Laryngeal mask for use with an endoscope

Information

  • Patent Grant
  • 10806327
  • Patent Number
    10,806,327
  • Date Filed
    Thursday, November 29, 2012
    11 years ago
  • Date Issued
    Tuesday, October 20, 2020
    3 years ago
Abstract
An endoscopy device for facilitating the use of an endoscope, comprising at least one airway tube and a mask carried at one end of the at least one airway rube, the mask having a distal end and a proximal end and a peripheral formation capable of conforming to, and of fitting within, the actual and potential space behind the larynx of the patient so as to form a seal around the circumference of the laryngeal inlet, the peripheral formation surrounding a hollow interior space or lumen of the mask and the at least one airway tube opening into the lumen of the mask, the device further comprising a conduit adapted for passage of an endoscope into the oesophagus of a patient when the mask is in place.
Description

This application is the U.S. National Phase under 35 U.S.C. § 371 of International Application No. PCT/GB2012/000876, filed Nov. 29, 2012, which claims priority to Great Britain Patent Application No. 1120628.1, filed Nov. 30, 2011.


The present invention relates to an endoscopy device, and more particularly to an endoscopy device that also provides an airway.


Certain surgical and diagnostic endoscopy procedures require the insertion of instruments or viewing devices into the upper gastrointestinal tract of a patient. For example, in endoscopy an endoscope is passed directly through the mouth of the patient, into the oesophagus and down to the stomach and duodenum. The endoscope includes at its tip a light and a visualisation device such as a camera and can include a working channel down which the operator can pass other instruments. In an endoscopy the patient is usually given some form of local anesthetic, and in some cases also a sedative. A mouth guard is placed between the patient's teeth and the endoscope is passed through it, at which point the patient is required to swallow the leading or distal end of the endoscope. Once the patient has swallowed the distal end, the operator must then push the endoscope by manual force down through the oesophagus into the stomach and duodenum.


A number of problems can be experienced with procedures such as endoscopy that require insertion of instruments or viewing devices blind and under manual force into a patient's oesophagus. Firstly, the use of local anaesthetics and sedatives is undesirable in some patients and may cause cardio respiratory complications, including small variations in a patient's vital signs to arrhythmias, respiratory arrest, myocardial infarction, shock and possibly even death (page 7, Complications of Upper Gastrointestinal Endoscopy, Riley and Alderson, BSG Guidelines in Gastroenterology, November 2006). In addition, upper gastrointestinal endoscopy may cause problems such as infection, perforation or in some cases, bleeding. Specifically, perforation may take place in the pharynx or oesophagus of a patient, often at sites of pathology or as a result of blind insertion of an endoscope (pages 7 and 8, Complications of Upper Gastrointestinal Endoscopy, Riley and Alderson, BSG Guidelines in Gastroenterology, November 2006). Furthermore, it is known that therapeutic upper gastrointestinal endoscopy often takes a longer amount of time than diagnostic endoscopy. In addition, in many cases the use of such a technique may be more uncomfortable for the patient concerned and may require a greater level of intravenous sedation, which combined with intravenous analgesia, may cause cardio respiratory complications (page 8, Complications of Upper Gastrointestinal Endoscopy, Riley and Alderson, BSG Guidelines in Gastroenterology, November 2006).


In addition, following upper gastrointestinal endoscopy, patients may experience some minor discomfort to the throat and abdomen. Although these complaints are generally considered to be minor, one prospective study has found that approximately 2% of patients went on to seek medical advice, with some patients being hospitalised (page 7, Complications of Upper Gastrointestinal Endoscopy, Riley and Alderson, BSG Guidelines in Gastroenterology, November 2006).


At present, an endoscope is usually inserted into the oesophagus of a patient on its own, i.e. in the absence of a guide device. This typically causes problems during general anaesthesia as it may interfere with and obstruct the breathing of the patient, due to the fact that little or no air supply is provided. Therefore, in such situations, it is important to carry out the investigative procedure quickly, minimising the amount of time in which the endoscope is inserted. This may result in less information being obtained during the investigative procedure, may be dangerous to the patient and may result in increased costs being incurred.


It is known to use a guide tube to provide a path for travel of an endoscope into a body cavity. EP 2368481 and EP 2368483 relate to a guide device for guiding the entry of an endoscope into a body cavity of a patient.


Artificial airway devices such as the laryngeal mask airway device are well known devices useful for establishing airways in unconscious patients. In its most basic form a laryngeal mask airway device consists of an airway tube and a mask carried at one end of the airway tube, the mask having a peripheral formation often known as a “cuff” which is capable of conforming to and of fitting within, the actual and potential space behind the larynx of the patient so as to form a seal around the laryngeal inlet. The cuff can be inflatable, and in most variants it surrounds a hollow interior space or lumen of the mask, the at least one airway tube opening into the lumen. U.S. Pat. No. 4,509,514 is one of the many publications that describe laryngeal mask airway devices such as this. It is relatively easy to insert a laryngeal mask airway device into a patient and thereby establish an airway. Also, the laryngeal mask airway device is a “forgiving” device in that even if it is inserted improperly, it still tends to establish an airway. Accordingly, the laryngeal mask airway device is often thought of as a “life saving” device. Also, the laryngeal mask airway device may be inserted with only relatively minor manipulation of the patient's head, neck and jaw. Further, the laryngeal mask airway device provides ventilation of the patient's lungs without requiring contact with the sensitive inner lining of the trachea and the size of the airway established is typically significantly larger than the size of the airway established with an endotracheal tube. Also, the laryngeal mask airway device does not interfere with coughing to the same extent as endotracheal tubes. Largely due to these advantages, the laryngeal mask airway device has enjoyed increasing popularity in recent years.


During endoscopy, it is preferable for an endoscope to be thin and flexible, in order to assist in examination of the upper gastrointestinal tract of a patient. Such a device would generally not be suitable for use with a laryngeal mask which would typically restrict the movement of the endoscope within the patient. In addition, the provision of a laryngeal mask in combination with an endoscope may present difficulties to a user as the endoscope may interfere with insertion of the laryngeal mask within the oesophagus of a patient, such that the insertion of the laryngeal mask in combination with an endoscope would typically be more difficult when compared with insertion of the mask alone.


It is an object of the present invention to seek to mitigate problems such as these.


According to a first aspect of the invention there is provided an endoscopy device for facilitating the use of a endoscope, comprising at least one airway tube and a mask carried at one end of the at least one airway tube, the mask having a distal end and a proximal end and a peripheral formation capable of conforming to, and of fitting within, the actual and potential space behind the larynx of the patient so as to form a seal around the circumference of the laryngeal inlet, the peripheral formation surrounding a hollow interior space or lumen of the mask and the at least one airway tube opening into the lumen of the mask, the device further comprising a conduit adapted for passage of an endoscope into the oesophagus of a patient when the mask is in place.


The provision of an endoscopy device in accordance with the present invention has the combined benefits of establishing an airway within a patient and protecting the airway from regurgitation or vomiting that might be caused by endoscopy. Thus, the device of the present invention advantageously assists in the safe and accurate insertion of an endoscope within the oesophagus of a patient, whilst at the same time establishing an airway within the patient.


Preferably, the device of the present invention comprises a proximal end and a distal end, wherein a major axis (20 of FIG. 2) is provided therebetween, and wherein a conduit (8 of FIG. 2) is provided at an angle β (21 of FIG. 2) such that it is offset to the midline with respect to the major axis of the device. Advantageously, the provision of the conduit at an angle β which is offset to the midline enables both the conduit and the airway tube to be accommodated within the oesophagus of a patient, increasing the amount of space available for the airway tube within the oesophagus and preventing obstruction of the airway. Typically, the cuff and airway tube are positioned substantially adjacent to the midline with respect to the major axis of the device.


Typically, the device of the present invention minimises the frictional contact between the inside walls of the conduit and an endoscope inserted therein. Advantageously, the device of the present invention assists in the insertion of an endoscope within the conduit and thus the oesophagus of a patient.


Preferably, the conduit has a large bore diameter. Typically, the conduit has a diameter of between about 5 and 25 mm, more typically between about 10 and 20 mm and most typically about 15 mm, depending on the size of the endoscopy device. Advantageously, the diameter of the conduit allows the passage of an endoscope through the conduit. Thus, the conduit forms an “operating channel” through which a surgeon can view the upper gastrointestinal tract of a patient. In addition, the diameter of the conduit may be varied depending on the anatomy of a patient. Preferably, the radial wall thickness of the conduit is between about 1 to 2 mm.


Preferably, the conduit comprises a plurality of bores. Typically, the conduit comprises a plurality of channels, advantageously providing a structure having an increased rigidity. In addition, the conduit is preferably substantially flexible to assist in the insertion of the device within the anatomy of the patient.


In a preferred embodiment, the conduit comprises a silicone material. In another embodiment, the conduit may comprise a plastics material, such as polyvinylchloride (PVC), or rubber. Preferably, the conduit has a durometer hardness of between 60 and 70 Shore. This durometer hardness has the advantage that, upon insertion, less force is required to insert the conduit within the oesophagus of the patient.


Typically, the endoscopy device in accordance with the present invention is inserted into the upper oesophageal sphincter of a patient. Due to the narrow dimensions of this region of the anatomy, careful insertion of the device is required. Typically, the endoscopy device in accordance with the present invention is inserted into the upper oesophageal sphincter by means of the tip of the cuff, which provides guided insertion of the device. Furthermore, the distal flexibility of the tip of the device may assist in tracking the posterior curvature of the throat of a patient upon insertion of the device and reduces trauma to the throat of the patient.


The use of an endoscopy device in accordance with the present invention in combination with an endoscope is safer than use of the endoscope alone and advantageously allows the endoscope to be inserted within the oesophagus of a patient for a longer period of time.


Typically; the peripheral formation may be inflatable. Preferably, the peripheral formation is an inflatable cuff. The cuff is typically capable of conforming to and fitting within the actual and potential space behind the larynx of the patient so as to form a seal around the laryngeal inlet. Typically, the cuff extends from a proximal end to a distal end. It is preferred that the mask describes a substantially convex curve, from a proximal to distal end. It is further preferred that the mask comprises a backplate, the backplate having a dorsal side and a ventral side, the dorsal side being substantially smooth and having a convex curvature across its width. It is also preferred that the dorsal surface of the airway tube corresponds in curvature to the curvature across the width of the backplate. All of these expedients assist in making insertion of the mask easier.


The airway tube preferably comprises a material that is relatively more rigid than the material of the mask body. Typically, the airway tube has a smaller diameter than the diameter of the conduit, thus providing more space for the conduit upon insertion of the device within a patient. Preferably, the airway tube is reinforced such that the formation of kinks within the tube is avoided. Both the airway tube and the mask body preferably comprise a plastics material. In one embodiment, the airway tube may comprise a silicone material.


In some embodiments, the airway tube may comprise a connector element at the proximal end thereof. The connector element may be provided to connect the airway tube to a gas supply. In a preferred embodiment, the airway tube does not comprise a connector element at the proximal end thereof. Advantageously, the absence of a connector element at the proximal end of the airway tube assists in the insertion of the airway tube within the oesophagus of a patient.


In a preferred embodiment, the conduit has a length such that, in use, it extends from the distal end of the mask, passes through the mouth of a patient and emerges between the teeth of the patient. Advantageously, the conduit and thus the endoscope may be inserted through the mouth of a patient.


In one embodiment, the airway tube includes a relatively softer wall portion adjacent a point that, in use, will be adjacent the patient's teeth. It is preferred that the relatively softer portion forms a part of a bite block. The provision of a bite block at a relatively softer portion of the airway tube has the advantage that it guards against damage to the teeth of a patient by virtue of the less rigid parts. In another embodiment, a bite block may be provided on the conduit. The provision of a bite block on the airway tube or conduit has the additional advantage that it prevents collapse of the channel provided by either component. For the avoidance of doubt, the endoscopy device may or may not have means for removal of oesophageal material.


Preferably, the distal end of the conduit is substantially adjacent to the distal end of the cuff. More preferably, the distal end of the conduit is provided at an angle α to the horizontal plane (wherein the horizontal plane is perpendicular to the major axis of the device when the device is in a substantially linear conformation). Typically, the angle α is about 10 to 15 degrees to the horizontal plane, and more preferably about 45 degrees to the horizontal plane. Preferably, the angle α is an acute angle. The provision of a conduit having a distal end which is provided at an angle α with respect to the horizontal plane assists in the insertion of the device within a patient. Advantageously, the greater the size of the angle α with respect to the horizontal plane, the easier the insertion of the device within a patient. Preferably, the distal end of the conduit does not extend significantly beyond the distal end the cuff, such that it does not interfere with the guiding means provided by the tip of the cuff (at the distal end of the cuff) during insertion of the device.


Typically, the conduit may be positioned such that it projects in a left or right direction with respect to the major axis of the device, when viewed from the front of the device. Advantageously, the direction in which the conduit projects relative to the major axis of the device may be selected depending on whether the person operating the endoscopy device is left or right handed.


In a preferred embodiment, an aperture may be provided within the cuff. More preferably, an aperture may be provided at the distal end of the cuff. Advantageously, the provision of an aperture within the cuff facilitates the attachment of the conduit to the cuff. In addition, the provision of an aperture within the cuff may assist in the use of an endoscope to view the upper gastrointestinal tract of a patient, when such an instrument is inserted within the conduit.


Typically, the conduit adopts a straight or linear configuration. In another embodiment, the conduit may be moulded such that it is curved and follows the anatomical shape of a patient's airway.


In a preferred embodiment, the endoscopy device comprises a conduit and an airway tube that are maintained in a configuration such that they are separate from one another. This is advantageous, as it allows an airway to be established upon insertion of the device and ensures that the airway is protected from regurgitation and/or vomiting that may occur as a result of insertion of the endoscope. In another embodiment, the airway tube and conduit may be connected to one another. In this embodiment, it would also be necessary for the components to separate from one another at a region of the device, in order to establish an airway on insertion of the device and protect the airway from regurgitation and/or vomiting that may occur as a result of insertion of the endoscope.





The invention will further be described by way of example and with reference to the following drawings, in which,



FIG. 1 is front perspective view of a portion of a device according to the present invention;



FIG. 2 is an underplan view of the device in accordance with the present invention;



FIG. 3 is a plan view of the device in accordance with the present invention;



FIG. 4 is cross section view of the conduit of the device of in accordance with the present invention;



FIG. 5 is a side view of the device in accordance with the present invention, when viewed in the direction of the airway tube;



FIG. 6 is an side view of the end of the device of FIG. 5, showing the angle α to which the conduit is positioned relative to the horizontal plane;



FIG. 7 is a side view of the device of the present invention, when viewed in the direction of the conduit.



FIG. 8 is an underplan view of a second embodiment of device according to the invention;



FIG. 9 is a side view of a third embodiment of device according to the invention;



FIG. 10 is a front perspective view of the device of FIG. 9 viewed from the left;



FIG. 11 is a front perspective view of the device of FIG. 9 viewed from the right;



FIG. 12 is a plan view of the device of FIG. 9;



FIG. 13 is a front view of the device of FIG. 9;



FIG. 14 is a left rear three quarter view view of the device of FIG. 9;



FIG. 15 is a side view of a part of view of the device of FIG. 9;



FIG. 16 is a plan view of the part of FIG. 15;



FIG. 17 is a side view of a further part of the device 9;



FIG. 18 is a rear view of the part of FIG. 17;



FIG. 19 is a left side view of the parts of FIGS. 15 and 17 in an assembled condition;



FIG. 20 is right side view of the assembly of FIG. 19;



FIG. 21 is a side view of a part of a further embodiment of device according to the invention in a first position;



FIG. 22 is a view of the part of FIG. 21 in a second position;



FIG. 23 is a plan view of the part of FIG. 21 in the first position;



FIG. 24 is a front view of the part of FIG. 21 in the first position;



FIG. 25 is a front perspective view of a device according to the invention incorporating the part shown in FIG. 21;



FIGS. 26 and 27 are front perspective views of the device of FIG. 25 in use with a first endoscope; and



FIGS. 28 and 29 are front perspective views of the device of FIG. 25 in use with a second endoscope.





Referring now to the drawings, there is illustrated a device 1 for facilitating the use of a gastroscope, comprising at least one airway tube 2 and a mask 3 carried at one end of the at least one airway tube, the mask 3 having a distal end 4 and a proximal end 5 and a peripheral formation 6 capable of conforming to, and of fitting within, the actual and potential space behind the larynx of the patient so as to form a seal around the circumference of the laryngeal inlet, the peripheral formation 6 surrounding a hollow interior space or lumen 7 of the mask 3 and the at least one airway tube 2 opening into the lumen 7 of the mask, the device further comprising a conduit 8 adapted for passage of a gastroscope into the oesophagus of a patient when the mask 3 is in place.


In terms of the overall appearance, the device 1 in accordance with the present invention is somewhat similar to prior art laryngeal mask airway devices, in that it consists of the basic parts which make up most, if not all, such devices, i.e. an airway tube 2 and a mask portion 3. With reference to the Figures, the device 1 has a proximal end 1a (the end nearest the user when the device is in use), a distal end 1b (the end farthest from the user when the device is in use), a dorsal or pharyngeal side, a ventral or laryngeal side, and right and left sides.


The airway tube 2, extends from a proximal end 2a to a distal end 2b, and the distal end 2b opens into the interior of the hollow mask portion 3. The airway tube 2 may be resiliently deformable or relatively rigid, to enable it to assist in insertion of the device 1 into a patient, acting as a handle and a guide. The airway tube 2 may be made of any material that is currently used for such purposes as will be apparent to one of skill in the art, for example, silicone rubber or plastics materials. It may be straight and flexible or moulded into an appropriately anatomically-curved shape.


Referring firstly to the embodiment of FIGS. 1 to 7, the mask portion 3 includes a body part often referred to as a backplate 9 (see FIG. 3) and a peripheral formation which may take the form of an inflatable cuff 6, the inflatable cuff 6 extending from a proximal end 6a to a distal end 6b. The inflatable cuff 6 may be provided with an inflation line 14. The inflatable cuff 6 is advantageously capable of conforming to and fitting within the space behind the larynx to form a seal around the circumference of the laryngeal inlet without the device 1 penetrating into the interior of the larynx. Different sizes of mask are needed for different sizes of patient.


The cuff 6 may comprise blow moulded PVC and may take the form of a generally elliptical inflatable ring. The cuff 6 is typically integrally formed in one piece.


It is preferred that the mask describes a substantially convex curve, from the proximal to distal end. It is further preferred that the backplate 9 comprises a dorsal side and a ventral side, the dorsal side being substantially smooth and having a convex curvature across its width. It is also preferred that the dorsal surface of the airway tube 2 corresponds in curvature to the curvature across the width of the backplate 9. The backplate 9 is typically formed by moulding from a Shore 50A Vythene PVC+PU. This material is typically substantially softer and more deformable than the material of airway tube 2. The backplate 9 typically comprises a generally oval moulding when viewed from the dorsal or ventral directions.


In contrast to prior art laryngeal mask airway devices, the device 1 according to the invention includes a conduit 8, which conduit 8 is provided to facilitate insertion of a gastroscope, such as a fibrescope or an endoscope, into the oesophagus of a patient when the mask 3 is in place. In this embodiment the device 1 of the present invention comprises a proximal end 1a and a distal end 1b, wherein a major axis is provided therebetween, and wherein the conduit 8 may be provided at an angle such that it is offset to the midline with respect to the major axis of the device. This is of benefit as in some cases there may not be enough space to comfortably accommodate the conduit 8 and the airway tube 2 if they were both provided within the same plane. Thus, the provision of the conduit 8 at an angle offset to the midline with respect to the major axis of the device has the advantage that it allows both the conduit 8 and the airway tube 2 to be more comfortably accommodated within the oesophagus of a patient. In addition, in this embodiment, the conduit 8 does not obstruct the airway tube and thus the airway established by the device.


The conduit 8 preferably has a relatively large bore diameter. Typically, the conduit has a diameter of between 5 and 25 mm, more typically between 10 and 20 mm and most typically about 15 mm. Such a diameter may be provided to allow the passage of a gastroscope such as an endoscope or fibrescope through the conduit 8. However, the diameter of the conduit 8 may be varied depending on the anatomy of a patient. Preferably, the conduit 8 comprises a plurality of bores 11 (as shown in FIG. 4) which add flexibility. Preferably, the conduit 8 comprises a plurality of channels or webs 13 between the bores 11, which channels 13 confer an increased rigidity to the conduit 8. Advantageously, the conduit 8 also maintains a degree of flexibility, thus assisting in the insertion of the device within the oesophagus of a patient. In addition, the device 1 of the present invention minimises the frictional contact between the inside walls of the conduit 8 and a gastroscope inserted therein, thus assisting in the insertion of a gastroscope within the conduit 8, and thus within the oesophagus of a patient.


The conduit 8 preferably extends through the mask portion 3 of the device and contacts the distal end 6b of the cuff 6. Preferably, the distal end 8b of the conduit 8 is provided adjacent to the distal end 6b of the cuff 6. Preferably, the distal end 8b of the conduit 8 is provided at an angle α (5c) to the horizontal plane 5b (wherein the horizontal plane is substantially perpendicular to the major axis 5a of the device 1 when the device is in a substantially linear conformation). Preferably, the angle α is about 10 to 15 degrees to the horizontal plane, and more preferably at about 45 degrees to the horizontal plane. The provision of the conduit 8 having a distal end 8b which is provided at an angle α to the horizontal plane assists in the insertion of the device 1 within the oesophagus of a patient. Preferably, the distal end 8b of the conduit 8 does not extend significantly beyond the distal end of the cuff 6 (i.e. at the tip of the cuff), such that it does not interfere with the guiding means provided by the tip of the cuff 6 during insertion of the device 1. This can be seen in FIGS. 5 and 6, wherein FIG. 6 illustrates the region within the circle shown in FIG. 5. Specifically, with reference to FIG. 6, the distal end 8b of the conduit 8 is provided at an angle α (5c) to the horizontal plane 5b. Typically, as the angle of a is increased with respect to the horizontal plane 5b, the device 1 becomes easier to insert and causes less trauma to the oesophagus of a patient during insertion thereof.


Throughout most of its length, the conduit 8 may conveniently be moulded or extruded from a flexible or elastomeric material such as silicone or other plastic or rubber, preferably of a durometer hardness in the range 60 to 70 Shore. For use in adult humans, the inner diameter (i.d.) of the conduit 8 may be about 15 mm, and the radial wall thickness may be about 1 to 2 mm.



FIG. 2 shows a device in accordance with one embodiment of the present invention, wherein a connector 12 is provided at the proximal end 2a of the airway tube 2. In this embodiment, the connector 12 allows for connection of the airway tube 2 to a gas supply. The connector 12 is formed from a relatively rigid plastics material (when compared with the airway tube 2), to enable ease of connection of air lines and suction. However, in a preferred embodiment, the device does not comprise a connector at the proximal end 2a of the airway tube 2. In the embodiment wherein a connector is not provided at the proximal end 2a of the airway tube 2, the insertion of the device 1 within the oesophagus of the patient is improved.


As shown in FIG. 2, the device 1 also preferably includes an inflation line 14 for selectively inflating and deflating the inflatable cuff 6, which inflation line 14 extends from a distal end 14b that is coupled to the proximal end 6a of cuff 6 to a proximal end 14a that is located outside of the patient when the device 1 is in use. A check valve 16 is typically located within the flexible tube 14.


In use, the device 1 is inserted through a patient's mouth and down through the throat past the epiglottis until the mask 3 comes to rest with the distal end of the cuff 6b in the base of the throat, lying against the upper end of the normally closed oesophagus (which the mask 3 cannot easily enter because of its dimensions). The cuff 6 is then inflated to seal around the inlet to the larynx.


After insertion of the device, a gastroscope such as a fibrescope or an endoscope may be inserted through the conduit 8. The provision of the conduit 8 at an angle, such that it is offset to the midline with respect to the major axis of the device 1, has the advantage that it does not obstruct the airway tube 2 and provides more space for the conduit 8 and the airway tube 2 within the oesophagus of the patient. Thus, an airway is established within a patient by means of the airway tube 2 and a gastroscope may simultaneously be inserted through the conduit 8.


Referring now to FIG. 8, a variation of the device of FIGS. 1 to 7 is illustrated. In this variation the conduit 8 is provided with a bite block 17 which can also include a connector to facilitate insertion of an endoscope.


Referring to now to FIGS. 9 to 20, there is illustrated a third embodiment of device 1 according to the invention. As can be seen from, in particular, FIGS. 10 to 13, the device 1 resembles the devices illustrated in FIGS. 1 to 8 in that it includes at least one airway tube 2 and a mask 3 carried at one end of the at least one airway tube, the mask 3 having a distal end 4 and a proximal end 5 and a peripheral formation 6 capable of conforming to, and of fitting within, the actual and potential space behind the larynx of the patient so as to form a seal around the circumference of the laryngeal inlet, the peripheral formation 6 surrounding a hollow interior space or lumen 7 of the mask 3 and the at least one airway tube 2 opening into the lumen 7 of the mask, the device further comprising a conduit 8 adapted for passage of a gastroscope into the oesophagus of a patient when the mask 3 is in place. The various details of materials and construction as described above may also be applied to this embodiment.


In this embodiment it can be seen that the airway tube 2 and the conduit 8 are both received in a part 18 which in this embodiment part 18 takes the form of a biteblock 18. Biteblock 18 is an integrally molded plastics part and is formed with two bores, one each to accommodate the airway tube 2 and the conduit 8. As an alternative, it will be appreciated that the bite block 18 can be formed integrally with one or both of the airway tube 2 and conduit 8. The bite block 18 has upper and lower (in use) bite surfaces 18a, 18b which may be formed integrally with relatively softer material or soft material inserts in order to prevent damage to the teeth of a patient when the device 1 is in use. The bite block 18 has proximal and distal ends 19a, 19b and is provided at its distal end 19b with tapered section 19c to aid in inserting the device 1. As can be seen from FIG. 18, at its proximal end 19a, the bite block 18 has a generally flat face 20 with bores 20a and 20b. An airway tube extension 2a can be attached at bore 20b as illustrated, or alternatively a relatively longer airway tube 2 can be utilised which passes from the mask portion through the bite block 18 and extends out the other side. As will be appreciated, the bite block 18 not only serves to prevent puncturing of both the airway tube 2 and conduit 8, but also imparts structural integrity and rigidity to the device 1, keeping the airway tube 2 and conduit 8 in position relative to each other and the other components of the device 1.


Referring now to FIG. 13, it can be seen that the conduit 8 has an oval section to assist in insertion of the device 1 and also has an internal surface 21 provided with means to reduce friction 22, in the form of longitudinally extending ridges. The ridges 22 combine to form a much smaller internal surface area than would otherwise be provided by a smooth internal bore and thus friction between the conduit 8 and an inserting endoscope is reduced. The ridges may extend for the entire length of the conduit, or a significant portion thereof. As an additional or alternative friction reducing means the conduit 8 can be provided with a polysiloxane coating for lubricity. It will also be seen from FIG. 13 that the internal surface of the conduit 8 is provided with two opposing longitudinally extending channel 23 which here resemble “V” shaped cuts. These channels serve as hinge points allowing the conduit 8 to be more easily compressed, or expanded, top to bottom as viewed in FIG. 13, to aid in insertion of the device 1 and also to aid in passing an endoscope through the conduit 8.



FIGS. 15 to 20 illustrate how the device 1 may advantageously be formed. As can be seen, the device 1 is comprised of three major parts, a cuff part 6, a combined airway tube and conduit assembly 2/8 which may be referred to as a backplate, and an inflation line. The cuff part 6 illustrated in FIGS. 15 and 16 may be integrally moulded from a plastics material or silicone. It is generally of conventional shape as known in the art, but includes curved mounting surfaces 24 with adhesive ridges 24a on its upper, in use, side. The airway tube and conduit assembly 2/8 illustrated in FIGS. 17 and 18 may be integrally formed or may include parts that are preformed, finished and assembled. As will be appreciated, the assembly shown in FIG. 18 is unfinished such that the airway tube 2 and conduit 8 are longer in extent than in the finished assembly shown in FIG. 17. Referring to FIG. 17, it can be seen that the airway tube 2 terminates in a downwardly directed flared end part 25 below the level of the conduit 8 as viewed that mates with mounting surfaces 24 of the cuff part 6. An inflation line can then be attached to the cuff part 6 by any suitable means. As illustrated, it is preferred that the end of the conduit 8 is cut rearwardly relative to a plane perpendicular to its longitudinal axis at an angle of 20 degrees.



FIGS. 21 to 29 illustrate a fourth embodiment of device according to the invention the invention. As with previously described embodiments, the device 1 consists of at least one airway tube 2 and a mask 3 carried at one end of the at least one airway tube, the mask 3 having a distal end 4 and a proximal end 5 and a peripheral formation 6 capable of conforming to, and of fitting within, the actual and potential space behind the larynx of the patient so as to form a seal around the circumference of the laryngeal inlet, the peripheral formation 6 surrounding a hollow interior space or lumen 7 of the mask 3 and the at least one airway tube 2 opening into the lumen 7 of the mask, the device further comprising a conduit 8 adapted for passage of a gastroscope into the oesophagus of a patient when the mask 3 is in place. The various details of materials and construction as described above may also be applied to this embodiment.


As will be appreciated, the major difference between this device and those previously described is the configuration of the distal end of the conduit 8. In this embodiment the distal end of the conduit 8 tapers and is provided with means 26 to allow expansion of the outlet 27. In this embodiment the means 26 takes the form of four slits in the wall of the conduit 8 that extend from the outlet back a distance that is sufficient to allow the outlet to expand substantially in the range of from 5 mm to at least 15 mm. Thus, in a first position illustrated in FIGS. 26 and 27 the outlet 27 is sufficiently large in diameter to accommodate an endoscope 28 of approximately 5 mm diameter without expansion, whereas in FIGS. 28 and 29, the outlet is shown in a second position wherein it is expanded to accommodate an endoscope of approximately 15 mm diameter. Although endoscopes currently in use are no larger in diameter than 15 mm the invention can thus accommodate larger scopes in future.


Thus, it has been demonstrated that the present invention provides a device that enables the safe and accurate insertion of an endoscope 28 into the oesophagus of a patient, whilst at the same time establishing an airway and protecting the airway from vomiting or regurgitation that may occur upon insertion of an endoscope.

Claims
  • 1. An endoscopy device for facilitating the use of an endoscope in a patient, comprising: a single airway tube, anda mask carried at one end of the single airway tube, the mask having a distal end and a proximal end and a peripheral formation having a distal end and a proximal end, the peripheral formation capable of conforming to, and of fitting within, the actual and potential space behind the larynx of the patient so as to form a seal around a circumference of the laryngeal inlet, the peripheral formation surrounding a hollow interior space or lumen of the mask and the single airway tube opening into the hollow interior space or lumen of the mask,a conduit adapted for passage of the endoscope into the oesophagus of the patient when the mask is in place in the patient, the conduit having a distal end and a proximal end, wherein the distal end of the conduit is substantially adjacent to the distal end of the peripheral formation and extends to the distal end of the peripheral formation, wherein the conduit has a length that, in use, extends from the distal end of the mask, passes through the mouth of a patient and emerges between the teeth of the patient, andwherein the single airway tube has a diameter smaller than a diameter of the conduit, andwherein the device comprises a proximal end and a distal end, wherein a major axis is provided therebetween, and wherein the conduit is provided at an angle, such that a longitudinal axis of the conduit is offset, along the entire length of the conduit, relative to a midline with respect to the major axis of the device.
  • 2. The endoscopy device according to claim 1, wherein the device is adapted to minimise the frictional contact between an inside surface of a wall of the conduit and the endoscope when inserted therein.
  • 3. The endoscopy device according to claim 2, wherein the device is provided with means to reduce the surface area of the wall of the conduit in contact with the endoscope when inserted therein.
  • 4. The endoscopy device according to claim 3, wherein the means comprises a plurality of longitudinally extending ridges.
  • 5. The endoscopy device according to claim 1, wherein the diameter of the conduit is between about 5 and 25 mm, and wherein a radial wall thickness of the conduit is between about 1 and 2 mm.
  • 6. The endoscopy device according to claim 3, wherein the conduit comprises a plurality of bores formed in its wall.
  • 7. The endoscopy device according to claim 5, wherein the conduit comprises a plurality of channels formed in its wall.
  • 8. The endoscopy device according to claim 1, wherein the conduit comprises a silicone material, and has a durometer hardness of between 60 and 70 Shore.
  • 9. The endoscopy device according to claim 1, wherein the peripheral formation is an inflatable cuff having a distal end and a proximal end.
  • 10. The endoscopy device according to claim 1, wherein the mask comprises a backplate.
  • 11. The endoscopy device according to claim 1, wherein the single airway tube and/or conduit include a bite block.
  • 12. The endoscopy device according to claim 1, wherein the distal end of the conduit is provided at an angle α of about 10 to 15 degrees to a horizontal plane, wherein the horizontal plane is perpendicular to the major axis of the device when the device is in a substantially linear conformation.
  • 13. The endoscopy device according to claim 1, wherein the conduit and the single airway tube are maintained in a configuration such that they are separate from one another.
  • 14. The endoscopy device according to claim 1, wherein the conduit and the single airway tube are connected to one another.
  • 15. The endoscopy device according to claim 1, including means to allow expansion of an outlet of the conduit.
  • 16. The endoscopy device according to claim 15, wherein the means comprises slits adjacent the outlet of the conduit.
  • 17. The endoscopy device according to claim 1, wherein the distal end of the conduit is provided at an angle α of about 45 degrees to a horizontal plane, wherein the horizontal plane is perpendicular to the major axis of the device when the device is in a substantially linear conformation.
  • 18. The endoscopy device according to claim 17, wherein the diameter of the conduit is between about 5 and 25 mm, and wherein a radial wall thickness of the conduit is between about 1 and 2 mm.
Priority Claims (1)
Number Date Country Kind
1120628.1 Nov 2011 GB national
PCT Information
Filing Document Filing Date Country Kind
PCT/GB2012/000876 11/29/2012 WO 00
Publishing Document Publishing Date Country Kind
WO2013/079902 6/6/2013 WO A
US Referenced Citations (257)
Number Name Date Kind
2096831 Wappler Oct 1937 A
2099127 Leech Nov 1937 A
2252874 Vischer, Jr. Aug 1941 A
2839788 Dembiak Jun 1958 A
2862498 Weekes Dec 1958 A
3124959 Pall et al. Mar 1964 A
3529596 Garner Sep 1970 A
3554673 Schwartz et al. Jan 1971 A
3576187 Oddera Apr 1971 A
3683908 Michael et al. Aug 1972 A
3794036 Carroll Feb 1974 A
3931822 Marici Jan 1976 A
3948273 Sanders Apr 1976 A
4056104 Jaffe Nov 1977 A
4067329 Winicki et al. Jan 1978 A
4096759 Desor Jun 1978 A
4104357 Blair Aug 1978 A
4116201 Shah Sep 1978 A
4134407 Elam Jan 1979 A
4159722 Walker Jul 1979 A
4166467 Abramson Sep 1979 A
4178938 Au et al. Dec 1979 A
4178940 Au et al. Dec 1979 A
4230108 Young Oct 1980 A
4231365 Scarberry Nov 1980 A
4256099 Dryden Mar 1981 A
4285340 Gezari et al. Aug 1981 A
4338930 Williams Jul 1982 A
4351330 Scarberry Sep 1982 A
4363320 Kossove Dec 1982 A
4445366 Gray May 1984 A
4446864 Watson et al. May 1984 A
4471775 Clair et al. Sep 1984 A
4501273 McGinnis Feb 1985 A
4509514 Brain et al. Apr 1985 A
4510273 Miura et al. Apr 1985 A
4526196 Pistillo Jul 1985 A
4553540 Straith Nov 1985 A
4583917 Shah Apr 1986 A
4630606 Weerda et al. Dec 1986 A
4689041 Corday et al. Aug 1987 A
4700700 Eliachar Oct 1987 A
4770170 Sato et al. Sep 1988 A
4793327 Frankel Dec 1988 A
4798597 Vaillancourt Jan 1989 A
4825862 Sato May 1989 A
4832020 Augustine May 1989 A
4850349 Farahany Jul 1989 A
4856510 Kowalewski et al. Aug 1989 A
4872483 Shah Oct 1989 A
4896667 Magnusson et al. Jan 1990 A
4924862 Levinson May 1990 A
4953547 Poole, Jr. Sep 1990 A
4972963 Guarriello et al. Nov 1990 A
4981470 Bombeck, IV Jan 1991 A
4995388 Brain et al. Feb 1991 A
5038766 Parker Aug 1991 A
5042469 Augustine Aug 1991 A
5042476 Smith Aug 1991 A
5060647 Alessi Oct 1991 A
5067496 Eisele Nov 1991 A
5113875 Bennett May 1992 A
5174283 Parker Dec 1992 A
5203320 Augustine Apr 1993 A
5218970 Turnbull et al. Jun 1993 A
5235973 Levinson Aug 1993 A
5237988 McNeese Aug 1993 A
5241325 Nguyen et al. Aug 1993 A
5241956 Brain Sep 1993 A
5249571 Brain et al. Oct 1993 A
5273537 Haskvitz et al. Dec 1993 A
5277178 DinQiey et al. Jan 1994 A
5282464 Brain et al. Feb 1994 A
5297547 Brain et al. Mar 1994 A
5303697 Brain et al. Apr 1994 A
5305743 Brain Apr 1994 A
5311861 Miller et al. May 1994 A
5318017 Ellison Jun 1994 A
5331967 Akerson et al. Jul 1994 A
5339805 Parker Aug 1994 A
5339808 Don Michael Aug 1994 A
5355879 Brain et al. Oct 1994 A
5361753 Pothmann et al. Nov 1994 A
5391248 Brain et al. Feb 1995 A
5400771 Pirak et al. Mar 1995 A
5421325 Cinberg et al. Jun 1995 A
5438982 Macintyre Aug 1995 A
5443063 Greenberg Aug 1995 A
5452715 Boussignac et al. Sep 1995 A
5459700 Jacobs Oct 1995 A
5487383 Levinson Jan 1996 A
5529582 Fukuhara et al. Jun 1996 A
5546935 Champeau Aug 1996 A
5546936 Virag et al. Aug 1996 A
5551420 Lurie et al. Sep 1996 A
5554673 Shah Sep 1996 A
5569219 Hakki et al. Oct 1996 A
5577693 Corn Nov 1996 A
5582167 Joseph Dec 1996 A
5584290 Brain et al. Dec 1996 A
5590643 Flam Jan 1997 A
5599301 Jacobs et al. Feb 1997 A
5623921 Kinsinger et al. Apr 1997 A
5623924 Lindenman et al. Apr 1997 A
5626151 Linden May 1997 A
5632271 Brain May 1997 A
RE35531 Callaghan et al. Jun 1997 E
5653229 Greenberg Aug 1997 A
5655528 Pagan et al. Aug 1997 A
5682880 Brain et al. Nov 1997 A
5692498 Lurie et al. Dec 1997 A
5694929 Christopher Dec 1997 A
5711293 Brain et al. Jan 1998 A
5738094 Hottman Apr 1998 A
5743254 Parker Apr 1998 A
5743258 Sato et al. Apr 1998 A
5746202 Pagan et al. May 1998 A
5771889 Pagan et al. Jun 1998 A
5778872 Fukunaga et al. Jul 1998 A
5791341 Bullard Aug 1998 A
5794617 Brunell et al. Aug 1998 A
5816240 Komesaroff Oct 1998 A
5819723 Joseph Oct 1998 A
5832916 Lundberg et al. Nov 1998 A
5850832 Chu Dec 1998 A
5855203 Matter Jan 1999 A
5856510 Meng et al. Jan 1999 A
5860418 Lundberg et al. Jan 1999 A
5862801 Wells Jan 1999 A
5865176 O'Neil et al. Feb 1999 A
5878745 Brain et al. Mar 1999 A
5881726 Neame Mar 1999 A
5893891 Zahedi et al. Apr 1999 A
5896858 Brain Apr 1999 A
5915383 Pagan Jun 1999 A
5921239 McCall et al. Jul 1999 A
5924862 White Jul 1999 A
5935084 Southworth Aug 1999 A
5937860 Cook Aug 1999 A
5957133 Hart Sep 1999 A
5976075 Beane et al. Nov 1999 A
5979445 Neame et al. Nov 1999 A
5983891 Fukunaga Nov 1999 A
5983896 Fukunaqa et al. Nov 1999 A
5983897 Pagan Nov 1999 A
5988167 Kamen Nov 1999 A
5996582 Turnbull Dec 1999 A
6003510 Anunta Dec 1999 A
6003511 Fukunaga et al. Dec 1999 A
6003514 Pagan Dec 1999 A
6012452 Pagan Jan 2000 A
6021779 Paqan Feb 2000 A
6050264 Greenfield Apr 2000 A
6062219 Lurie et al. May 2000 A
6070581 Augustine et al. Jun 2000 A
6079409 Brain et al. Jun 2000 A
D429811 Bermudez et al. Aug 2000 S
6095144 Pagan Aug 2000 A
6098621 Esnouf et al. Aug 2000 A
6110143 Kamen Aug 2000 A
6116243 Pagan Sep 2000 A
6119695 Augustine et al. Sep 2000 A
6131571 Lamootang et al. Oct 2000 A
6149603 Parker Nov 2000 A
6155257 Lurie et al. Dec 2000 A
6213120 Block et al. Apr 2001 B1
6224562 Lurie et al. May 2001 B1
6234985 Lurie et al. May 2001 B1
6240922 Pagan Jun 2001 B1
6251093 Valley et al. Jun 2001 B1
6269813 Fitzgerald et al. Aug 2001 B1
6315739 Merilainen et al. Nov 2001 B1
6338343 Augustine et al. Jan 2002 B1
6352077 Shah Mar 2002 B1
6386199 Alfery May 2002 B1
6390093 Mongeon May 2002 B1
6422239 Cook Jul 2002 B1
6427686 Augustine et al. Aug 2002 B2
6439232 Brain Aug 2002 B1
6450164 Banner et al. Sep 2002 B1
6508250 Esnouf Jan 2003 B1
6546931 Lin et al. Apr 2003 B2
6631720 Brain et al. Oct 2003 B1
6647984 O'Dea et al. Nov 2003 B1
6651666 Owens Nov 2003 B1
6705318 Brain Mar 2004 B1
6766801 Wright Jul 2004 B1
6955645 Zeitels Oct 2005 B1
7004169 Brain et al. Feb 2006 B2
7040322 Fortuna et al. May 2006 B2
7051096 Krawiec et al. May 2006 B1
7051736 Banner et al. May 2006 B2
7096868 Tateo et al. Aug 2006 B2
7097802 Brain et al. Aug 2006 B2
7128071 Brain et al. Oct 2006 B2
7134431 Brain et al. Nov 2006 B2
7156100 Brain et al. Jan 2007 B1
7159589 Brain Jan 2007 B2
RE39938 Brain Dec 2007 E
7383736 Esnouf Jun 2008 B2
7694682 Petersen et al. Apr 2010 B2
7895497 Pisek et al. Feb 2011 B2
7997274 Baska Aug 2011 B2
8033176 Esnouf Oct 2011 B2
8413658 Williams Apr 2013 B2
9078559 Tsunoda et al. Jul 2015 B2
20020026178 Ouchi Feb 2002 A1
20030000534 Alfery Jan 2003 A1
20030037790 Brain Feb 2003 A1
20030051734 Brain Mar 2003 A1
20030101998 Zecca et al. Jun 2003 A1
20030131845 Lin Jul 2003 A1
20030168062 Blythe et al. Sep 2003 A1
20030172925 Zecca et al. Sep 2003 A1
20030172935 Miller Sep 2003 A1
20040020491 Fortuna Feb 2004 A1
20040089307 Brain May 2004 A1
20050066975 Brain Mar 2005 A1
20050081861 Nasir Apr 2005 A1
20050090712 Cubb Apr 2005 A1
20050133037 Russell Jun 2005 A1
20050139220 Christopher Jun 2005 A1
20050178388 Kuo Aug 2005 A1
20050199244 Tateo et al. Sep 2005 A1
20050274383 Brain Dec 2005 A1
20060124132 Brain Jun 2006 A1
20060180156 Baska Aug 2006 A1
20060201516 Petersen et al. Sep 2006 A1
20060254596 Brain Nov 2006 A1
20070017527 Totz Jan 2007 A1
20070089754 Jones Apr 2007 A1
20070240722 Kessler Oct 2007 A1
20080041392 Cook Feb 2008 A1
20080142017 Brain Jun 2008 A1
20080276936 Cook Nov 2008 A1
20080308109 Brain Dec 2008 A1
20090090356 Cook Apr 2009 A1
20090133701 Brain May 2009 A1
20090139524 Esnouf Jun 2009 A1
20090145438 Brain Jun 2009 A1
20100059061 Brain Mar 2010 A1
20100089393 Brain Apr 2010 A1
20100211140 Barbut et al. Aug 2010 A1
20100242957 Fortuna Sep 2010 A1
20100249639 Bhatt Sep 2010 A1
20110023890 Baska Feb 2011 A1
20110077466 Rosenthal Mar 2011 A1
20110220117 Dubach Sep 2011 A1
20110226256 Dubach Sep 2011 A1
20110245805 Swinehart et al. Oct 2011 A1
20120085351 Brain Apr 2012 A1
20120090609 Dubach Apr 2012 A1
20120145161 Brain Jun 2012 A1
20120174929 Esnouf Jul 2012 A1
20120186510 Esnouf Jul 2012 A1
20140034060 Esnouf et al. Feb 2014 A1
20150209538 Hansen Jul 2015 A1
Foreign Referenced Citations (137)
Number Date Country
647437 Jun 1991 AU
2067782 Nov 1989 CA
2141167 Jan 1994 CA
2012750 Aug 1999 CA
1166138 Nov 1997 CN
2579352 Oct 2003 CN
1863568 Nov 2006 CN
1863568 Nov 2006 CN
2882657 Mar 2007 CN
101057994 Oct 2007 CN
100531818 Aug 2009 CN
201516220 Jun 2010 CN
201684261 Dec 2010 CN
201719659 Jan 2011 CN
101991898 Mar 2011 CN
102335478 Feb 2012 CN
103221087 Jul 2013 CN
2945662 May 1981 DE
4447186 Jul 1996 DE
10042172 Apr 2001 DE
0294200 Dec 1988 EP
0294200 Dec 1988 EP
0389272 Sep 1990 EP
0402872 Dec 1990 EP
0580385 Jan 1994 EP
0712638 May 1996 EP
0732116 Sep 1996 EP
0796631 Sep 1997 EP
0842672 May 1998 EP
0845276 Jun 1998 EP
0865798 Sep 1998 EP
0922465 Jun 1999 EP
0935971 Aug 1999 EP
1119386 Aug 2001 EP
1125595 Aug 2001 EP
1 800 706 Jun 2007 EP
1 938 855 Jul 2008 EP
2 044 969 Apr 2009 EP
1529190 Oct 1978 GB
2111394 Jul 1983 GB
2205499 Dec 1988 GB
2 298 580 Sep 1996 GB
2298580 Sep 1996 GB
2298797 Sep 1996 GB
2317342 Mar 1998 GB
2317830 Apr 1998 GB
2318735 May 1998 GB
2319478 May 1998 GB
2321854 Aug 1998 GB
2323289 Sep 1998 GB
2323290 Sep 1998 GB
2323291 Sep 1998 GB
2323292 Sep 1998 GB
2324737 Nov 1998 GB
2334215 Aug 1999 GB
2359996 Sep 2001 GB
2371990 Aug 2002 GB
2 404 863 Feb 2005 GB
2405588 Mar 2005 GB
2 444 779 Jun 2008 GB
2454199 May 2009 GB
2436294 Dec 2009 GB
2 465 453 May 2010 GB
57-110261 Jul 1982 JP
03039169 Feb 1991 JP
H07-509154 Oct 1995 JP
H08-547 Jan 1996 JP
H09-505211 May 1997 JP
10118182 May 1998 JP
H10-179745 Jul 1998 JP
10216233 Aug 1998 JP
10263086 Oct 1998 JP
10277156 Oct 1998 JP
10314308 Dec 1998 JP
10323391 Dec 1998 JP
10328303 Dec 1998 JP
11128349 May 1999 JP
11192304 Jul 1999 JP
11206885 Aug 1999 JP
2000152995 Jun 2000 JP
2003-511108 Mar 2003 JP
2003528701 Sep 2003 JP
2007-514496 Jun 2007 JP
2007-533337 Nov 2007 JP
2008-136791 Jun 2008 JP
2008-526393 Jul 2008 JP
2366463 Sep 2009 RU
200706196 Feb 2007 TW
200942206 Oct 2009 TW
WO9103207 Mar 1991 WO
WO9107201 May 1991 WO
WO9112845 Sep 1991 WO
WO9213587 Aug 1992 WO
WO 9402191 Feb 1994 WO
WO9402191 Feb 1994 WO
WO9533506 Dec 1995 WO
WO9712640 Apr 1997 WO
WO9712641 Apr 1997 WO
WO9816273 Apr 1998 WO
WO9850096 Nov 1998 WO
WO9906093 Feb 1999 WO
WO 9927840 Jun 1999 WO
WO0009189 Feb 2000 WO
WO 0020062 Apr 2000 WO
WO0022985 Apr 2000 WO
WO0023135 Apr 2000 WO
WO0061212 Oct 2000 WO
WO0124860 Apr 2001 WO
WO0174431 Oct 2001 WO
WO0232490 Apr 2002 WO
WO 2004016308 Feb 2004 WO
WO2004030527 Apr 2004 WO
WO 04089453 Oct 2004 WO
WO 2004089453 Oct 2004 WO
WO 2005011784 Feb 2005 WO
WO2005011784 Feb 2005 WO
WO2005023350 Mar 2005 WO
WO 2005046751 May 2005 WO
WO 2005058402 Jun 2005 WO
WO2006026237 Mar 2006 WO
WO 06037626 Apr 2006 WO
WO 06125986 Nov 2006 WO
WO2006125989 Nov 2006 WO
WO2007071429 Oct 2007 WO
WO 07131267 Nov 2007 WO
WO 2008001724 Jan 2008 WO
WO 2008001724 Jan 2008 WO
WO 2009026628 Mar 2009 WO
WO 09156949 Dec 2009 WO
WO 10060224 Jun 2010 WO
WO 2010060227 Jun 2010 WO
WO 2010066001 Jun 2010 WO
WO2010060226 Jun 2010 WO
WO 2010060226 Jun 2010 WO
WO 2010060227 Jun 2010 WO
WO 10100419 Sep 2010 WO
WO 13066195 May 2013 WO
Non-Patent Literature Citations (57)
Entry
International Search Report for PCT/GB2006/001913, dated Aug. 28, 2006.
M.O. Abdelatti; “A Cuff Pressure Controller for Tracheal Tubes and Laryngeal Mask Airways” Anaesthesia, 1999, 54, pp. 981-986 (1999 Blackwell Science Ltd).
Jonathan L. Benumo, M.D.; “Laryngeal Mask Airway and the ASA Difficult Airway Algorithm” Medical Intelligence Article; Anesthesiology, V 84, No. 3, Mar. 1996 (686-99).
Jonathan L. Benumo, M.D.; “Management of the Difficult Adult Airway” With Special Emphasis on Awake Tracheal Intubation; Anesthesiology V 75, No. 6: 1087-1110, 1991.
Bernhard, et al.; “Adjustment of Intracuff Pressure to Prevent Aspiration” ; Anesthesiology, vol. 50, No. 4, 363-366, Apr. 1979.
Bernhard, et al.; “Physical Characteristics of and Rates of Nitrous Oxide Diffusion into Tracheal Tube Cuffs” Anesthesiology, vol. 48, No. 6 Jun. 1978, 413-417.
A.I.J. Brain, et al.: “The Laryngeal Mask Airway” Anesthesia, 1985, vol. 40, pp. 356-361.
A.I.J. Brain, et al.: “The Laryngeal Mask Airway—A Possible New Solution to Airway Problems in the Emergency Situation” Archives of Emergency Medicine, 1984, vol. 1, p. 229-232.
A.I.J. Brain; “The Laryngeal Mask—A New Concept in Airway Management” British Journal of Anaesthesia, 1983, vol. 55, p. 801-805.
A.I.J. Brain, et al.: “A New Laryngeal Mask Prototype” Anaesthesia, 1995, vol. 50, pp. 42-48.
A.I.J. Brain; “Three Cases of Difficult Intubation Overcome by the Laryngeal Mask Airway” ; Anaesthesia, 1985, vol. 40, pp. 353-355.
J. Brimacombe; “The Split Laryngeal Mask Airway” ; Royal Perth Hospital, Perth 6001 Western Australia; Correspondence p. 639.
P.M. Brodrick et al.; “The Laryngeal Mask Airway” ; Anaesthesia, 1989, vol. 44, pp. 238-241; The Association of Anaesthetists of Gt Britain and Ireland.
Burgard et al.; “The Effect of Laryngeal Mask Cuff Pressure on Postoperative Sore Throat Incidence” ; Journal of Clinical Anesthesia 8: 198-201, 1996 by Elsevier Science Inc.
Caplan, et al.; “Adverse Respiratory Events in Anesthesia: A Closed Claims Analysis”; Anesthesiology vol. 72, No. 5: 828-833, May 1990.
Donald E. Craven, MD; “Prevention of Hospital-Acquired Pneumonia: Meaning Effect in Ounces, Pounds, and Tons”; Annals of Internal Medicine, vol. 122, No. 3, Feb. 1, 1995, pp. 229-231.
“Cuff-Pressure-Control CDR 2000”; LogoMed, Klarenplatz 11, D-53578 Windhagen, pp. 1-4.
P.R.F. Davies et al.; “Laryngeal Mask Airway and Tracheal Tube Insertion by Unskilled Personnel”; The Lancet, vol. 336, p. 977-979.
DeMello et al.; “The Use of the Laryngeal Mask Airway in Primary Anaesthesia” Cambridge Military Hospital, Aldershot, Hants GU11 2AN; pp. 793-794.
Doyle et al.; “Intraoperative Awareness: A Continuing Clinical Problem”; Educational Synopses in Anesthesiology and Critical Care Medicine the Online Journal of Anesthesiology vol. 3 No. Jun. 6, 1996, pp. 1-8.
F. Engbers; “Practical Use of ‘Diprifusor’ Systems”; Anaesthesia, 1998, vol. 53, Supplement 1, pp. 28-34; Blackwell Science Ltd.
Eriksson et al.; “Functional Assessment of the Pharynx at Rest and During Swallowing in Partially Paralyzed Humans” Anesthesiology, vol. 87, No. 5, Nov. 1997, pp. 1035-1042.
J.B. Glen; “The Development of ‘Diprifusor’: A TCI System for Propofol” Anaesthesia, 1998, vol. 53, Supplement 1, pp. 13-21, Blackwell Science Ltd.
J.M. Gray et al.; “Development of the Technology for ‘Diprifusor’ TCI Systems”; Anaesthesia, 1998, vol. 53, Supplement 1, pp. 22-27, Blackwell Science Ltd.
M.L. Heath; “Endotracheal Intubation Through the Laryngeal Mask—Helpful When Laryngoscopy is Difficult or Dangerous”; European Journal of Anaesthesiology 1991, Supplement 4, pp. 41-45.
S. Hickey et al.; “Cardiovascular Response to Insertion of Brian's Laryngeal Mask”; Anaesthesia, 1990, vol. 45, pp. 629-633, The Association of Anaesthetists of Gt Britain and Ireland.
Inomata et al.; “Transient Bilateral Vocal Cord Paralysis after Insertion of a Laryngeal Mask Airway”; Anaesthesiology, vol. 82, No. 3, Mar. 1995, pp. 787-788.
L. Jacobson et al.; “A Study of Intracuff Pressure Measurements, Trends and Behaviour in Patients During Prolonged Periods of Tracheal Intubation” British Journal of Anaesthesia (1981), vol. 53, pp. 97-101; Macmillan Publishers Ltd. 1981.
V. Kambic et al.; “Intubation Lesions of the Larynx”; British Journal of Anaesthesia (1978), vol. 50, pp. 587-590; Macmillan Journals Ltd. 1978.
A. Kapila et al.; “Intubating Laryngeal Mask Airway: A Preliminary Assessment of Performance”; British Journal of Anaesthesia 1995, vol. 75: pp. 228-229.
Carl-Eric Lindholm; “Prolonged Endotracheal Intubation” ; Iussu Societatis Anaesthesiologicae Scandinavica Edita Suppllementum XXXIII 1969 v. 33 pp. 29-46.
S. Majumder et al.; “Bilateral Lingual Nerve Injury Following the Use of the Laryngeal Mask Airway” ; Anaesthesia, 1998, vol. 53, pp. 184-186, 1998 Blackwell Science Ltd.
Todd Martin; “Patentability of Methods of Medical Treatment: A Comparative Study”; HeinOnLine—82 J. Pat. & Trademark Off. Soc'y 2000, pp. 381-423.
Merriam-Webster's Collegiate Dictionary Tenth Edition, Springfield, Mass, U.S.A. (Convex) p. 254 & (Saddle) p. 1029.
D.M. Miller; “A Pressure Regulator for the Cuff of a Tracheal Tube” Anaesthesia, 1992, vol. 47, pp. 594-596; 1992 The Association of Anaesthetists of Gt Britain and Ireland.
Muthuswamy et al.; “The Use of Fuzzy Integrals and Bispectral Analysis of the Electroencephalogram to Preddict Movement Under Anesthesia”; Ieee Transactions on Biomedical Engineering, vol. 46, No. 3, Mar. 1999, pp. 291-299.
K. Nagai et al.; “Unilateral Hypoglossal Nerve Paralysis Following the Use of the Laryngeal Mask Airway”; Anaesthesia, 1994, vol. 49, pp. 603-604; 1994 The Association of Anaesthetists of Gt Britain and Ireland.
Lars J. Kangas; “Neurometric Assessment of Adequacy of Intraoperative Anesthetic” Medical Technology Brief, Pacific Northwest National Laboratory, pp. 1-3.
Observations by a third party concerning the European Patent Application No. 99947765.6-2318, dated Jan. 18, 2005.
R.I. Patel et al.; “Tracheal Tube Cuff Pressure”; Anaesthesia, 1984, vol. 39, pp. 862-864; 1984 The Association of Anaesthetists of Gt Britain and Ireland.
Written Opinion of the International Searching Authority for Application No. PCT/GB2006/001913.
Pennant et al.; “Comparison of the Endotracheal Tube and Laryngeal Mask in Airway Management by Paramedical Personnel”; Dept of Anesthesiology, University of Texas Southwestern Medical School; Anesth Analg 1992, vol. 74, pp. 531-534.
Pippin et al.; “Long-Term Tracheal Intubation Practice in the United Kingdom”; Anaesthesia, 1983, vol. 38, pp. 791-795.
J.C. Raeder et al.; “Tracheal Tube Cuff Pressures” Anaesthesia, 1985, vol. 40, pp. 444-447; 1985 The Association of Anaesthetists of Gt Britain and Ireland.
Response to Complaint for matter No. 4b 0 440-05, LMA Deutschland GmbH vs. AMBU (Deutschland) GmbH, dated Feb. 10, 2006.
Rieger et al.; “Intracuff Pressures Do Not Predict Laryngopharyngeal Discomfort after Use of the Laryngeal Mask Airway”; Anesthesiology 1997, vol. 87, pp. 63-67; 1997 American Society of Anesthesiologists, Inc.
R D Seegobin et al.; “Endotracheal Cuff Pressure and Tracheal Mucosal Blood Flow: Endoscopic Study of Effects of Four Large Volume Cuffs”; British Medical Jornal, vol. 288, Mar. 31, 1984, pp. 965-968.
B.A. Willis et al.; “Tracheal Tube Cuff Pressure” Anaesthesia, 1988, vol. 43, pp. 312-314; The Association of Anaesthetists of Gt Britain and Ireland.
L. Worthington et al.; “Performance of Vaporizers in Circle Systems” British Journal of Anaesthesia 1995, vol. 75.
J. Michael Wynn, M.D.; “Tongue Cyanosis after Laryngeal Mask Airway Insertion” Anesthesiology, vol. 80, No. 6, Jun. 1994, p. 1403.
Brimacombe, Joseph R., “Laryngeal Mask Anesthesia” Second Edition, Saunders 2005.
“Anaesthetic and respiratory equipment—Supralaryngeal airways and connectors”, International Standard Controlled, ISO 11712, ISO 2009.
Miller, Donald, “A Proposed Classification and Scoring System for Supraglottic Sealing Airways: A Brief Review”, Anesth Analg 2004; 99:1553-9.
Benumof, Jonathan, “The Glottic Aperture Seal Airway. A New Ventilatory Device”, Anesthesiology, V. 88, No. 5., May 1998, pp. 1219-1226.
McIntyre, John, “History of Anaesthesia” Oropharyngeal and nasopharyngeal airways: I (1880-1995), Can. J. Anaesth 1996, vol. 43, vol. 6, pp. 629-635.
Ishimura, et al., “Impossible Insertion of the Laryngeal Mask Airway and Oropharyngeal Axes”, Anesthesiology, V. 83, No. 4., Oct 1995, pp. 867-869.
Verghese, et al., “Clinical assessment of the single use laryngeal mask airway—the LMA-Unique”, British Journal of Anaesthesia 1998; vol. 80: 677-679.
Related Publications (1)
Number Date Country
20140323806 A1 Oct 2014 US