or actuation sheath 224. The frictional and/or compressive forces may be large enough such that the linear and rotational position of the actuation elements 208 are maintained without input from a user. The frictional and/or compressive forces may also be small enough such that the actuation element 208 may easily be moved and rotated within the channel 210, 214, such as by an operator via the control actuator 230.
Further, the actuation element 208 or the actuation sheath 224 may include a plurality of fins extending radially outwardly which control the position and rotation of the actuation element 208 and/or the actuation sheath 224. The fins may engage with the surface of the channel 210, 214 and have a configuration which permits the actuation element 208 and/or the actuation sheath 224 to be easily rotated in one direction (e.g., the deployment direction) and which prevents or restricts rotation in the opposite direction (e.g., the release direction). The fins may be configured to maintain the position and rotation of the actuation element 208 and/or the actuation sheath 224 until a sufficient force is provided, such as by a user, to rotate and/or translate the actuation element 208 and/or the actuation sheath 224. The fins may also be configured to flip or change direction when sufficient force is applied such that the actuation elements 208 may rotate smoothly in the opposite direction.
As shown in
Referring now to
As shown in
It will be understood that the actuation elements 208 of any of the other embodiments may be similarly ovular, triangular, rectangular, or otherwise oblong. The actuation elements 208 may have a cross-sectional shape that is different than the cross-sectional shapes of the channels 210, 214 or the lumens of the catheter 302. For example, the channels 210, 214 or the lumens of the catheter 302 may be circular and the actuation elements 208 may be oblong. The difference in shapes of actuation elements 208 from the channels 210, 214 or the lumens of the catheter 302 may reduce friction between the actuation elements 208 and the channels 210 and/or the lumens of the catheter 302, such as when the actuation elements 208 are translated and/or rotated.
As shown in
Additionally or alternatively, the actuation element 208 and/or the biasing element 234 may include one or more projections which produce similar feedback as the actuation element 208 is rotated a given amount. The feedback may correspond to a tissue engagement depth based upon the number of rotations of the grasping device 104. For example, the actuation elements 208 and the biasing element 234 may be sized, shaped, and configured such that contact between the biasing element 234 and one of the actuation elements 208 produces audible and/or tactile feedback every 90 degrees, every 180 degrees, or every 360 degrees that the actuation element 208 is rotated.
While the detectable feedback has been described as being created by contact between the biasing element 234 and one of the actuation elements 208, it will be understood that the feedback may be created in other manners. For example, the actuation sheath 224 may have similarly varying widths or diameters which may contact the biasing element 234 to produce feedback regarding the rotation of the actuation element 208. Additionally, the body 202 of the actuation assembly 200 may be configured to similarly engage the actuation element 208 and/or the actuation sheath 224 to produce feedback as the actuation element 208 is rotated.
As shown in
As shown in
The protrusions 252 and recesses 254 may also be configured to control the movement of the actuation element 208 during operation. The protrusions 252 may be configured to contact the biasing element 234 such that the translational and/or rotational position of the actuation element 208 is maintained when the biasing element 234 abuts or otherwise contacts the protrusions 252. For example, the protrusions 252 may be disposed at varying positions along the length of the actuation element 208 such that the translational and rotational position of the actuation element 208 may be locked or otherwise maintained at various positions. The actuation element 208 may be translated and rotated relatively freely when the recesses 254 are aligned with the biasing element 234.
As shown in
Each biasing element 234 includes a tab or protrusion 235 (
As the actuation sheaths 224 are rotated in the channel 210, 214, the contact between the biasing elements 234 and the actuation sheaths 224 produces feedback detectable by a user at rotational intervals of the actuation elements 208 and/or actuation sheaths 224, such as each time the biasing elements 234 engage with and/or disengage from the longitudinal channels 245. For example, the contact between the biasing elements 234 and the actuation sheaths 224 may produce a clicking sound and/or tactile feedback each time the biasing elements 234 engage with and/or disengage from the longitudinal channel 245, such as every 360 degrees that the control actuator 230 and actuation sheath 224 are rotated. In the illustrated example, the actuation sheaths 224 each include one longitudinal channel 245. However, it will be understood that the actuation sheaths 224 may include other numbers of longitudinal channels 245. For example, the actuation sheaths 224 may include two longitudinal channels 245 on opposite sides of the actuation sheath 224 such that feedback is generated each time the control actuator 230 and actuation sheath 224 are rotated 180 degrees, the actuation sheaths 224 may include three longitudinal channels 245 equally spaced around the actuation sheath 224 such that feedback is generated each time the control actuator 230 and actuation sheath 224 are rotated 120 degrees, or the actuation sheaths 224 may include four longitudinal channels 245 equally spaced around the actuation sheath 224 such that feedback is generated each time the control actuator 230 and actuation sheath 224 are rotated 90 degrees.
In some embodiments, as shown in
In some embodiments, as shown in
While the feedback has been described as being created by contact between the biasing element 234 and one of the protrusions 252, it will be understood that the feedback may be created in other manners. For example, the actuation sheath 224 may have similarly varying widths or diameters which may contact the biasing element 234 to produce feedback regarding the translation of the actuation element 208. Additionally, the body 202 of the actuation assembly 200 may be configured to similarly engage the actuation element 208 and/or the actuation sheath 224 to produce feedback as the actuation element 208 is translated.
While the actuation assembly 200 of
As shown in
The distal coupler 262 is configured to couple the body 202 or the cover 228 with the catheter 302 and/or the strain relief tube 260. The distal coupler 262 may be coupled to the body 202, the cover 228, the catheter 302, and/or the strain relief tube 260 via adhesives, welding, fasteners, over-molding, heat staking, or the like, or combinations thereof. In a preferred embodiment, the distal coupler 262 is over-molded onto the catheter 302 and/or the strain relief tube 260 and is press-fit or snap-fit into the distal end of the cover 228. In some embodiments, the distal coupler 262 includes one or more ribs 264. The proximal end of the distal coupler 262 may include a rib 264 configured to maintain the rotational and positional coupling of the cover 228 and the distal coupler 262. For example, the rib 264 may fit in a slot of the cover 228 to prevent rotation of the catheter 302 relative to the body 202 and cover 228. The distal end of the distal coupler 262 may also include one or more ribs 264 configured to increase the rigidity of the distal coupler 262 during operation.
In some embodiments, the tissue recruiting device 100, such as the actuation assembly 200, may include markings or other indicia to assist operators in identifying and operating the grasping devices 104a, 104b, such as during a procedure. In some embodiments, one of the first and second grasping devices 104a, 104b (
In some embodiments, the actuation assembly 200 may also include markings or other indicia to assist operators in identifying the components of the actuation assembly 200 for controlling the respective grasping devices 104a, 104b, such as during operation. For example, the shroud 170, one or more of the corresponding translational control actuators 230a, rotational control actuator 230b, and optional operational control actuators 230c may include markings or other indicia which correspond to the corresponding grasping device 104a, 104b.
Referring now to
As shown in
The body 202 includes two longitudinal slots 280 toward the proximal end of the body 202. The longitudinal slots 280 may extend through the body 202. Each longitudinal slot 280 is configured to receive one of the translational control actuators 230a such that the translational control actuator 230a may slide within the longitudinal slot 280. In some embodiments, the longitudinal slots 280 have a length in the longitudinal direction substantially equivalent to the desired translational actuation distance of the actuation element 208 and the grasping device 104.
The body 202 also includes a lateral slot 282 distal to the longitudinal slots 280. The lateral slot 282 is configured to receive the rotational control actuators 230b in a lateral arrangement such that each rotational control actuator 230b may be independently rotated in the lateral slot 282. While the body 202 has been described as including a single lateral slot 282 for receiving both control actuators 230b, it will be understood that the body 202 may include a lateral slot 282 for each control actuator 230b or the lateral slots 282 may be proximal to the longitudinal slots 280. Further, the body 202 may include a biasing element, such as a spring, disposed in the lateral slots 282 and operable to bias the rotational control actuator 230b, such as to provide linear and rotational control.
The channels of the body 202 may be configured such that each actuation element 208 extends through one of the rotational control actuators 230b in the lateral slot 282 and couples with the translational control actuator 230a disposed in the corresponding longitudinal slot 280. Each actuation element 208 extends through the respective rotational control actuator 230b such that the actuation element 208 may translate proximally and distally through the rotational control actuator 230b. Each actuation element 208 is coupled with the rotational control actuator 230b such that the rotation of the rotational control actuator 230b translates into rotation of the actuation element 208 and the grasping device 104. For example, the rotational control actuator 230b may have an internal channel with a size, shape, or configuration operable with the size, shape, and configuration of the actuation element 208 to rotate the actuation element 208 while permitting the actuation element 208 to translate freely through the rotational control actuator 230b.
The proximal end of each actuation element 208 couples with the respective translational control actuator 230a such that the translation of the respective translational control actuator 230a in the longitudinal slot 280 translates into translation of the actuation element 208 and the corresponding grasping device 104. The actuation element 208 may be coupled with the translational control actuator 230a such that the actuation element 208 may rotate independently within the translational control actuator 230a. For example, the proximal end of the actuation element 208 may be coupled to the translational control actuator 230a via a ball-and-socket joint, bearings, a rotary coupling, a slip ring, or other rotationally permissible coupling.
The body 202 may be mirrored such as to allow for better alignment of grasping devices 104 during operation. In some embodiments, the control actuators 230a, 230b extend through the body 202 such that the control actuators 230a, 230b are accessible from either side of the body 202.
In some embodiments, as shown in
The body 202 may include two longitudinal slots 280 longitudinally aligned between the proximal and distal ends of the body 202. Each longitudinal slot 280 includes a control actuator 230 slidably disposed within the longitudinal slot 280. Each control actuator 230 is independently slidable in the respective longitudinal slot 280 to operably control the translation of one of the actuation elements 208. In the illustrated embodiment, the actuation assembly 200 includes a first actuation element 208a and a second actuation element 208b. As shown in
Each longitudinal slot 280 may include a guide rail 278 extending the length of the longitudinal slot 280. Each control actuator 230 may be slidably disposed on one of the guide rails 278 and the control actuator 230 may be rotated on the guide rail 278 to operably rotate the actuation element 208. Each longitudinal slot 280 may have a length in the longitudinal direction substantially equivalent to the desired translational actuation distance of the actuation element 208 and the grasping device 104.
The first actuation element 208a extends proximally through the body 202 and couples with the distal control actuator 230. The proximal end of the first actuation element 208a may be translationally and rotationally coupled with the distal control actuator 230. For example, the first actuation element 208a may be coupled with the distal control actuator 230 such that the first actuation element 208a translates as the distal control actuator 230 slides along the guide rail 278 and rotates with rotation of the distal control actuator 230.
The second actuation element 208b may extend proximally through the body 202 below the control actuators 230, as shown in
Referring now to
As shown in
The longitudinal slot 280 extends through an opening at the proximal end of the body 202. Each rotational control actuator 230b includes a stem 286 which extends proximally into the longitudinal slot 280 and couples with the proximal end of the actuation element 208. The stem 286 may be coupled with the proximal end of one of the actuation elements 208 such that rotation of the rotational control actuator 230b transfers to the actuation element 208 and the grasping device 104. The stems 286 may be sized, shaped, and configured such that the rotational control actuators 230b may remain coupled to the actuation elements 208 as the actuation element 208 are translated. In some embodiments, the translational control actuators 230a may be omitted and the rotational control actuators 230b may be operable to control the translation and rotation of the actuation elements 208.
As shown in
Each actuation element 208 may couple with one of the control actuators 230 disposed in the longitudinal slot 280. The control actuators 230 may be slidable and rotatable within the longitudinal slot 280 such that the rotation and translation of the control actuator 230 transfers to the actuation element 208 and the grasping device 104. In some embodiments, the operational elements 290 extend through the control actuators 230 such that the actuation elements 208 may rotate and translate independently from the operational control actuators 230c and such that the operational elements 290 may be maneuvered independently from the control actuators 230.
In some embodiments, one or more of the bodies 202 may include a biasing element 234 configured to keep the control actuators 230 in the unactuated position when the biasing element 234 is in the relaxed or normal state. For example, the biasing element 234 may be a helical coil configured to bias the control actuator 230 into the unactuated position and which may be compressed when the control actuator 230 is distally translated to operate the grasping device 104. The actuation element 208 and the operational element 290 may extend through the biasing element 234 such that the operational element 290 may be translationally coupled with the operational control actuator 230c and the actuation element 208 may be translationally and rotationally coupled with the control actuator 230. The operational control actuators 230c may be similarly biased with a biasing element 234 disposed between the body 202 and the operational control actuator 230c.
In some embodiments, as shown in
In the schematic illustration, each lock 292 is disposed between the bodies 202 and the catheter 302. However, it will be understood that the locks 292 may be disposed in other manners. For example, the locks 292 may be coupled with the distal ends of the bodies 202 or with the proximal end of the catheter 302. Additionally, any of the other actuation assemblies 200 may include one or more locks 292 operable to maintain the translation and/or rotation of the actuation elements 208 and/or the operational elements 290.
As shown in
The actuation element 208 may be coupled with the control actuator 230 such that the control actuator 230 is operable to control the translation and rotation of the actuation element 208. The control actuator 230 is coupled with the actuation element 208 such that rotation of the control actuator 230 transfers to the actuation element 208. The stem 286 is linearly translatable within the proximal portion of the channel 210 to control the translation of the actuation element 208. The stem 286 and/or the channel 210 may be sized, shaped, and configured such that the stem 286 is longitudinally movable within the channel 210 a distance substantially equivalent to the desired translational actuation distance of the actuation element 208 and the grasping device 104. The two control actuators 230 of the two bodies 202 may be independently operated to independently control the translation and rotation of the respective actuation element 208 and grasping device 104.
Each body 202 may include one or more rings 288 configured for an operator to grasp during operation, such as to grasp while the operator manipulates the respective control actuator 230. For example, the operator may insert fingers through each of the rings 288 to control the body 202 and use his/her thumb or other hand to translate and/or rotate the control actuator 230.
While the actuation assemblies 200 of
Referring now to
As shown in
The translational control actuator 230a is slidable on a guide rail 278 within a longitudinal slot 280 to control the translational position of either actuation element 208a, 208b. The operational control actuator 230c is slidable on another guide rail 278 within another longitudinal slot 280 to control the translational position of either operational element 290a, 290b. The rotational control actuator 230b is a rotational wheel disposed at the proximal end of the body 202 and configured to control the rotation of either actuation element 208a, 208b.
The actuation assembly 200 also includes a selector 272 that is slidably disposed within a lateral slot 282. The selector 272 may be slidable between a first position (e.g., left), a second position (e.g., middle), and a third position (e.g., right). When the selector 272 is in the first position, the control actuators 230a, 230b, 230c may be coupled with the first actuation element 208a and the first operational element 290a such that the first grasping device 104a may be operated. When the selector 272 is in the third position, the control actuators 230a, 230b, 230c may be coupled with the second actuation element 208b and the second operational element 290b such that the second grasping device 104b may be operated. When the selector 272 is in the second position, the control actuators 230a, 230b, 230c may be decoupled from the actuation elements 208a, 208b and the operational elements 290a, 290b, such as to reset the positions of the control actuators 230a, 230b, 230c.
As shown in
As shown in
In some embodiments, the selector 272 may also be operable to control the directional coupling between the control actuators 230a, 230b, 230c and the actuation elements 208 and the operational elements 290, such as between forward and reverse. In the illustrated embodiment, the selector 272 is a slider. However, the selector 272 may have other shapes, assemblies, and configurations. For example, the selector 272 may be a lever or arm, a rotatable dial, or the like.
While the control actuator 230a operable to control the linear position of the actuation elements 208 has been described as a slider, the control actuator 230a may have other configurations and assemblies. For example, the control actuator 230a may be a linear pull trigger coupled to a handle that a user may actuate by squeezing the trigger into the handle, a tangentially extending arm that may be actuated by pivoting the arm about a portion of the body 202, or the like.
In some embodiments, the actuation assembly 200 is configured to deploy one of the grasping devices 104 via a single motion. Referring back to
The control actuator 230 may be biased to the unactuated position by a biasing element 234, such as a helical spring. The user may depress the control actuator 230 by exerting sufficient downward force to overcome the biasing element 234, such as to deploy the grasping device 104. The actuation element 208 (or actuation sheath 224) and the channel 210, 214 may include slots or projections which cause the actuation element 208 to sufficiently rotate as the control actuator 230 is depressed. For example, the channels 210, 214 may each have a spiraling groove extending through the channel 210, 214 and the actuation element 208 (or actuation sheath 224) may include a projection which slides within the spiraling groove. As the control actuator 230 is depressed and the actuation element 208 is moved distally through the channel 210, the projection of the actuation element 208 may ride within the spiral groove of the channel 210 such that the actuation element 208 rotates and the grasping device 104 is sufficiently rotated to be deployed into tissue.
Referring now to
The actuation element 208 may be coupled with a mechanism operable to rotate the actuation element 208 independently from the translational control actuator 230a. As shown in
As shown in
As shown in
The actuation assembly 200 may also include a controller 298 in communication with the linear translating motor 294 and the rotational motor 296 such that the controller 298 is operable to control the linear translating motor 294 and/or the rotational motor 296. The controller 298 may include user inputs mechanisms, such as buttons, joysticks, toggles, a mouse, and the like, such that a user may input commands to control the operations of the linear translating motor 294 and the rotational motor 296 to control the position and rotation of the actuation element 208. For example, an operator may input commands into the controller 298 to actuate the linear translating motor 294 and/or the rotational motor 296 to translate and/or rotate the actuation element 208 and the grasping device 104.
In some embodiments, the tissue recruiting device 100 may be used with a snare or cutting device configured to cut the tissue recruited by the grasping devices 104. In some embodiments, the tissue recruiting device 100 may be used with a closure mechanism, such as an OTS clip or a TTS clip, configured to cinch the tissue recruited by the grasping devices 104. For example, a closure mechanism may be deployed through the endoscope after the grasping devices 104 has been deployed to circumferentially close the defect.
As shown in
The clip deployment system 400 may be operable to deploy the clip 402, such as independently from the operation of the grasping devices 104. In some embodiments, the
The clip deployment system 400 may include a clip deployment wire 404 configured to deploy the clip 402. The clip deployment wire 404 may be configured to transfer translational movement or force to deploy the clip deployment wire 404. The clip deployment wire 404 may be a solid cable, a hollow tube, or other suitable elongated object or combination of objects, such as a drive cable, a torque cable, a hypotube, spring sheath, or a catheter, configured to deploy the clip 402.
The proximal end of the clip deployment wire 404 may be coupled with a clip actuator 406. The clip actuator 406 may be coupled with the clip deployment wire 404 to control the linear translation of the clip deployment wire 404. In some embodiments, the clip actuator 406 is disposed in a longitudinal slot 280 in the body 202 such that the clip actuator 406 may linearly translate within the longitudinal slot 280. The clip actuator 406 may be linearly translated, such as by a user, toward the distal end of the body 202 to distally extend the distal end of the clip deployment wire 404 such that the clip 402 is deployed. The clip 402 may be seated around the distal end of the catheter 302 or a housing or shroud coupled to the distal end of the catheter 302. The distal movement of the clip deployment wire 404 may push the clip 402 from its seated position such that the clip 402 is deployed, such as around recruited tissue as described below.
Referring now to
After a defect is identified, the endoscope and/or the device 100 may be oriented above the defect with the clip 402 seated around the clip deployment housing 408. The grasping devices 104 may be used to approximate two or more sides of the defects and may be recruited or pulled into the clip deployment housing 408. The clip 402 may then be deployed around the sides of the defect to circumferentially close the defect.
As shown in
As shown in
As shown in
As shown in
At step 502, grasping devices are positioned above an identified defect. The grasping devices may be incorporated into a tissue recruiting assembly of a tissue recruiting device. The grasping devices may be coupled to an actuation assembly via actuation elements such that a user may control the position and rotation of the grasping devices. The grasping devices may be extended through a catheter which is inserted through an endoscope to the desired location. In some embodiments, the grasping devices include helical coils configured to pierce and spiral into tissue to grasp the target tissue.
At step 504, a control actuator is moved to translate the first grasping device. As described above, the control actuator of the actuation assembly is coupled to the first grasping device via a first actuation element. The control actuator is operable to control the translation of the first grasping device via the first actuation element. The control actuator may be controlled by a user such that the first grasping device is disposed substantially above a first side of the defect. In some embodiments, the control actuator is a translational control actuator operable to control the linear position of the first grasping device.
At step 506, a control actuator is moved to rotate the first grasping device. As described above, the control actuator of the actuation assembly is coupled to the first grasping device via a first actuation element. The control actuator is operable to control the rotation of the first grasping device via the first actuation element. The control actuator may be controlled by a user such that the first grasping device is rotated into position to grasp tissue on the first side of the defect. In some embodiments, the control actuator is a rotational control actuator operable to control the rotation of the first grasping device. In other embodiments, the control actuator is the same control actuator used in step 504 such that a single control actuator is operable to control the translation and rotation of the first grasping device via the first actuation element.
At step 508, a first side of the defect is grasped with the first grasping device. In some embodiments, an operational control actuator is coupled to the first grasping device via a first operational element. The operational control actuator may be actuated to operate the first grasping device to grasp tissue, such as by opening and closing a movable jaw to grasp tissue, via the first operational element. In other embodiments, one or more control actuators may be manipulated to translate and rotate the first grasping device via the first actuation element such that the first gasping device pierces into and securely grasps tissue on the first side of the defect.
At step 510, a control actuator is moved to translate the second grasping device. The endoscope and/or the catheter may be maneuvered such that the second grasping device is disposed substantially above the second side of the defect. As described above, the control actuator of the actuation assembly is coupled to the second grasping device via a second actuation element. The control actuator is operable to control the translation of the second grasping device via the second actuation element independently from the first grasping device. The control actuator may be controlled by a user such that the second grasping device is disposed substantially above a second side of the defect. The first grasping device may continue to grasp tissue on the first side of the defect as the second grasping device is translated via the second actuation element. In some embodiments, the control actuator is a translational control actuator operable to control the linear position of the second grasping device. In some embodiments, the control actuator is different from the control actuator used to translate the first grasping device in step 504.
At step 512, a control actuator is moved to rotate the second grasping device. As described above, the control actuator of the actuation assembly is coupled to the second grasping device via the second actuation element. The control actuator is operable to control the rotation of the second grasping device via the second actuation element independently from the first grasping device. The control actuator may be controlled by a user such that the second grasping device is rotated into position to grasp tissue on the second side of the defect. The first grasping device may continue to grasp tissue on the first side of the defect as the second grasping device is rotated via the second actuation element. In some embodiments, the control actuator is a rotational control actuator operable to control the rotation of the second grasping device. In other embodiments, the control actuator is the same control actuator used in step 510 such that a single control actuator is operable to control the translation and rotation of the second grasping device via the second actuation element. In some embodiments, the control actuator is different from the control actuator used to rotate the first grasping device in step 506.
At step 514, a second side of the defect is grasped with the second grasping device. In some embodiments an operational control actuator is coupled to the second grasping device via a second operational element. The operational control actuator may be actuated to operate the second grasping device to grasp tissue, such as by opening and closing a movable jaw to grasp tissue, via the second operational element. The operational control actuator may be different from the operational control actuator of step 512. In other embodiments, one or more control actuators may be manipulated to translate and rotate the second grasping device via the second actuation element such that the second grasping device pierces into and securely grasps tissue on the second side of the defect.
At step 516, the actuation elements are retracted to recruit the tissue grasped by the first and second grasping devices. As described above, one or more control actuators may be controlled to proximally retract the actuation elements such that the grasping devices are retracted toward the catheter. Additionally, before the actuation elements are retracted to recruit the tissue, one or more of the grasping devices may be released from the tissue and the above steps may be repeated such that the grasping devices grasp tissue at the desired locations. The catheter may also be advanced distally from the endoscope, such as to close the defect away from the endoscope and prevent the endoscope from restricting the movement of the actuation elements.
Optionally, at step 518, a clip is deployed around the recruited tissue to substantially close the defect. The clip may be a hemostatic clip which is deployed circumferentially around the recruited tissue to substantially close the tissue. As described above, a clip actuator may be actuated to deploy the clip via a clip deployment wire. The clip actuator may translate the clip deployment wire such that the clip is pushed off a clip deployment housing to cinch or close the recruited tissue.
It is to be understood that the detailed description is intended to be illustrative, and not limiting to the embodiments described. Other embodiments will be apparent to those of skill in the art upon reading and understanding the above description. Moreover, in some instances, elements described with one embodiment may be readily adapted for use with other embodiments. Therefore, any products, methods and/or systems described herein are not limited to the specific details, the representative embodiments, and/or the illustrative examples shown and described. Accordingly, departures may be made from such details without departing from the spirit or scope of the general aspects of the present disclosure.
Additionally, the components and materials described hereinafter as making up the various embodiments are intended to be illustrative and not restrictive. It should be appreciated that many suitable components and materials that would perform the same or a similar function as the materials described herein are intended to be embraced within the scope of embodiments of the present disclosure.
The present application claims priority to U.S. Provisional Patent Application No. 63/344,063, filed on May 20, 2022, the entire disclosure of which is incorporated herein by reference as though recited herein its entirety.
Number | Date | Country | |
---|---|---|---|
63344063 | May 2022 | US |