The present invention relates to a laryngeal mask airway device. More specifically, the present invention relates to a laryngeal mask airway device having a tab disposed near the device's proximal end for facilitating position control of the device.
The laryngeal mask airway device is a well known device that is useful for establishing airways in unconscious patients. One popular laryngeal mask airway device has been marketed commercially for many yeas as the “Classic” by the Laryngeal Mask Company of Cyprus. Such devices are described for example in U.S. Pat. No. 4,509,514. The Classic is a reusable device and is guaranteed to survive at least forty sterilizations, and in practice these devices may generally be sterilized (and reused) more than forty times before becoming too worn for reuse. In recent years, attempts have been made to develop reduced cost, disposable, laryngeal mask airway devices. U.S. patent application Ser. Nos. 09/544,681 and 10/138,806, which name the inventor of the present application, describe several embodiments of disposable laryngeal mask airway devices.
In operation, cuff 134 is deflated, and the mask portion is then inserted through the patient's mouth into the patient's pharynx. The device is preferably positioned so that distal end 138 of mask portion 130 rests against the patient's normally closed esophagus and so that the open end 140 (shown in
For convenience of exposition, the term “fully inserted configuration” shall be used herein to refer to a laryngeal mask airway device that has been inserted into a patient and has the following characteristics: (1) the distal end of the mask portion is pressed against the patient's normally closed esophageal sphincter; (2) the cuff is inflated and forms a seal around the patient's glottic opening; and (3) the airway tube extends from a proximal end located outside the patient's mouth to a distal portion that is coupled to the mask portion, the tube extending through the patient's mouth and the patient's natural upper airway so that the device provides a sealed airway extending from the tube's proximal end to the patient's lungs.
Although prior art disposable laryngeal mask airway devices have performed well, there remains a need for providing improved devices. In particular, there remains a need for providing a disposable laryngeal mask airway device that more reliably remains stably in the fully inserted configuration once the device has been inserted into a patient.
These and other objects are provided by an improved disposable laryngeal mask airway device. The device may include a tab disposed near the proximal end of the airway tube. When the device is inserted into a patient, the tab is disposed near the patient's upper lip. The tab is conveniently located so that adhesive tape may be attached to the tab and the patient's cheeks. The tape applies a force that biases the device generally into the patient and, in particular, biases the distal end of the device against the patient's esophageal sphincter. This allows the device to remain more stably in the fully inserted configuration and reduces the likelihood that regurgitated material will be aspirated into the patient's lungs. The device may also include a flange in the inflatable cuff for supporting the epiglottis and preventing the epiglottis from blocking the airway passage provided by the device.
Still other objects and advantages of the present invention will become readily apparent to those skilled in the art from the following detailed description wherein several embodiments are shown and described, simply by way of illustration of the best mode of the invention. As will be realized, the invention is capable of other and different embodiments, and its several details are capable of modifications in various respects, all without departing from the invention. Accordingly, the drawings and description are to be regarded as illustrative in nature, and not in a restrictive or limiting sense, with the scope of the application being indicated in the claims.
For a fuller understanding of the nature and objects of the present invention, reference should be made to the following detailed description taken in connection with the accompanying drawings in which the same reference numerals are used to indicate the same or similar parts wherein:
Connector portion 400 includes a proximal portion 410, a distal portion 420, and a flange 430 located between the proximal and distal portions 410, 420. Tab 360 is formed as an integral part of flange 430. Proximal portion 410 is cylindrical and is configured to couple to standard medical ventilating, or anesthetic devices. Distal portion 420 is oblong and is configured for telescopic insertion into a proximal end 452 of integral tube and backplate portion 450. Airway tube 310 is assembled by telescopically inserting distal portion 420 into the proximal end 452 of integral tube and backplate portion 450 until flange 430 contacts proximal end 452 as shown in
One problem with prior art disposable laryngeal mask airway devices is that they sometimes do not remain stably in the fully inserted configuration. In particular, in prior art devices it is difficult to insure that the distal tip of the device remains pressed against the patient's normally closed esophageal sphincter. Tab 360 advantageously facilitates maintaining device 300 stably in the fully inserted configuration, and, in particular, in maintaining firm contact between the distal end 338 of cuff 334 and the patient's normally closed esophageal sphincter.
As shown in
As noted above, and as shown in
Although the tab 360 may be used with a variety of laryngeal mask airway devices, it is most advantageously used with devices in which the cross section of the airway tube is oblong (e.g., as generally illustrated in
Referring back to
Another way to describe the orientation of tab 360 with respect to the airway tube is that the tab extends from the wall of the tube, which defines the tube's internal airway passage, outwardly, or away from the internal passage. When the device 300 is in the fully inserted configuration, the tab extends from the tube wall outwardly towards the patient's nose. More generally, if an up-down direction is defined as being along a line extending between the patient's nose and the patient's chin, the tab 360 extends generally in the up-down direction when the device is in the fully inserted configuration.
In addition to facilitating holding device 300 stably in the fully inserted configuration, tab 360 also facilitates insertion of device 300 into a patient and also facilitates general manipulation of the device. The proximal end of the airway tube is typically grasped and manipulated as a laryngeal mask airway device is inserted into a patient. Lubricant is typically applied to facilitate passing the mask portion through the patient's natural airway. However, the lubricant can also make the proximal end of the airway tube slippery and difficult to handle. Tab 360, which extends outwardly from the proximal end of the airway tube, provides an additional surface that may conveniently be grasped during insertion and manipulation of the device. Tab 360 thereby generally facilitates insertion and manipulation of device 300.
As discussed above, device 300 has a single tab 360 that projects generally along the patient's upper lip when the device is in the fully inserted configuration. One reason this configuration is convenient is that the patient's upper lip and cheeks are generally immobile with respect to the rest of the patient's head. In contrast, the patient's lower lip and jaw are easily moved with respect to the head and accordingly provide a less stable platform for anchoring the device 300. However, although a single tab projecting along the upper lip is a convenient configuration, it will be appreciated that other configurations of tabs may be used. For example, devices constructed according to the invention can instead include a tab that projects downward along the lower patient's lower lip, or in some other direction. Alternatively, devices constructed according to the invention can include two tabs, one projecting along the upper lip and another projecting along the lower lip, when the device is in the fully inserted configuration, and adhesive tape may be fixed to either or both of the tabs and to the patient's cheeks or to other parts of the face.
Also, provision of tabs, such as tab 360, have been discussed in the context of disposable laryngeal mask airway devices. It will be appreciated that such tabs may also be usefully included according to the invention in non-disposable laryngeal mask airway devices.
Also, tab 360 has been discussed as extending substantially perpendicularly from the distal portion 420 for a distance D and then continuing to extend at an angle theta. It will be appreciated that these are merely preferred choices and that the geometry of the tab can vary considerably. For example, the tab need not extend in a direction substantially perpendicular to a line such as line L, and the tab may instead simply extend in a direction generally transverse, or crosswise, to such a line. Also, the tab need not extend in one direction for a first distance and then continue to extend at the angle theta as shown, and may instead simply be formed, for example, as a single planar piece. However, the tab 360 preferably extends for a distance that is short enough to prevent interference with bodily structures (e.g., short enough to prevent bumping into the nose) and that is long enough to permit easy and reliable attachment of adhesive tape, such that the tape, when applied, reliably biases the tab inwards towards the patient and the tape does not easily slip off of the tab.
It will be appreciated that tab 360 differs markedly from flanges used in prior art devices, such as those illustrated in
As shown in
When cuff 334 is deflated, the presence of flange 810 does not add substantially to the thickness of the device. When cuff 334 is inflated, flange 810 defines a structure that can support the epiglottis when the device is in the fully inserted configuration.
As is known, when a patient is lying in a supine position (i.e., on their back facing upwards), and when a laryngeal mask airway device is inserted in the patient, the patient's epiglottis may fall into the bowl shaped space defined (at least in part) by the inflated cuff and obstruct the airway provided by the device. Various structures have been proposed for preventing the epiglottis from so obstructing the airway.
When cuff 334 is inflated, the outer wall of the cuff tends to resiliently “spring” back to its original shape whenever any portion of the cuff is depressed, or biased in a particular direction (e.g., by an anatomical structure). This tendency of the cuff to resiliently spring back to its original shape is similar to the fashion in which a child's inflated balloon will return to its original shape when the balloon is squeezed and then released. Since the flange 810 is attached to cuff 334, when cuff 334 is inflated the flange 810 provides a springy, or resilient, support for anatomical structures, such as the epiglottis, that may come into contact with the flange 810.
The wall of the inflatable portion of the cuff 334 and the flange 810 may both be about 0.4 millimeters thick and may both be made of PVC material that is characterized by a durometer of about forty to fifty on the Shore A scale of hardness. The entire cuff, including flange 810 and the inflatable portion, are preferably formed simultaneously by injection molding.
As shown best in
Device 300 has been disclosed as including tab 360 and epiglottis support flange 810. It will be appreciated that laryngeal mask airway devices may be constructed according to the invention that include (a) the tab but not the flange; (b) the flange but not the tab; and (c) both the tab and flange.
As discussed above,
Although the laryngeal mask airway device is generally simple to insert into a patient (e.g.,. as compared to an endotracheal tube), problems can occur during insertion. For example, instead of lodging against the esophageal sphincter, the distal end of the device sometimes enters the glottic opening such that the device extends partially into the patient's trachea. Also, the distal end of the device can become folded in the direction indicated by the arrow 1, or by the direction indicated by the arrow 2, during insertion and then fail to straighten out again such that the device never reaches the proper fully inserted configuration. Rod 700 helps detect when such undesirable conditions occur, helps prevent such undesirable conditions from occurring, and can sometimes help correct such undesirable conditions.
When device 700 is in the proper shape for allowing the device to assume the fully inserted configuration, the indicator mark 716 is adjacent to the proximal end of the connector portion 410 as shown in
In addition to using the rod 710 to detect the condition, or shape, of device 700, the rod 710 can also be used to control the shape of device 700. The proximal end 712 may be grasped and pushed or pulled relative to the airway tube 310 in the directions indicated by arrows 3 and 4. Pulling the proximal end 712 in the direction indicated by arrow 4 causes the distal end 720 of the device to move in the direction indicated by the arrow 1. Similarly, pushing on the proximal end 712 in the direction indicated by arrow 3 causes the distal end 720 of the device to move in the direction indicated by the arrow 2. Such motions of the rod 710 can facilitate insertion of the device into a patient. For example, pulling the rod in the direction indicated by arrow 4 can help the distal end of the device to curve around the back of the patient's tongue during insertion. Similarly, pushing on the rod in the direction indicated by arrow 3 can help straighten out the device. If it is not possible to correct the shape of the device by pulling or pushing on the rod, the position of the indicator mark 716 will indicate that the device 700 has not been properly inserted and the device can simply be withdrawn from the patient and inserted again.
In addition to the other advantageous features of tab 360 which have been discussed above, tab 360 also provides a convenient place for holding airway tube 310 while manipulating the proximal end 712 of rod 710. As discussed above, the distal end 714 of rod 710 can be attached to the epiglottis support flange 810. However, the distal end of rod 714 can alternatively be attached to the airway tube 310 itself. In such embodiments, it is generally advantageous to attach the distal end of the rod 714 to the distal most portion of the airway tube 310. Referring back to
Device 700 has been disclosed as including tab 360, epiglottis support flange 810, and rod 710. It will be appreciated that laryngeal mask airway devices may be constructed according to the invention that include the rod with or without either of the tab and flange.
Since certain changes may be made in the above apparatus without departing from the scope of the invention herein involved, it is intended that all matter contained in the above description or shown in the accompanying drawing shall be interpreted in an illustrative and not a limiting sense.
Number | Name | Date | Kind |
---|---|---|---|
2862498 | Weekes | Dec 1958 | A |
3554673 | Schwartz et al. | Jan 1971 | A |
4231365 | Scarberry | Nov 1980 | A |
4509514 | Brain | Apr 1985 | A |
4553540 | Straith | Nov 1985 | A |
4793327 | Frankel | Dec 1988 | A |
4872483 | Shah | Oct 1989 | A |
4953547 | Poole, Jr. | Sep 1990 | A |
4995388 | Brain | Feb 1991 | A |
5038766 | Parker | Aug 1991 | A |
5241956 | Brain | Sep 1993 | A |
5249571 | Brain | Oct 1993 | A |
5277178 | Dingley | Jan 1994 | A |
5282464 | Brain | Feb 1994 | A |
5297547 | Brain | Mar 1994 | A |
5303697 | Brain | Apr 1994 | A |
5339805 | Parker | Aug 1994 | A |
5339808 | Don Michael | Aug 1994 | A |
5355879 | Brain | Oct 1994 | A |
5391248 | Brain | Feb 1995 | A |
5529582 | Fukuhara | Jun 1996 | A |
5569219 | Hakki et al. | Oct 1996 | A |
5584290 | Brain | Dec 1996 | A |
5599301 | Jacobs et al. | Feb 1997 | A |
5623921 | Kinsinger et al. | Apr 1997 | A |
5632271 | Brain | May 1997 | A |
RE35531 | Callaghan et al. | Jun 1997 | E |
5653229 | Greenberg | Aug 1997 | A |
5655528 | Pagan | Aug 1997 | A |
5682880 | Brain | Nov 1997 | A |
5711293 | Brain | Jan 1998 | A |
5743254 | Parker | Apr 1998 | A |
5746202 | Pagan | May 1998 | A |
5771889 | Pagan | Jun 1998 | A |
5791341 | Bullard | Aug 1998 | A |
5850832 | Chu | Dec 1998 | A |
5865176 | O'Neil | Feb 1999 | A |
5878745 | Brain | Mar 1999 | A |
5881726 | Neame | Mar 1999 | A |
5896858 | Brain | Apr 1999 | A |
5915383 | Pagan | Jun 1999 | A |
5937860 | Cook | Aug 1999 | A |
5979445 | Neame et al. | Nov 1999 | A |
5983897 | Pagan | Nov 1999 | A |
5988167 | Kamen | Nov 1999 | A |
6003510 | Anunta | Dec 1999 | A |
6003514 | Pagan | Dec 1999 | A |
6012452 | Pagan | Jan 2000 | A |
6021779 | Pagan | Feb 2000 | A |
6050264 | Greenfield | Apr 2000 | A |
6070581 | Augustine et al. | Jun 2000 | A |
6079409 | Brain | Jun 2000 | A |
D429811 | Bermudez | Aug 2000 | S |
6095144 | Pagan | Aug 2000 | A |
6116243 | Pagan | Sep 2000 | A |
6119695 | Augustine et al. | Sep 2000 | A |
6390093 | Mongeon | May 2002 | B1 |
6427686 | Augustine et al. | Aug 2002 | B1 |
20030131845 | Lin | Jul 2003 | A1 |
Number | Date | Country |
---|---|---|
2067782 | Jun 1999 | CA |
2012750 | Aug 1999 | CA |
0 389 272 | Sep 1990 | EP |
0 402 872 | Dec 1990 | EP |
0 294 200 | Apr 1992 | EP |
0 580 385 | May 1996 | EP |
0 712 638 | May 1996 | EP |
0 732 116 | Sep 1996 | EP |
0 796 631 | Sep 1997 | EP |
0 845 276 | Jun 1998 | EP |
0 865 798 | Sep 1998 | EP |
0 922 465 | Jun 1999 | EP |
1 125 595 | Aug 2001 | EP |
2111394 | Dec 1982 | GB |
2205499 | Jun 1987 | GB |
2317342 | Aug 1997 | GB |
2317830 | Sep 1997 | GB |
2318735 | Oct 1997 | GB |
2319478 | Oct 1997 | GB |
2321854 | Jan 1998 | GB |
2323289 | Feb 1998 | GB |
2323290 | Mar 1998 | GB |
2323291 | Mar 1998 | GB |
2323292 | Mar 1998 | GB |
2359996 | Sep 2001 | GB |
10118182 | May 1998 | JP |
10216233 | Aug 1998 | JP |
10263086 | Oct 1998 | JP |
10277156 | Oct 1998 | JP |
10314308 | Dec 1998 | JP |
10323391 | Dec 1998 | JP |
10328303 | Dec 1998 | JP |
11128349 | May 1999 | JP |
11192304 | Jul 1999 | JP |
11206885 | Aug 1999 | JP |
WO 9103207 | Mar 1991 | WO |
WO 9107201 | May 1991 | WO |
WO 9112845 | Sep 1991 | WO |
WO 9213587 | Aug 1992 | WO |
WO 9533506 | Dec 1995 | WO |
WO 9712640 | Apr 1997 | WO |
WO 9712641 | Apr 1997 | WO |
WO 9816273 | Apr 1998 | WO |
WO 9906093 | Feb 1999 | WO |
WO 0022985 | Apr 2000 | WO |
WO 0023135 | Apr 2000 | WO |
WO 0061212 | Oct 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20050051173 A1 | Mar 2005 | US |