Laser ablation method and apparatus having a feedback loop and control unit

Information

  • Patent Grant
  • 9022037
  • Patent Number
    9,022,037
  • Date Filed
    Monday, September 12, 2005
    18 years ago
  • Date Issued
    Tuesday, May 5, 2015
    9 years ago
Abstract
A laser ablation method and apparatus uses a laser device to generate a pulsed laser using a laser device and to project the pulsed laser onto an ablation target to be ablated. A probe is then used to measure an indicative property of the ablation target or of the pulsed laser projected on the ablation target. A control loop is used to optimize ablation effect by generating a feedback signal according to the measured indicative property, sending the feedback signal to a control unit, and adjusting an output parameter of the pulsed laser according to the feedback signal. The measured indicative property may be a size of the laser beam spot or a material composition. The ablation, the feedback and the adjustment may be performed dynamically.
Description
BACKGROUND

1. Field of the Invention


The present invention relates generally to laser ablation systems and methods for ablative material removal, including but not limited to such applications as surgical laser ablation for medical purposes.


2. Description of the Prior Art


Laser has been used to remove or otherwise manipulate materials in a variety of ways. Laser can ablatively remove a material by disassociating the surface atoms. The process is generally referred to as “laser ablation.” Practical applications of laser ablation commonly use pulsed laser, and more commonly use short laser pulses. More recently, lasers of ultrashort pulses have started to have applications. While definitions vary, in general “ultrashort” refers to optical pulses of duration less than approximately 10 picoseconds including femtosecond laser pulses, and this definition is used herein. These latest lasers promise superior performance and ease of application. In particular, ultrashort laser pulses are more effective in overcoming common thermal damage problems associated with older lasers. Numerous applications of ultrashort pulses have been developed that would be otherwise impossible or impractical to implement with other technologies. With ultrashort pulses, researchers have investigated many highly nonlinear processes in atomic, molecular, plasma, and solid-state physics, and accessed previously unexplored states of matter.


Ablative material removal is especially useful for medical purposes, as it is essentially non-thermal and generally painless. In the past 20 years, laser ablation has become an increasingly important tool for medical surgery, applied in cases that have grown to include open, endoscopic or laparoscopic soft tissue incision or removal, such as eye surgeries, laser ablation of the prostate, breast biopsy, cytoreduction for metastatic disease, decubitus or statis ulcers, hemorrhoidectomy, laparoscopic surgery; mastectomy, reduction mammoplasty. Endovenous laser ablation has also become a safe and highly effective treatment for varicose veins.


In addition to the advancements in the laser technology itself, laser ablation is further benefited from other supplemental means such as computer-aided positioning technology for precision operation.


Given the importance of laser ablation, it is desirable to develop a new laser ablation system that offers better controllability, more automation, and higher accuracy.


SUMMARY OF THE INVENTION

This invention improves the existing laser ablation systems and methods by providing a feedback mechanism that measures an indicative property of an ablation target or an indicative property of the pulsed laser projected on the ablation target. The feedback mechanism generates a feedback signal according to the measured indicative property, and sends the feedback signal to a control unit. The control unit then adjusts an output parameter of the pulsed laser according to the feedback signal to optimize ablation effect.


The indicative property is characteristic of either the ablation target or the pulsed laser that has been projected on the ablation target, or a combination thereof. In some embodiments, the indicative property is measured using an optical probe, such as a camera. In one embodiment, the indicative property is indicative of the size of a laser beam spot projected on the ablation target for ablation. For instance, the indicative property may comprise a diameter of the laser beam spot projected on the ablation target. In such an embodiment, the feedback signal may be determined according to a pulse energy density which is defined as pulse energy per unit area and obtained by calculating the ratio between pulse energy and the size of the laser beam spot.


An exemplary way to adjust the output parameter of the pulsed laser is changing pulse energy. In the above exemplary embodiment, for example, a feedback signal for increasing the pulse energy is generated if the pulse energy density of the pulsed laser is lower than a predetermined threshold or optimal level, and a feedback signal for decreasing the pulse energy is generated if the pulse energy density of the pulsed laser is higher than the predetermined threshold or optimal level.


In one embodiment, changing pulse energy is accomplished by changing a pump current of a pump diode pumping the laser device.


Alternatively, the output parameter of the pulsed laser may be adjusted by changing pulse rate (or pulse repetition rate) of the pulsed laser. In some embodiments, the pulse rate of the pulsed laser is adjusted by selecting a subset of pulses from a pulse train generated by the laser device.


In some embodiments, the indicative property being measured is a material composition of the ablation target. The material composition may be measured by sampling an ablation plume. In one embodiment, the material composition is measured by a Laser Induced Breakdown Spectroscopy (LIBS).


In the above embodiments, a threshold pulse energy density or an optimal pulse energy density according to the material composition of the ablation target may be pre-determined for the feedback purpose. The pulse energy may be then adjusted such that a resultant pulse energy density of the projected pulsed laser on the ablation target matches the threshold pulse energy density or the optimal pulse energy density predetermined according to the material composition of the ablation target.


In some embodiments, the indicative property being measured is indicative of progress of an ablation process on the ablation target. Accordingly, the output parameter of the pulsed laser may be adjusted by either changing pulse energy or changing pulse rate. For example, pulse energy may be increased if the indicative property indicates that no substantial ablation is taking place, and pulse rate may be adjusted if the indicative property indicates an ablation rate deviating from a desired material removal rate.


Measuring the indicative property and adjusting the output parameter of the pulsed laser may be performed dynamically during the ablation process.


The present invention also provides an apparatus for laser ablation. The apparatus has a laser device for generating a pulsed laser and projecting the pulsed laser onto an ablation target to be ablated. The apparatus also has a probe for measuring an indicative property of the ablation target or an indicative property of the pulsed laser projected on the ablation target. The apparatus further has a control loop for generating a feedback signal according to the measured indicative property, sending the feedback signal to a control unit, and adjusting an output parameter of the pulsed laser according to the feedback signal to optimize ablation effect. The probe may be an optical sensor adapted for measuring a size of the laser beam spot projected on the ablation target.


In one embodiment, the control loop may be adapted for changing pulse energy by changing a pump current of a pump diode pumping the laser device. The control loop may also be adapted for changing pulse rate of the pulsed laser by, for example, selecting a subset of pulses from a pulse train generated by the laser device.


The probe may be a camera, a video camera, an infrared camera, a UV camera, a vidicon camera, a television camera remote to the ablation target, or an in vivo camera. The probe may comprise a spectroscopy unit, such as a Laser Induced Breakdown Spectroscopy (LIBS), to detect a material composition of the ablation target.


For some applications, the pulsed laser desirably has short pulses. Some embodiments, for example, have a pulse duration shorter than 1 picosecond, or a pulse duration shorter than 100 femtoseconds. For some applications, the pulse energy density of the pulsed laser ranges from about 0.1 Joules/cm2 to about 20 Joules/cm2.


The present invention improves the controllability and precision of laser ablation by using a feedback loop monitoring the ablation target that is being ablated. This invention can be used for various types of laser ablation, particularly for use as a medical surgical tool.


Other features and advantages of the invention will become more readily understandable from the following detailed description and figures.





BRIEF DESCRIPTION OF THE FIGURES

The invention will be described in detail along with the following figures, in which like parts are denoted with like reference numerals or letters.



FIG. 1 is a schematic illustration of a conventional laser ablation system.



FIG. 2 is a systematic illustration of a laser ablation system in accordance with the present invention.



FIG. 3 is a systematic illustration of an alternative embodiment of the laser ablation system in accordance with the present invention.



FIG. 4 is a block diagram showing an exemplary procedure of the monitoring and feedback mechanism of the present invention.





DETAILED DESCRIPTION OF THE INVENTION


FIG. 1 is a schematic illustration of a conventional laser ablation system. Laser ablation system 100 has laser device 110 for generating laser beam 120, which is reflected by mirror 130, processed by an optical device 140 (typically a lens system) and focused on ablation target 150. The focused laser beam 120 projects laser spot 125 in ablation field 160, which is a part of ablation target 150 intended to be ablated. For a given ablation spot, laser ablation process uses the focused laser beam 120 to remove a surface material on the small spot where the laser beam 120 is projected and focused on to form laser spot 125.


The ablation point and depth are controlled via moving mirror 130, which is typically done through a galvanometer (not shown), a device for detecting or measuring a small electric current by movements of a magnetic needle or of a coil in a magnetic field. Commercial galvanometers are available which use an electric current through a coil to induce precise movements of optical devices, such as mirror 130 in FIG. 1. Because generally the ablation field 160 that needs to be ablated is much greater than the spot size of the laser spot 125, a scanning mechanism (not shown) is used to scan ablation field 160 by systematically moving laser beam 120 and the associated laser spot 125 across ablation field 160.


To carry out the process of scanning, a coordination system is required to position the focused laser spot 125 on ablation field 160 and dynamically and systematically move the focused laser beam 120 and the projected laser spot 125 across ablation field 160 on the target 150. Some laser ablation applications may contain a sophisticated coordination system for positioning the laser beam 120 and the associated laser spot 125 automatically and precisely.


Positioning the laser beam 120 and the associated laser spot 125, however, is not the only important factor involved in laser ablation. The present invention improves the existing laser ablation systems and methods by taking into consideration several other factors involved in the laser ablation process, particularly in the scanning process. In addition to positioning the laser spot on the target, laser ablation including the process of scanning should ideally be performed in a manner that is, on the one hand, as speedy as possible, but on the other hand, ensures that proper laser ablation has taken effect during scanning. With respect to these requirements, conventional laser ablation methods and systems generally lack sophistication in terms of controllability, automation, and precision.



FIG. 2 is a systematic illustration of a laser ablation system in accordance with the present invention. Similar to the conventional laser ablation system 100 in FIG. 1, the inventive laser ablation system 200 in FIG. 2 has laser device 210 for generating laser beam 220, which is reflected by mirror 230, processed by an optical device 240 and focused on ablation target 250. The focused laser beam 220 projects laser spot 225 onto ablation field 260. For a given ablation spot, the ablation process uses the focused laser beam 220 to remove a surface material on the small spot where the laser beam 220 is focused on to form laser spot 225.


As shown in FIG. 2, the present invention improves the conventional laser ablation systems and methods by providing a monitoring and feedback mechanism to optimize the ablation effect. Laser ablation system 200 uses a probing device 270 to monitor observing area 275, which desirably covers laser spot 225 but is not required to be identical or closely matching laser spot 225. The probing device 270 measures an indicative property of observing area 275 or an indicative property of laser spot 225 projected on ablation field 260. The probing device 270 then generates a feedback signal according to the measured indicative property, and sends the feedback signal to control unit 280. Control unit 280 is in communication with laser device 210, mirror 230, optical device 240, and the probing device 270. Upon receiving the feedback signal from the probing device 270, control unit 280 adjusts an output parameter of pulsed laser 220 according to the feedback signal to optimize ablation effect. As discussed in further detail in a later section of the present disclosure, the adjusted output parameter of pulsed laser 220 may be any one or a combination of pulse energy, pulse rate, pulse duration, optical focusing, working distance, and scan speed. The adjustment of the output parameter of pulsed laser 220 may be achieved at any laser stage (including at laser device 210, mirror 230, or optical device 240), or a combination of several stages, depending on the design and desired purpose. Herein, the term “pulse rate” refers to the “pulse repetition rate” of a pulse train and the two terms are used interchangeably in this description.



FIG. 3 is a systematic illustration of an alternative embodiment of the laser ablation system in accordance with the present invention. Similar to laser ablation system 200 in FIG. 2, laser ablation system 300 in FIG. 3 has laser device 310 for generating laser beam 320, which is reflected by mirror 330, processed by an optical device 340 and focused on ablation target 350. The focused laser beam 320 projects laser spot 325 in ablation field 360. At any given ablation spot, laser ablation process uses the focused laser beam 320 to remove a surface material on the small spot where the laser beam 320 is focused on to form laser spot 325. Laser ablation system 300 uses a probing device 370 to monitor observing area 375, which desirably covers laser spot 325 but is not required to be identical or closely matching laser spot 325. The probing device 370 measures an indicative property of observing area 375 or an indicative property of laser spot 325 projected on ablation field 360. The probing device 370 then generates a feedback signal according to the measured indicative property, and sends the feedback signal back to control unit 380. Control unit 380 is in communication with laser device 210, mirror 230, optical device 240, and the probing device 370. Upon receiving the feedback signal from the probing device 370, control unit 380 adjusts an output parameter of pulsed laser 320 according to the feedback signal to optimize ablation effect.


Laser ablation system 300 differs from laser ablation system 200 in the following aspects: in laser ablation system 300, the probing device 370 shares a section of light path with pulsed laser 320, as facilitated by split mirror 335 which reflects pulsed laser 320 but is at least partially transparent to the light used by the probing device 370. In contrast, in laser ablation system 200, the light path of the probing device 270 is separate from that have pulsed laser 220. The design of laser ablation system 300 may help reducing the overall size of the apparatus.


The laser ablation systems 200 and 300 illustrated above are further explained below.


1. Examples of the Indicative Property Monitored


The indicative property monitored and measured in accordance with the present invention may be characteristic of either the ablation target or the pulsed laser that has been projected on the ablation target, or a combination thereof. The choice of indicative property to be measured is based on consideration of multiple parameters to ensure proper laser ablation. Such consideration includes:


(1) For laser ablation to occur, the laser beam projected on the target needs to have an optimal pulse energy density, which is defined as an energy density (or light intensity) of an individual pulse at a level or within a range of levels suitable for performing a desired ablation on the target material. For laser ablation of a given material, a minimum level of light intensity, called threshold light intensity, is required for ablation to occur. In the context of laser ablation, therefore, an optimal pulse energy density is generally near or above the threshold pulse energy density for laser ablation of the target material. For most materials, the optimal pulse energy density should also not be too much higher than (e.g., less than three times) the threshold pulse energy density. Often, surfaces of ablated materials are most efficiently ablated at pulse energy density about 2-4 times, or more preferably about 3 times, the ablation threshold.


(2) With a laser beam that has an operating pulse energy density, although ablation may occur, there still is a question of whether a desired amount of ablation is taking place and whether the ablation is occurring at an appropriate rate. This in turn relates to many factors such as pulse energy, pulse rate, and scanning speed.


Based on the above consideration, several embodiments utilizing different indicative properties are described below.


In one embodiment, the indicative property is indicative of the size of laser spot 225/325 projected on ablation field 260/360. For instance, the indicative property may be a diameter of laser spot 225/325 projected on ablation field 260/360. The diameter of laser spot 225/325 is then used to calculate or estimate the size of laser spot 225/325. Knowledge of the size of the laser spot 225/325 projected on the ablation field 260/360 is very beneficial. Although the cross-section of laser beam 220/320 is an inherent property of the beam itself, and could be measured within the laser device itself without requiring first projecting the laser beam 220/320 onto the ablation field 260/360 to form an actual ablation spot 225/325, it is preferred to measure the actual size of the projected laser beam spot 225/325. This is because the actual size of the projected laser spot 225/325 depends on many other factors in addition to the inherent cross-section size of the laser beam 220/320. These extra factors include the exact working distances such as front working distance between the working surface (ablation field 260/360) and the focusing optics 240/340, the characteristics of the working surface (ablation field 260/360), and the laser beam quality. For example, with a laser having a cross-section of about 10 μm in diameter, a front working distance of about 100 μm, the actual size of the projected laser spot on the working surface may still vary within a range of 2× from a minimum spot size to a maximum spot size. For highly effective and precise laser ablation, even a 5% of variation may be significant. Precisely monitoring the actual size of the projected laser spot is therefore highly beneficial for more accurate control and more efficient use of the laser system.


The measured actual size of the projected laser spot is a direct indicator of the effective pulse energy density applied at the corresponding ablation spot. For example, pulse energy density of the pulsed laser 220 may be obtained by calculating the ratio between pulse energy and the size of laser spot 225. This is possible because the pulse energy itself may be known or otherwise measured or calculated based on the parameters of the laser device generating the pulsed laser for ablation. Even if such quantitative information of pulse energy is unavailable or available but not accurate enough, the actual size of the projected laser spot can still be used as a guide of the relative level of pulse energy density. For example, if a particular spot size is known to result in a sufficient or optimum pulse energy density for ablation, that spot size may be used as a reference and compared against the measured actual size of the projected laser spot.


Based on the above information, a feedback signal is then determined. For example, if the measured pulse energy density is lower than a known minimum optimal pulse energy density for the effective laser ablation of a given material, a feedback signal for increasing the pulse energy density is generated. Conversely, if the measured pulse energy density is higher than a known maximum optimal pulse energy density, a feedback signal for decreasing the pulse energy density is generated. It is noted that for a given material, the ablation threshold is measured by pulse density, instead of pulse energy itself (the relation between the two is analogous to that between pressure and force). The threshold pulse density varies with different materials. If the pulse density is lower than the threshold, ablation would not occur. If the pulse energy is too high, ablation may not be optimally effective or may cause undesired problems such as thermal damages. An exemplary procedure of the above monitoring and feedback mechanism is shown in a block diagram of FIG. 4.


The pulse energy density can be modified, as discussed herein, by varying the optical amplifier pump power, or varying the size of the projected laser spot.


A variety of suitable devices or equipment, including a camera, a video camera, an infrared camera, a UV camera, a vidicon camera, a television camera remote to the ablation target (250 or 350), or an in vivo camera, may be used as the probing device (270 in FIG. 2 or 370 in FIG. 3) to measure the size of a projected laser spot. A variety of circuits can be used to determine a spot size from a video signal. One technique that may be used for determining the diameter of a generally circular spot, is to measure the sweep times of the reflections from the ablation pulse (e.g., 220 or 320) and use the longest sweep time as an indication of the spot diameter. However, those skilled in the art will recognize that other methods of determining the diameter of a generally circular spot could also be used.


In one exemplary embodiment, an image of the projected laser spot 225/325 may be projected onto a CCD array for monitoring purpose. In addition to obtaining the size information of the projected laser spot 225/325, the image formed on the CCD may also be used to determine the pulse beam quality during the ablation process.


In addition to directly measuring the diameter or the size of the projected laser spot, indirect methods may also be used to characterize the diameter or the size of the projected laser spot. An exemplary method is to first characterize the relationship between the size of the projected laser spot and the front working distance from the focusing optics (e.g., 240 or 340) to the ablation target 250/350, then determine the actual working distance during laser operation and use the distance information to further determine the actual size of the projected laser spot. The characterization of the above size-distance relationship may be done by the manufacturer and provided as a factory setting, or performed by a user of the ablation system of the present invention. The distance measurement can be performed with many techniques, such as optical reflectometry, OCT (optical coherence tomography), pulse time of flight measurements, ultrasound, etc.


In some embodiments, the indicative property being measured is indicative of progress of an ablation process on the ablation field 260/360. Accordingly, the output parameter of the pulsed laser 220/320 may be adjusted by increasing pulse energy if the indicative property indicates that no substantial ablation is taking place, and by changing pulse rate if the indicative property indicates an ablation rate deviating from a desired material removal rate.


For example, probing device 270/370 may be used to monitor a spot area on the surface of the ablation target that is being ablated. This monitoring may be performed either in place of or in addition to monitoring the projected laser spot 225/325. For instance, visual information may be collected from the monitored spot on the surface of the ablation target 250/350 to determine whether ablation is occurring, and if occurring whether a desired amount of ablation is taking place, and whether the ablation is occurring at an appropriate rate. The ablation system then generates a feedback signal based on the above determination, and adjusts an output parameter of the pulsed laser according to the feedback signal to optimize ablation effect. As discussed in further detail in a later section of the present disclosure, the output parameter that can be adjusted for this purpose may include pulse energy, pulse rate, pulse duration, working distance, optical focusing, and scanning speed.


In some embodiments, the indicative property being measured is a material composition of the ablation target. This may be done either in addition to or in place of measuring the size of the projected laser spot. One way of determining the composition of the material being ablated is sampling an ablation plume using a suitable spectroscopic method, such as Laser Induced Breakdown Spectroscopy (LIBS) and other types of emission spectroscopy.


In one embodiment, for example, the probing device 270/370 is a Laser Induced Breakdown Spectroscopy (LIBS) used for measuring the chemical composition of the party to material being ablated. LIBS is a type of atomic emission spectroscopy which utilizes a highly energetic laser pulse as the excitation source. LIBS can analyze a broad range of matter regardless of its physical state, be it solid, liquid or gas. Because all elements emit light when excited to sufficiently high temperatures, LIBS can detect all elements, limited only by the power of the laser as well as the sensitivity and wavelength range of the spectrograph & detector.


LIBS operates by focusing a laser onto a small area at the surface of the specimen, when the laser is discharged it ablates a very small amount of material, in the range of 1 μg, which instantaneously superheats generating a plasma plume with temperatures of ˜10,000° C. At these temperatures the ablated material dissociates (breaks down) into excited ionic and atomic species. During this time the plasma emits a continuum of radiation which does not contain any useful information about the species present. But within a very small timeframe the plasma expands at supersonic velocities and cools, at this point the characteristic atomic emission lines of the elements can be observed.


A typical LIBS system has its own laser system, such as a Neodymium doped Yttrium Aluminium Garnet (Nd:YAG) solid state laser. When used in combination of the laser ablation system in accordance with the present invention, however, the sampling may be taken directly from the plume generated by the main laser (e.g., laser 220 in FIG. 2 or laser 320 in FIG. 3) for ablation, as an alternative to carrying out a separate ablation using a second laser just for sampling.


The information for the chemical composition of the target material being ablated may be used beneficially in the feedback mechanism in accordance to the present invention. Because the threshold pulse energy density required for laser ablation is material-dependent, the information for the chemical composition of the target material being ablated may be used to assist optimizing pulse energy density. For example, given the knowledge of material composition of the target material at the spot that is being ablated, a threshold pulse energy density or an optimal pulse energy density may be determined according to the spot-specific composition knowledge. Determining the threshold pulse energy density or the optimal pulse energy density may be done using empirical data, theoretical predictions, or a combination of both. The pulse energy density of the projected pulsed laser on the ablation target is then adjusted to match the threshold pulse energy density or the optimal pulse energy density determined according to the material composition of the ablation target.


Alternatively, the ablation system may be pre-calibrated for multiple settings each corresponding to a particular material composition. As the actual composition of the target material is determined, the ablation system may either automatically select or allow the user to select a setting among the multiple settings to match the composition.


Furthermore, it is appreciated that the knowledge of the material composition obtained with LIBS and the size of the projected laser spot can be combined to optimize the pulse energy for effective non-thermal ablation.


The step of measuring the indicative property and the step of adjusting an output parameter of the pulsed laser may be performed automatically and further dynamically. For example, the probing device 270/370 may measure the indicative property simultaneously as the ablation system 200/300 performs ablation, and send the feedback signal to control unit 280/380 immediately. Upon receiving the feedback signal, control unit 280/380 may perform the adjustment of one or more proper output parameters without having to first pause or stop the ablation.


2. Examples of the Adjustable Output Parameter of the Pulsed Laser


Several output parameters of the pulsed laser may be adjusted, either individually or in combination, to adjust and optimize the ablation effect in accordance with the present invention. These adjustable output parameters include but not limited to individual pulse energy, pulse rate, pulse duration, optical focus, working distance, and scanning speed.


An exemplary output parameter of the pulsed laser that may be adjusted to optimize the ablation effect is pulse energy, defined in the present description as the energy of an individual laser pulse. Because pulse energy density is pulse energy per unit area, changing pulse energy proportionally changes pulse energy density at a given size of projected laser spot on the ablation target. For example, the pulse energy can be increased if the pulse energy density of the pulsed laser is lower than a predetermined threshold or optimal level, and decreased if the pulse energy density of the pulsed laser is higher than the predetermined threshold or optimal level.


In one embodiment, changing pulse energy is accomplished by changing a pump current of a pump diode pumping the laser device. This can be implemented in a variety of laser devices suitable for generating laser for the purpose of the present invention. All lasers contain an amplifying medium, an energized substance that can increase the intensity of light that passes through it. The amplifying medium can be a solid, a liquid or a gas. In Nd:YAG laser, for example, the amplifying medium is a rod of yttrium aluminium garnate (YAG) containing neodymium ions. In a dye laser, it is a solution of a fluorescent dye in a solvent such as methanol. In a helium-neon laser, it is a mixture of the gases helium and neon. In a laser diode, it is a thin layer of semiconductor material sandwiched between other semiconductor layers. In many common laser devices, there is a “pumping” stage to energize the amplifying medium. Pumping changes the pulse energy, generally by changing the gain, the factor by which the intensity of the light is increased by the amplifying medium. Pumping may be performed either electrically or optically, but in either case a current may be changed to adjust, either directly or indirectly, the pulse energy, as further discussed below.


One embodiment of the present invention uses a type of laser devices in which one or more semiconductor optical amplifiers (SOA) are used for amplifying the laser. One or more SOAs are electrically pumped (rather than optically pumped by a separate laser diode). In this embodiment, a control unit (e.g., 280 or 380) changes the electrical pumping current to effectively control the pulse energy that comes out of the SOA.


Another embodiment of the present invention uses a type of laser devices in which a fiber optical amplifier (in contrast with an SOA) is used to amplify the pulse, and the fiber optical amplifier is optically pumped by a separate pump laser diode. In this embodiment, a control unit (e.g., 280 or 380) changes the current of the pumping diode to adjust the pulse energy produced by the fiber optical amplifier.


Yet another embodiment of the present invention uses a type of laser devices in which one or more semiconductor optical amplifiers (SOA) are used as preamplifiers, and a fiber optical amplifier (in contrast with an SOA) is used in the main amplification stage to amplify the pulse. The fiber optical amplifier is optically pumped by a separate pump laser diode. In this embodiment, a control unit (e.g., 280 or 380) changes the current of the pumping diode to adjust the pulse energy produced by the fiber optical amplifier.


One advantage of adjusting pulse energy by changing the pump current is that it makes it possible to control pulse energy density and ablation rate independently and separately.


Alternatively, the output parameter of the pulsed laser being adjusted is the pulse rate of the pulsed laser. This can be done either in combination of or independent from adjusting pulse energy as described above. Generally, changing pulse rate does not affect pulse energy density. So in this sense, when the pulse energy density is out of an optimal range, changing pulse rate may not be able to correct the problem. However, when the pulse energy density is within an optimal range, changing pulse rate may effectively control ablation rate (the speed at which the target material is being ablated and removed).


In one embodiment, the pulse rate of the pulsed laser is adjusted by selecting a subset of pulses from a pulse train generated by the laser device, and directing only the selected subset of pulses to the ablation target. For example, selecting every other pulse from a complete pulse train will effectively reduce the pulse rate by half. Various selecting schemes, including constant pulse rate selection (in which the pulses are selected at a fixed interval such that the selected subset of pulses has a constant pulse rate) and variable pulse rate selection (in which the pulses are selected at a varying interval such that the selected subset of pulses has a variable pulse rate), may be used for the purpose of the present invention.


In another embodiment, the ablation system uses multiple parallel optical amplifiers and changes pulse rate by selecting a subset of multiple optical amplifiers for operation at a time. The use of one or more amplifiers in parallel train mode (with pulses from one amplifier being delayed to arrive one or more nanoseconds after those from another amplifier, for example) allows step-wise control of ablation rate independent of pulse energy density. For example, where a lower ablation rate is desired, one or more amplifiers can be shut down. This has a similar effect of scaling the pulse rate and also has an advantage of being able to alleviate the thermal burden on individual amplifiers by alternatively rotating among the optical amplifiers placed in operation. However, this may increase the cost and size of the equipment and may not be practical in certain applications.


The laser ablation systems and methods in accordance with the present invention may be incorporated in a scanning process of laser ablation, or any other suitable laser ablation process. When incorporated in a scanning process, the scanning speed is also available as an output parameter of the pulsed laser to be adjusted by the control unit (280 or 380) according to a feedback signal received from the probing device (270 or 370). As known in the art, laser ablation systems perform scanning over an ablation field (e.g., 260 or 360) by moving one or more mirrors (e.g., 230 or 330). Typically, two separate mirrors are used, one for X-axis scanning and the other four Y-axis scanning. If it is desirable that the pulsed laser for ablation always strikes the surface of the ablation target at a normal angle during scanning, sophisticated lens systems such as telecentric multi-lens systems may be used. In accordance with the present invention, the speed of scanning is adjusted according to the feedback signal from the probing device (e.g., 270 or 370) to ensure that a proper amount of material removal is taken place at each ablation spot.


With an optimal pulse energy density and a given pulse rate, the amount of material removed by laser ablation at a certain ablation spot depends on the effective time the projected laser spot (e.g., 225 or 325) spent at the ablation spot. The length of this effective time is determined by both the scanning speed and the cross-section diameter of the projected laser spot (e.g., 225 or 325). A higher scanning speed and a smaller diameter of the projected laser spot translate to a shorter effective ablation time at the ablation spot, and vice versa. If the feedback signal from the probing device (e.g., 270 or 370) indicates that an insufficient amount of material is being removed, the control unit (280 or 380) slows down the scanning to increase the effective ablation time and to thus increase the amount of material removal, and vice versa. This may be alternatively accomplished by adjusting the size of the projected laser spot, but caution must be taken because changing the size of the projected laser spot also changes the pulse energy density and would thus change the other aspects of the ablation is well.


3. Type of Lasers Used


For some applications, the pulsed laser desirably has short pulses. Some applications, for example, may prefer a pulse duration shorter than 1 picosecond, or a pulse duration shorter than 100 femtoseconds. For some applications, the pulse energy density of the pulsed laser ranges from about 0.1 Joules/cm2 to about 20 Joules/cm2.


A number of types of laser amplifiers have been used for generating short laser pulses for laser ablation. Techniques for generating these ultra-short pulses (USP) are described, e.g., in a book entitled “Femtosecond Laser Pulses” (C. Rulliere, editor), published 1998, Springer-Verlag Berlin Heidelberg New York. Generally large systems, such as Ti:Sapphire, are used for generating ultra-short pulses (USP).


The USP phenomenon was first observed in the 1970's, when it was discovered 25 that mode-locking a broad-spectrum laser could produce ultra-short pulses. The minimum pulse duration attainable is limited by the bandwidth of the gain medium, which is inversely proportional to this minimal or Fourier-transform-limited pulse duration.


Mode-locked pulses are typically very short and will spread (i.e., undergo temporal dispersion) as they traverse any medium. Subsequent pulse-compression techniques are often used to obtain USP's. Pulse dispersion can occur within the laser cavity so that compression techniques are sometimes added intra-cavity. When high-power pulses are desired, they are intentionally lengthened before amplification to avoid internal component optical damage. This is referred to as “Chirped Pulse Amplification” (CPA). The pulse is subsequently compressed through pulse-duration compression to obtain short pulses with a high peak power.


For example, the laser device may first generates wavelength-swept-with-time pulses from an oscillator-driven semiconductor pulse generator, have the initial pulses amplified by a fiber-amplifier, e.g., a erbium-doped fiber amplifier (or EDFA) or a Cr:YAG amplifier and then compressed by an air-path between gratings compressor such as a Treacy grating compressor is an air-grating compressor. The compression creates sub-picosecond ablation pulse. The pulses having a pulse duration between one nanosecond and 10 picoseconds may be generated using this technique.


The use of optical-amplifier/compressor allows a reduction in ablation system size, enabling the system to be man-portable. For example the system including an oscillator, amplifier and compressor may be transported as a wheeled cart or a backpack.


The present invention improves the controllability and precision by using a feedback loop monitoring the ablation target that is being ablated. This invention can be used for various types of laser ablation, particularly for use as a medical surgical tool. Ablative material removal with short laser pulses can be done either in-vivo and/or on the body surface. As illustrated herein, in some embodiments, a desired pulse energy density is first set for the material being ablated, the optical pumping power is then fine-tuned by dynamic feedback from a probing device which can be a spot-size sensor. Controlling the optical pumping power by dynamic feedback is useful with handheld ablation probes and in instances that diameter of the projected laser spot varies by more than +/−10%. In some embodiments, dynamic feedback control the present invention may have pulse energy control and/or pulse rate control as primary control and thus require very little or none optical control of the size of the projected laser spot through optical focusing mechanism. Such embodiments allow the requirements for the optical system such as focusing ability and optical focal length, to be relaxed, thus reducing the cost of the system.


The above description, including the specification and drawings, is illustrative and not restrictive. Many variations of the invention will become apparent to those of skill in the art upon review of this disclosure. Various features and aspects of the above-described disclosure may be used individually or jointly. Further, the present disclosure can be utilized in any number of environments and applications beyond those described herein without departing from the broader spirit and scope of the specification. The scope of the invention should, therefore, be determined not with reference to the above description, but instead should be determined with reference to the appended claims along with their full scope of equivalents. In addition, it will be recognized that the terms “comprising,” “including,” and “having,” as used herein, are specifically intended to be read as open-ended terms of art. The term “or” as used herein is not a logic operator in an exclusive sense unless explicitly described as such.

Claims
  • 1. A laser ablation method comprising: generating an ultrashort pulsed laser using a laser device;projecting the ultrashort pulsed laser onto an ablation target to be ablated;measuring an indicative property of the ablation spot-size;generating a feedback signal according to the measured indicative property;feeding the feedback signal to a control unit; andadjusting an output parameter of the ultrashort pulsed laser according to the feedback signal to optimize ablation effect.
  • 2. The method of claim 1 wherein the indicative property is indicative of a size of a laser beam spot projected on the ablation target.
  • 3. The method of claim 2 wherein the indicative property comprises a diameter of the laser beam spot.
  • 4. The method of claim 2 wherein the feedback signal is determined according to a pulse energy density of the ultrashort pulsed laser defined as a ratio between pulse energy and the size of the laser beam spot.
  • 5. The method of claim 4 wherein the step of adjusting an output parameter of the ultrashort pulsed laser comprises: increasing the pulse energy if the pulse energy density of the ultrashort pulsed laser is lower than a predetermined threshold or optimal level; ordecreasing the pulse energy if the pulse energy density of the ultrashort pulsed laser is higher than the predetermined threshold or optimal level.
  • 6. The method of claim 1 wherein the step of adjusting an output parameter of the ultrashort pulsed laser comprises changing pulse energy.
  • 7. The method of claim 6 wherein changing pulse energy comprises changing a pump current of a pump diode pumping the laser device.
  • 8. The method of claim 1 wherein the step of adjusting an output parameter of the ultrashort pulsed laser comprises changing pulse rate of the pulsed laser.
  • 9. The method of claim 8 wherein changing pulse rate of the ultrashort pulsed laser comprises selecting a subset of pulses from a pulse train generated by the laser device and projecting the selected subset of pulses unto the ablation target.
  • 10. The method of claim 1 wherein the indicative property is measured using an optical probe.
  • 11. The method of claim 10 wherein the optical probe comprises a camera.
  • 12. The method of claim 1 wherein the indicative property comprises a material composition of the ablation target.
  • 13. The method of claim 12 wherein the material composition is measured by sampling an ablation plume.
  • 14. The method of claim 12 wherein the material composition is measured by a Laser Induced Breakdown Spectroscopy (LIBS).
  • 15. The method of claim 12 further comprising: determining a threshold pulse energy density or an optimal pulse energy density according to the material composition of the ablation target;determining an actual pulse energy density of the ultrashort pulsed laser projected on the ablation target; andcomparing the actual pulse energy density with the threshold pulse energy density or the optimal pulse energy density.
  • 16. The method of claim 15 wherein the step of adjusting an output parameter of the ultrashort pulsed laser comprises adjusting pulse energy to match a resultant pulse energy density of the ultrashort pulsed laser projected on the ablation target with the threshold pulse energy density or the optimal pulse energy density determined according to the material composition of the ablation target.
  • 17. The method of claim 12 further comprising measuring a size of the laser beam spot projected on the ablation target.
  • 18. The method of claim 1 wherein the indicative property is indicative of progress of an ablation process on the ablation target.
  • 19. The method of claim 18 wherein the step of adjusting an output parameter of the ultrashort pulsed laser comprises: increasing pulse energy if the indicative property indicates that no substantial ablation is taking place; andchanging pulse rate if the indicative property indicates an ablation rate deviating from a desired material removal rate.
  • 20. The method of claim 1 wherein the step of measuring the indicative property and the step of adjusting an output parameter of the ultrashort pulsed laser are performed dynamically.
  • 21. The method of claim 1 further comprising measuring an indicative property of the ultrashort pulsed laser projected on the ablation target.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of U.S. patent application Ser. No. 10/849,585, published as U.S. Patent Application No. 2004/0231682, filed May 19, 2004, entitled “Scanned Small Spot Ablation with a High-Repetition-Rate Technical Field of the Invention”; a continuation-in-part of U.S. patent application Ser. No. 10/916,367, issued as U.S. Pat. No. 7,143,769, filed Aug. 11, 2004, entitled “Controlling Pulse Energy of an Optical Amplifier by Controlling Pump Diode Current”; a continuation-in-part of U.S. patent application Ser. No. 10/916,368, filed Aug. 11, 2004, entitled “Pulse Energy Adjustment for Changes in Ablation Spot Size”; a continuation-in-part of U.S. patent application Ser. No. 10/916,365, issued as U.S. Pat. No. 7,367,969, filed Aug. 11, 2004, entitled “Ablative Material Removal with a Preset Removal Rate or Volume or Depth”; a continuation-in-part of U.S. patent application Ser. No. 10/850,325, published as U.S. Patent Application No. 2005/0038487, filed May 19, 2004, entitled “Controlling Pulse Energy of an Optical Amplifier by Controlling Pump Diode Current”; a continuation-in-part of U.S. patent application Ser. No. 10/849,586, published as U.S. Patent Application No. 2005/0035097, filed May 19, 2004, entitled “Altering the Emission of an Ablation Beam for Safety or Control”; and a continuation-in-part of U.S. patent application Ser. No. 10/849,587, published as U.S. Patent Application No. 2005/0065502, filed May 19, 2004, entitled “Enabling or Blocking the Emission of an Ablation Beam Based on Color of Target Area”, which applications claim benefits of earlier filing dates of U.S. Provisional Patent Application Ser. No. 60/494,275, filed Aug. 11, 2003, entitled “Controlling Pulse Energy of a Fiber Amplifier by Controlling Pump Diode Current”; Ser. No. 60/494,274, filed Aug. 11, 2003, entitled “Pulse Energy Adjustment for Changes in Ablation Spot Size”; Ser. No. 60/494,273, filed Aug. 11, 2003, entitled “Ablative Material Removal with a Preset Removal Rate or Volume or Depth”; Ser. No. 60/494,322, filed Aug. 11, 2003, entitled “Controlling Temperature of a Fiber Amplifier by Controlling Pump Diode Current”; Ser. No. 60/494,267, filed Aug. 11, 2003, entitled “Altering the Emission an Ablation Beam for Safety or Control”; Ser. No. 60/494,172, filed Aug. 11, 2003, entitled “Enabling or Blocking the Emission of an Ablation Beam Based on Color of Target Area”; and Ser. No. 60/503,578, filed Sep. 17, 2003, entitled “Controlling Optically-Pumped Optical Pulse Amplifiers”, the contents of which applications are incorporated herein by reference.

US Referenced Citations (535)
Number Name Date Kind
2436662 Norgaard Feb 1948 A
3459960 Aaland et al. Aug 1969 A
3549256 Brienza et al. Dec 1970 A
3599019 Nannichi et al. Aug 1971 A
3602836 Young Aug 1971 A
3622907 Tomlinson et al. Nov 1971 A
3626318 Young Dec 1971 A
3628179 Cuff Dec 1971 A
3631362 Almasi et al. Dec 1971 A
3646469 Buczek et al. Feb 1972 A
3654624 Becker et al. Apr 1972 A
3696308 Duffy et al. Oct 1972 A
3735282 Gans May 1973 A
3764641 Ash Oct 1973 A
3806829 Duston et al. Apr 1974 A
3808549 Maurer Apr 1974 A
3851267 Tanner Nov 1974 A
3942127 Fluhr et al. Mar 1976 A
3963953 Thornton, Jr. Jun 1976 A
4061427 Fletcher et al. Dec 1977 A
4194813 Benjamin et al. Mar 1980 A
4289378 Remy et al. Sep 1981 A
4389617 Kurnit Jun 1983 A
4394623 Kurnit Jul 1983 A
4449215 Reno May 1984 A
4590598 O'Harra, II May 1986 A
4622095 Grobman et al. Nov 1986 A
4655547 Heritage et al. Apr 1987 A
4673795 Ortiz, Jr. Jun 1987 A
4718418 L'Esperance, Jr. Jan 1988 A
4722591 Haffner Feb 1988 A
4730113 Edwards et al. Mar 1988 A
4750809 Kafka et al. Jun 1988 A
4808000 Pasciak Feb 1989 A
4815079 Snitzer et al. Mar 1989 A
4824598 Stokowski Apr 1989 A
4827125 Goldstein May 1989 A
4829529 Kafka May 1989 A
4835670 Adams et al. May 1989 A
4847846 Sone et al. Jul 1989 A
4848340 Bille et al. Jul 1989 A
4849036 Powell et al. Jul 1989 A
4856011 Shimada et al. Aug 1989 A
4878127 Zollman et al. Oct 1989 A
4902127 Byer et al. Feb 1990 A
4907586 Bille et al. Mar 1990 A
4913520 Kafka Apr 1990 A
4915757 Rando Apr 1990 A
4928316 Heritage et al. May 1990 A
4947398 Yasuda et al. Aug 1990 A
4950268 Rink Aug 1990 A
4972423 Alfano et al. Nov 1990 A
4983034 Spillman, Jr. Jan 1991 A
4988348 Bille Jan 1991 A
4994059 Kosa et al. Feb 1991 A
5010555 Madey et al. Apr 1991 A
5014290 Moore et al. May 1991 A
5022042 Bradley Jun 1991 A
5031236 Hodgkinson et al. Jul 1991 A
5043991 Bradley Aug 1991 A
5053171 Portney et al. Oct 1991 A
5095487 Meyerhofer et al. Mar 1992 A
5098426 Sklar et al. Mar 1992 A
5122439 Miersch et al. Jun 1992 A
5132996 Moore et al. Jul 1992 A
5146088 Kingham et al. Sep 1992 A
5154707 Rink et al. Oct 1992 A
5159402 Ortiz, Jr. Oct 1992 A
5162643 Currie Nov 1992 A
5166818 Chase et al. Nov 1992 A
5187759 DiGiovanni et al. Feb 1993 A
5194713 Egitto et al. Mar 1993 A
5204867 Koschmann Apr 1993 A
5206455 Williams et al. Apr 1993 A
5217003 Wilk Jun 1993 A
5237576 DiGiovanni et al. Aug 1993 A
5255117 Cushman Oct 1993 A
5265107 Delfyett, Jr. Nov 1993 A
5267077 Blonder Nov 1993 A
5278853 Shirai et al. Jan 1994 A
5291501 Hanna Mar 1994 A
5293186 Seden et al. Mar 1994 A
5301347 Kensky Apr 1994 A
5302835 Bendett et al. Apr 1994 A
5313262 Leonard May 1994 A
5315431 Masuda et al. May 1994 A
5315436 Lowenhar et al. May 1994 A
5329398 Lai et al. Jul 1994 A
5331131 Opdyke Jul 1994 A
5355383 Lockard Oct 1994 A
5367143 White, Jr. Nov 1994 A
5400350 Galvanauskas Mar 1995 A
5409376 Murphy Apr 1995 A
5411918 Keible et al. May 1995 A
5414725 Fermann et al. May 1995 A
5418809 August, Jr. et al. May 1995 A
5428471 McDermott Jun 1995 A
5430572 DiGiovanni et al. Jul 1995 A
5440573 Fermann Aug 1995 A
5446813 Lee et al. Aug 1995 A
5450427 Fermann et al. Sep 1995 A
5479422 Fermann et al. Dec 1995 A
5489984 Hariharan et al. Feb 1996 A
5493579 Ressl et al. Feb 1996 A
5499134 Galvanauskas et al. Mar 1996 A
5517043 Ma et al. May 1996 A
5520679 Lin May 1996 A
5548098 Sugawara et al. Aug 1996 A
5572335 Stevens Nov 1996 A
5572358 Gabl et al. Nov 1996 A
5585642 Britton et al. Dec 1996 A
5585652 Kamasz et al. Dec 1996 A
5585913 Hariharan et al. Dec 1996 A
5590142 Shan Dec 1996 A
5592327 Gabl et al. Jan 1997 A
5596668 DiGiovanni et al. Jan 1997 A
5602673 Swan Feb 1997 A
5602677 Tournois Feb 1997 A
5615043 Plaessmann et al. Mar 1997 A
5617434 Tamura et al. Apr 1997 A
5624587 Otsuki et al. Apr 1997 A
5625544 Kowshik et al. Apr 1997 A
5627848 Fermann et al. May 1997 A
5631771 Swan May 1997 A
5633750 Nogiwa et al. May 1997 A
5633885 Galvanauskas et al. May 1997 A
5642447 Pan et al. Jun 1997 A
5644424 Backus et al. Jul 1997 A
5651018 Mehuys et al. Jul 1997 A
5656186 Mourou et al. Aug 1997 A
5657153 Endriz et al. Aug 1997 A
5661829 Zheng Aug 1997 A
5663731 Theodoras, II et al. Sep 1997 A
5665942 Williams et al. Sep 1997 A
5666722 Tamm et al. Sep 1997 A
5670067 Koide et al. Sep 1997 A
5677769 Bendett Oct 1997 A
5689361 Damen et al. Nov 1997 A
5689519 Fermann et al. Nov 1997 A
5694501 Alavie et al. Dec 1997 A
5696782 Harter et al. Dec 1997 A
5701319 Fermann Dec 1997 A
5703639 Farrier et al. Dec 1997 A
5708669 DiGiovanni et al. Jan 1998 A
5710424 Thoedoras, II et al. Jan 1998 A
5720894 Neev et al. Feb 1998 A
5726855 Mourou et al. Mar 1998 A
5734762 Ho et al. Mar 1998 A
5736709 Neiheisel Apr 1998 A
5739933 Dembeck et al. Apr 1998 A
5770864 Dlugos Jun 1998 A
5771253 Chang-Hasnain et al. Jun 1998 A
5778016 Sucha et al. Jul 1998 A
5781289 Sabsabi et al. Jul 1998 A
5786117 Hoshi et al. Jul 1998 A
5790574 Rieger et al. Aug 1998 A
5815519 Aoshima et al. Sep 1998 A
5818630 Fermann et al. Oct 1998 A
5822097 Tournois Oct 1998 A
5844149 Akiyoshi et al. Dec 1998 A
5847825 Alexander Dec 1998 A
5847863 Galvanauskas et al. Dec 1998 A
5862287 Stock et al. Jan 1999 A
5862845 Chin et al. Jan 1999 A
5867304 Galvanauskas et al. Feb 1999 A
5875408 Bendett et al. Feb 1999 A
5880823 Lu Mar 1999 A
5880877 Fermann et al. Mar 1999 A
5898485 Nati, Jr. Apr 1999 A
5907157 Yoshioka et al. May 1999 A
5920668 Uehara et al. Jul 1999 A
5923686 Fermann et al. Jul 1999 A
5929430 Yao et al. Jul 1999 A
5936716 Pinsukanjana et al. Aug 1999 A
5994667 Merdan et al. Nov 1999 A
5999847 Elstrom Dec 1999 A
6014249 Fermann et al. Jan 2000 A
6016452 Kasevich Jan 2000 A
6020591 Harter et al. Feb 2000 A
6034975 Harter et al. Mar 2000 A
6041020 Caron et al. Mar 2000 A
6061373 Brockman et al. May 2000 A
6072811 Fermann et al. Jun 2000 A
6075588 Pinsukanjana et al. Jun 2000 A
6081369 Waarts et al. Jun 2000 A
6088153 Anthon et al. Jul 2000 A
6099522 Knopp et al. Aug 2000 A
6120857 Balooch et al. Sep 2000 A
6122097 Weston et al. Sep 2000 A
6130780 Joannopoulos et al. Oct 2000 A
6134003 Tearney et al. Oct 2000 A
6141140 Kim Oct 2000 A
6151338 Grubb et al. Nov 2000 A
6154310 Galvanauskas et al. Nov 2000 A
6156030 Neev Dec 2000 A
6161543 Cox et al. Dec 2000 A
6168590 Neev Jan 2001 B1
6172611 Hussain et al. Jan 2001 B1
6175437 Diels et al. Jan 2001 B1
6179421 Pang Jan 2001 B1
6181463 Galvanauskas et al. Jan 2001 B1
6190380 Abela Feb 2001 B1
6198568 Galvanauskas et al. Mar 2001 B1
6198766 Schuppe et al. Mar 2001 B1
6201914 Duguay et al. Mar 2001 B1
6208458 Galvanauskas et al. Mar 2001 B1
6228748 Anderson et al. May 2001 B1
6246816 Moore et al. Jun 2001 B1
6249630 Stock et al. Jun 2001 B1
6252892 Jiang et al. Jun 2001 B1
6256328 Delfyett et al. Jul 2001 B1
6269108 Tabirian et al. Jul 2001 B1
6271650 Massie et al. Aug 2001 B1
6275250 Sanders et al. Aug 2001 B1
6275512 Fermann Aug 2001 B1
6281471 Smart Aug 2001 B1
6290910 Chalk Sep 2001 B1
6303903 Liu Oct 2001 B1
6314115 Delfyett et al. Nov 2001 B1
6325792 Swinger et al. Dec 2001 B1
6327074 Bass et al. Dec 2001 B1
6327282 Hammons et al. Dec 2001 B2
6330383 Cai et al. Dec 2001 B1
6334011 Galvanauskas et al. Dec 2001 B1
6335821 Suzuki et al. Jan 2002 B1
6340806 Smart et al. Jan 2002 B1
RE37585 Mourou et al. Mar 2002 E
6355908 Tatah et al. Mar 2002 B1
6359681 Housand et al. Mar 2002 B1
6362454 Liu Mar 2002 B1
6365869 Swain et al. Apr 2002 B1
6366395 Drake et al. Apr 2002 B1
6370171 Horn et al. Apr 2002 B1
6370422 Richards-Kortum et al. Apr 2002 B1
6371469 Gray Apr 2002 B1
6396317 Roller et al. May 2002 B1
6404944 Wa et al. Jun 2002 B1
6407363 Dunsky et al. Jun 2002 B2
6418154 Kneip et al. Jul 2002 B1
6418256 Danziger et al. Jul 2002 B1
6421169 Bonnedal et al. Jul 2002 B1
6425912 Knowlton Jul 2002 B1
6433303 Liu et al. Aug 2002 B1
6433305 Liu et al. Aug 2002 B1
6433760 Vaissie et al. Aug 2002 B1
6437283 Wiggermann et al. Aug 2002 B1
6463314 Haruna Oct 2002 B1
6482199 Neev Nov 2002 B1
6485413 Boppart et al. Nov 2002 B1
6486435 Beyer et al. Nov 2002 B1
6496099 Wang et al. Dec 2002 B2
6501590 Bass et al. Dec 2002 B2
6522460 Bonnedal et al. Feb 2003 B2
6522674 Niwano et al. Feb 2003 B1
6525873 Gerrish et al. Feb 2003 B2
6526085 Vogler et al. Feb 2003 B2
6526327 Kar et al. Feb 2003 B2
6529319 Youn et al. Mar 2003 B2
6541731 Mead et al. Apr 2003 B2
6547453 Stummer et al. Apr 2003 B1
6549547 Galvanauskas et al. Apr 2003 B2
6552301 Herman et al. Apr 2003 B2
6555781 Ngoi et al. Apr 2003 B2
6556733 Dy et al. Apr 2003 B2
6562698 Manor May 2003 B2
6567431 Tabirian et al. May 2003 B2
6570704 Palese May 2003 B2
6573813 Joannopoulos et al. Jun 2003 B1
6574024 Liu Jun 2003 B1
6574250 Sun et al. Jun 2003 B2
6576917 Silfvast Jun 2003 B1
6580553 Kim et al. Jun 2003 B2
6587488 Meissner et al. Jul 2003 B1
6592574 Shimmick et al. Jul 2003 B1
6597497 Wang et al. Jul 2003 B2
6603903 Tong et al. Aug 2003 B1
6603911 Fink et al. Aug 2003 B2
6608951 Goldenberg et al. Aug 2003 B1
6614565 Klug et al. Sep 2003 B1
6621040 Perry et al. Sep 2003 B1
6621045 Liu et al. Sep 2003 B1
6627421 Unger et al. Sep 2003 B1
6627844 Liu et al. Sep 2003 B2
6642477 Patel et al. Nov 2003 B1
6647031 Delfyett et al. Nov 2003 B2
6654161 Bass et al. Nov 2003 B2
6661568 Hollemann et al. Dec 2003 B2
6661816 Delfyett et al. Dec 2003 B2
6661820 Camilleri et al. Dec 2003 B1
6671298 Delfyett et al. Dec 2003 B1
6677552 Tulloch et al. Jan 2004 B1
6681079 Maroney Jan 2004 B1
6690686 Delfyett et al. Feb 2004 B2
6695835 Furuno et al. Feb 2004 B2
6696008 Brandinger Feb 2004 B2
6697402 Crawford Feb 2004 B2
6697408 Kennedy et al. Feb 2004 B2
6700094 Kuntze Mar 2004 B1
6700698 Scott Mar 2004 B1
6706036 Lai Mar 2004 B2
6706998 Cutler Mar 2004 B2
6710288 Liu et al. Mar 2004 B2
6710293 Liu et al. Mar 2004 B2
6711334 Szkopek et al. Mar 2004 B2
6716475 Fink et al. Apr 2004 B1
6720519 Liu et al. Apr 2004 B2
6723991 Sucha et al. Apr 2004 B1
6727458 Smart Apr 2004 B2
6728273 Perry Apr 2004 B2
6728439 Weisberg et al. Apr 2004 B2
6735229 Delfyett et al. May 2004 B1
6735368 Parker et al. May 2004 B2
6738144 Dogariu May 2004 B1
6738408 Abedin May 2004 B2
6744552 Scalora et al. Jun 2004 B2
6744555 Galvanauskas et al. Jun 2004 B2
6749285 Liu et al. Jun 2004 B2
6760356 Erbert et al. Jul 2004 B2
6774869 Biocca et al. Aug 2004 B2
6782207 Efimov Aug 2004 B1
6787734 Liu Sep 2004 B2
6788864 Ahmad et al. Sep 2004 B2
6791060 Dunsky et al. Sep 2004 B2
6791071 Woo et al. Sep 2004 B2
6795461 Blair et al. Sep 2004 B1
6801550 Snell et al. Oct 2004 B1
6801551 Delfyett et al. Oct 2004 B1
6801557 Liu Oct 2004 B2
6803539 Liu et al. Oct 2004 B2
6804574 Liu et al. Oct 2004 B2
6807353 Fleming et al. Oct 2004 B1
6807375 Dogariu Oct 2004 B2
6815638 Liu Nov 2004 B2
6819694 Jiang et al. Nov 2004 B2
6819702 Sverdlov et al. Nov 2004 B2
6819837 Li et al. Nov 2004 B2
6822187 Hermann et al. Nov 2004 B1
6822251 Arenberg et al. Nov 2004 B1
6824540 Lin Nov 2004 B1
6829517 Cheng et al. Dec 2004 B2
6834134 Brennan, III et al. Dec 2004 B2
6836703 Wang et al. Dec 2004 B2
6878900 Corkum et al. Apr 2005 B2
6882772 Lowery et al. Apr 2005 B1
6885683 Fermann et al. Apr 2005 B1
6887804 Sun et al. May 2005 B2
6897405 Cheng et al. May 2005 B2
6902561 Kurtz et al. Jun 2005 B2
6915040 Willner et al. Jul 2005 B2
6917631 Richardson et al. Jul 2005 B2
6928490 Bucholz et al. Aug 2005 B1
6937629 Perry et al. Aug 2005 B2
6943359 Vardeny et al. Sep 2005 B2
6956680 Morbieu et al. Oct 2005 B2
6994703 Wang et al. Feb 2006 B2
7001373 Clapham et al. Feb 2006 B2
7002733 Dagenais et al. Feb 2006 B2
7006730 Doerr Feb 2006 B2
7022119 Hohla Apr 2006 B2
7031571 Mihailov et al. Apr 2006 B2
7068408 Sakai Jun 2006 B2
7072101 Kapteyn et al. Jul 2006 B2
7088756 Fermann et al. Aug 2006 B2
7095772 Delfyett et al. Aug 2006 B1
7097640 Wang et al. Aug 2006 B2
7099549 Scheuer et al. Aug 2006 B2
7116688 Sauter et al. Oct 2006 B2
7132289 Kobayashi et al. Nov 2006 B2
7143769 Stoltz et al. Dec 2006 B2
7171074 DiGiovanni et al. Jan 2007 B2
7217266 Anderson et al. May 2007 B2
7220255 Lai May 2007 B2
7233607 Richardson et al. Jun 2007 B2
7257302 Fermann et al. Aug 2007 B2
7321605 Albert Jan 2008 B2
7321713 Akiyama et al. Jan 2008 B2
7332234 Levinson et al. Feb 2008 B2
7349452 Brennan, III et al. Mar 2008 B2
7349589 Temelkuran et al. Mar 2008 B2
7361171 Stoltz et al. Apr 2008 B2
7367969 Stoltz et al. May 2008 B2
7413565 Wang et al. Aug 2008 B2
7414780 Fermann et al. Aug 2008 B2
7444049 Kim et al. Oct 2008 B1
7505196 Nati et al. Mar 2009 B2
7518788 Fermann et al. Apr 2009 B2
7584756 Zadoyan et al. Sep 2009 B2
7674719 Li et al. Mar 2010 B2
7675674 Bullington et al. Mar 2010 B2
7728967 Ochiai et al. Jun 2010 B2
7751118 Di Teodoro et al. Jul 2010 B1
7759607 Chism, II Jul 2010 B2
7773216 Cheng et al. Aug 2010 B2
7787175 Brennan, III et al. Aug 2010 B1
7792408 Varming Sep 2010 B2
7822347 Brennan, III et al. Oct 2010 B1
7943533 Mizuno May 2011 B2
7963958 Stoltz et al. Jun 2011 B2
7998404 Huang et al. Aug 2011 B2
RE43605 O'Brien et al. Aug 2012 E
8338746 Sun et al. Dec 2012 B2
8373090 Gale et al. Feb 2013 B2
20010009250 Herman et al. Jul 2001 A1
20010021294 Cai et al. Sep 2001 A1
20010046243 Schie Nov 2001 A1
20020003130 Sun et al. Jan 2002 A1
20020051606 Takushima et al. May 2002 A1
20020071454 Lin Jun 2002 A1
20020091325 Ostrovsky Jul 2002 A1
20020095142 Ming Jul 2002 A1
20020097468 Mecherle et al. Jul 2002 A1
20020097761 Sucha et al. Jul 2002 A1
20020115273 Chandra et al. Aug 2002 A1
20020118934 Danziger et al. Aug 2002 A1
20020153500 Fordahl et al. Oct 2002 A1
20020167581 Cordingley et al. Nov 2002 A1
20020167974 Kennedy et al. Nov 2002 A1
20020176676 Johnson et al. Nov 2002 A1
20020186915 Yu et al. Dec 2002 A1
20020191901 Jensen Dec 2002 A1
20030011782 Tanno Jan 2003 A1
20030031410 Schnitzer Feb 2003 A1
20030039442 Bond et al. Feb 2003 A1
20030053508 Dane et al. Mar 2003 A1
20030055413 Altshuler et al. Mar 2003 A1
20030060808 Wilk Mar 2003 A1
20030086647 Willner et al. May 2003 A1
20030095266 Detalle et al. May 2003 A1
20030123496 Broutin et al. Jul 2003 A1
20030142705 Hackel et al. Jul 2003 A1
20030152115 Jiang et al. Aug 2003 A1
20030156605 Richardson et al. Aug 2003 A1
20030161365 Perry et al. Aug 2003 A1
20030161378 Zhang et al. Aug 2003 A1
20030178396 Naumov et al. Sep 2003 A1
20030189959 Erbert et al. Oct 2003 A1
20030202547 Fermann et al. Oct 2003 A1
20030205561 Iso Nov 2003 A1
20030214714 Zheng Nov 2003 A1
20030223689 Koch et al. Dec 2003 A1
20030235381 Hunt Dec 2003 A1
20040000942 Kapteyn et al. Jan 2004 A1
20040022695 Simon et al. Feb 2004 A1
20040037505 Morin Feb 2004 A1
20040042061 Islam et al. Mar 2004 A1
20040049552 Motoyama et al. Mar 2004 A1
20040101001 Bergmann et al. May 2004 A1
20040128081 Rabitz et al. Jul 2004 A1
20040134894 Gu et al. Jul 2004 A1
20040134896 Gu et al. Jul 2004 A1
20040160995 Sauter et al. Aug 2004 A1
20040226922 Flanagan Nov 2004 A1
20040226925 Gu et al. Nov 2004 A1
20040231682 Stoltz Nov 2004 A1
20040233944 Dantus et al. Nov 2004 A1
20040263950 Fermann et al. Dec 2004 A1
20050008044 Fermann et al. Jan 2005 A1
20050018986 Argyros et al. Jan 2005 A1
20050035097 Stoltz Feb 2005 A1
20050036527 Khazaei et al. Feb 2005 A1
20050038487 Stoltz Feb 2005 A1
20050061779 Blumenfeld et al. Mar 2005 A1
20050065502 Stoltz Mar 2005 A1
20050067388 Sun et al. Mar 2005 A1
20050074974 Stoltz Apr 2005 A1
20050077275 Stoltz Apr 2005 A1
20050105865 Fermann et al. May 2005 A1
20050107773 Bergt et al. May 2005 A1
20050111073 Pan et al. May 2005 A1
20050127049 Woeste et al. Jun 2005 A1
20050154380 DeBenedictis et al. Jul 2005 A1
20050163426 Fermann et al. Jul 2005 A1
20050167405 Stoltz et al. Aug 2005 A1
20050171516 Stoltz Aug 2005 A1
20050171518 Stoltz et al. Aug 2005 A1
20050175280 Nicholson Aug 2005 A1
20050177143 Bullington et al. Aug 2005 A1
20050195726 Bullington et al. Sep 2005 A1
20050213630 Mielke et al. Sep 2005 A1
20050215985 Mielke et al. Sep 2005 A1
20050218122 Yamamoto et al. Oct 2005 A1
20050225846 Nati et al. Oct 2005 A1
20050232560 Knight et al. Oct 2005 A1
20050238070 Imeshev et al. Oct 2005 A1
20050253482 Kapps et al. Nov 2005 A1
20050259944 Anderson et al. Nov 2005 A1
20050265407 Braun et al. Dec 2005 A1
20050271094 Miller et al. Dec 2005 A1
20050271340 Weisberg et al. Dec 2005 A1
20050274702 Deshi Dec 2005 A1
20060016891 Giebel et al. Jan 2006 A1
20060030951 Davlin et al. Feb 2006 A1
20060056480 Mielke et al. Mar 2006 A1
20060064079 Stoltz et al. Mar 2006 A1
20060067604 Bull et al. Mar 2006 A1
20060084957 Delfyett et al. Apr 2006 A1
20060120418 Harter et al. Jun 2006 A1
20060126679 Brennan et al. Jun 2006 A1
20060131288 Sun et al. Jun 2006 A1
20060159137 Shah Jul 2006 A1
20060187974 Dantus Aug 2006 A1
20060209908 Pedersen et al. Sep 2006 A1
20060210275 Vaissie et al. Sep 2006 A1
20060221449 Glebov et al. Oct 2006 A1
20060249816 Li et al. Nov 2006 A1
20060250025 Kitagawa et al. Nov 2006 A1
20060268949 Gohle et al. Nov 2006 A1
20070025728 Nakazawa et al. Feb 2007 A1
20070047965 Liu et al. Mar 2007 A1
20070098025 Hong et al. May 2007 A1
20070106416 Griffiths et al. May 2007 A1
20070196048 Galvanauskas et al. Aug 2007 A1
20070229939 Brown et al. Oct 2007 A1
20070253455 Stadler et al. Nov 2007 A1
20070273960 Fermann et al. Nov 2007 A1
20080050078 Digonnet et al. Feb 2008 A1
20080058781 Langeweyde et al. Mar 2008 A1
20080232407 Harter et al. Sep 2008 A1
20080240184 Cho et al. Oct 2008 A1
20090020511 Kommera et al. Jan 2009 A1
20090244695 Marcinkevicius et al. Oct 2009 A1
20090245302 Baird et al. Oct 2009 A1
20090257464 Dantus et al. Oct 2009 A1
20090273828 Waarts et al. Nov 2009 A1
20090290151 Agrawal et al. Nov 2009 A1
20090297155 Weiner et al. Dec 2009 A1
20100013036 Carey Jan 2010 A1
20100040095 Mielke et al. Feb 2010 A1
20100118899 Peng et al. May 2010 A1
20100157418 Dong et al. Jun 2010 A1
20100181284 Lee et al. Jul 2010 A1
20100276405 Cho et al. Nov 2010 A1
20110069723 Dong et al. Mar 2011 A1
20140044139 Dong et al. Feb 2014 A1
20140140361 Jiang May 2014 A1
Foreign Referenced Citations (15)
Number Date Country
214100 Mar 1987 EP
691563 Jan 1996 EP
1462831 Sep 2004 EP
8171103 Jul 1996 JP
11189472 Jul 1999 JP
2003181661 Jul 2003 JP
2003344883 Dec 2003 JP
WO 9428972 Dec 1994 WO
WO 2004105100 Dec 2004 WO
WO 2004114473 Dec 2004 WO
WO 2005018060 Feb 2005 WO
WO 2005018061 Feb 2005 WO
WO 2005018062 Feb 2005 WO
WO 2005018063 Feb 2005 WO
WO2007034317 Mar 2007 WO
Non-Patent Literature Citations (71)
Entry
Yeh et al., “Theory of Bragg Fiber”, Journal of the Optical Society America, Sep. 1978, pp. 1196, vol. 68, No. 9.
Engeness et al., “Dispersion Tailoring and Compensation by Modal Interations in Omniguide Fibers,” Optics Express, May 19, 2003, pp. 1175-1196, vol. 11, No. 10.
Fink et al., “Guiding Optical Light in Air Using an All-Dielectric Structure,” Journal of Lightwave Technology, Nov. 1999, pp. 2039-2041, vol. 17, No. 11.
Siegman, “Unstable Optical Resonators”, Applied Optics, Feb. 1974, pp. 353-367, vol. 13, No. 2.
Koechner, “Solid State Laser Engineering”, Oct. 29, 1999, Section 5.5, pp. 270-277, 5th Edition, Springer.
Chen et al. “Dispersion-Managed Mode Locking”, Journal of the Optical Society of America B, Nov. 1999, pp. 1999-2004, vol. 16, No. 11, Optical Society of America.
Resan et al. “Dispersion-Managed Semiconductor Mode-Locked Ring Laser”, Optics Letters, Aug. 1, 2003, pp. 1371-1373, vol. 28, No. 15, Optical Society of America.
Dasgupta, S. et al., “Design of Dispersion-Compensating Bragg Fiber with an Ultrahigh Figure of Merit,” Optics Letters, Aug. 1, 2005, vol. 30, No. 15, Optical Society of America.
Mohammed, W. et al., “Selective Excitation of the TE01 Mode in Hollow-Glass Waveguide Using a Subwavelength Grating,” IEEE Photonics Technology Letters, Jul. 2005, vol. 17, No. 7, IEEE.
Delfyett, P et al., “Ultrafast Semiconductor Laser-Diode-Seeded Cr:LiSAF Rengerative Amplifier System”, Applied Optics, May 20, 1997, pp. 3375-3380, vol. 36, No. 15, Octoical Society of America.
Levy et al., “Engineering Space-Variant INhomogeneous Media for Polarization Control,” Optics Letters, Aug. 1, 2004, pp. 1718-1720, vol. 29, No. 15, Optical Society of America.
Ibanescu et al., “Analysis of Mode Structure in Hollow Dielectric Waveguide Fibers,” Physical Review E 67, 2003, The American Physical Society.
Nishimura et al., “In Vivo Manipulation of Biological Systems with Femtosecond Laser Pulses,” Proc. SPIE 6261, 62611J, pp. 1-10, 2006.
Stevenson et al., Femtosecond Optical Transfection of Cells: Viability and Efficiency, Optics Express, vol. 14, No. 16, pp. 7125-7133, Aug. 7, 2006.
Tirlapur et al., “Targeted Transfection by Femtosecond Laser,” Nature Publishing Group, vol. 418, pp. 290-291, Jul. 18, 2002.
Tsai et al., “Ultrashort Pulsed Laser Light,” Optics & Photonics News, pp. 25-29, Jul. 2004.
Vaissie et al., “Desktop Ultra-Short Pulse Laser at 1552 nm,”Ultrashort Pulse Laser Materials Interaction Workshop (Raydiance)—Directed Energy Professional Society (DEPS), Sep. 28, 2006.
Stock et al., “Chirped Pulse Amplification in an Erbium-doped Diber Oscillator/Erbium-doped Fiber Amplifier System”, Optics Communications, North-Holland Publishing Co., Amsterdam, NL, vol. 106, No. 4/5/06, Mar. 15, 1994, pp. 249-252, XP000429901, ISSN: 0030-4018.
Strickland et al., “Compression of Amplified Chirped Optical Pulses”, Optics Communications, North-Holland Publishing Co., Amersterdam, NL, vol. 56, No. 3, Dec. 1, 1985, pp. 219-221, XP024444933 ISSN: 0030-4018 (retrieved on Dec. 11, 1985.
Temelkuran, B. et al., “Wavelength-scalable Hollow Optical Fibres with Large Photonic Bandgaps for CO2 Laser Transmission,” Nature, Dec. 12, 2002, pp. 650-653.
Thurston, R.N. et al., “Analysis of Picosecond Pulse Shape Synthesis by Spectral Masking in a Grating Pulse Compressor,” IEEE Journal of Quantum Electronics, vol. EQ-22, No. 5, pp. 682-696, May 1986.
Weiner, A.M. et al., “Synthesis of Phase-coherent, Picosecond Optical Square Pulses,” Optics Letters, vol. 11, No. 3, pp. 153-155, Mar. 1986.
Weiner, A.M., “Femtosecond Optical Pulse Shaping and Processing,” Prog. Quant. Electr. 1995, vol. 19, pp. 161-237, 1995.
Weiner, A.M., “High-resolution femtosecond Pulse Shaping,” Journal of the Optical Society of America B. vol. 5, No. 8, pp. 1563-1572, Aug. 1988.
Wells, D.J., “Gene Therapy Progress and Prospects: electroporation and Other Physical Methods,” Gene Therapy, Nature Publishing Group, vol. 11, pp. 1363-1369, Aug. 5, 2004, (http://www.nature.com/gt).
White, W.E., et al., “Compensation of Higher-order Frequency-dependent Phase Terms in Chirped-pulse Amplification Systems,” Optics Letters, vol. 18, No. 16, pp. 1343-1345, Aug. 15, 1993.
Yamakawa et al., “1 Hz, 1 ps, terawatt Nd: glass laser”, Optics Communications, North-Holland Publishing Co. Amsterdam, NL, vol. 112, No. 1-2, Nov. 1, 1994, pp. 37-42, XP024424285.
Yan et al., Ultrashort Pulse Measurement Using Interferometric Autocorrelator Based on Two-photon-absorbtion Detector at 1.55μm Wavelength Region., 2005, Proceedings of SPIE vol. 5633, Advanced Materials and Devices for Sensing and Imaging II, pp. 424-429.
Yi, Y. et al., “Sharp Bending of On-Chip silicon Bragg Cladding Waveguide With Light Guiding on Low Index Core Materials”, IEEE Journal of Selected Topics in Quantum Electronics, vol. 12, No. 6, Nov./Dec. 2006, pp. 1345-1348.
Yi, Y., et al., “On-chip Si-based Bragg Cladding Waveguide with High Index Contrast Bilayers”, Optics Express, vol. 12, No. 20, Oct. 4, 2004, pp. 4775-4780.
Yin, D. et al., “Integrated ARROW Waveguides with Hollow Cores”, Optics Express, vol. 12, No. 12, Jun. 14, 2004, pp. 2710-2715.
Zhou, S. et al., “Compensation of nonlinear Phase Shifts with Third-order Dispersion in Short-pulse Fiber Amplifiers,” Optics Express, vol. 13, No. 13, pp. 4869-2877, Jun. 27, 2005.
Agostinelli, J. et al., “Optical Pulse Shaping with a Grating Pair,” Applied Optics, vol. 18, No. 14, pp. 2500-2504, Jul. 15, 1979.
Anastassiou et al., “Photonic Bandgap Fibers Exploiting Omnidirectional Reflectivity Enable Flexible Delivery of Infrared Lasers for Tissue Cutting,” Proceedings of the SPIE—the International Society for Optical Engineering, SPIE, US, vol. 5317, No. 1, Jan. 1, 2004, pp. 29-38, XP002425586 ISSN: 0277-786X.
Benoit, G. et al., “Dynamic All-optical Tuning of Transverse Resonant Cavity Modes in Photonic Bandgap Fibers, ”Optics Letters, vol. 30, No. 13, Jul. 1, 2005, pp. 1620-1622.
Chen, L. et al., “Ultrashort Optical Pulse Interaction with Fibre Gratings and Device Applications,” 1997, Canaga, located at http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp04/mq29402.pfd.
Chen, X. et al., “Highly Birefringent Hollow-core Photonic Bandgap Fiber,” Optics Express, vol. 12, No. 16, Aug. 9, 2004, pp. 3888-3893.
De Matos et al., “Multi-kilowatt, Picosecond Pulses from an All-fiber Chirped Pulse Amplification System Using Air-core Photonic Bandgalp Fiber”, Lasers and Electro-optics, 2004, (CLEO), Conference on San Francisco, CA USA, May 20-21, 2004, Piscataway, NJ, USA, IEEE, vol. May 17, 2004, pp. 973-974, XP010745448 ISBN: 978-1-55752-777-6.
De Matos, C.J.S. et al., “All-fiber Chirped Pulse Amplification using Highly-dispersive Air-core Photonic Bandgap Fiber,” Nov. 3, 2003, Optics Express, pp. 2832-2837, vol. 11, No. 22.
Eggleton, et al., “Electrically Tunable Power Efficient Dispersion Compensating Fiber Bragg Grating,” IEEE Photonics Technology Letters, vol. 11, No. 7, pp. 854-856, Jul. 1999.
Folkenberg, J.R., et al., “Broadband Single-polarization Photonic Crystal Fiber,” Optics Letters, vol. 30, No. 12, Jun. 15, 2005, pp. 1446-1448.
Folkenberg, J.R., et al., “Polarization Maintaining Large Mode Area Photonic Crystal Fiber,” Optics Express vol. 12, No. 5, Mar. 8, 2004, pp. 956-960.
Futami, F., et al., “Wideband Fibre Dispersion Equalisation up to Fourth-order for Long-distance Sub-picosecond Optical Pulse Transmission,” Electronics Letters, vol. 35, No. 25, Dec. 9, 1999.
Galvanauskas, A. et al., “Chirped-pulse-amplification Circuits for Fiber Amplifiers, Based on Chirped-period Quasi-phase, matching gratings”, Optics Letters, Nov. 1, 1998, p. 1695-1697, vol. 23, No. 21, Optical Society of America.
Hartl et al., “In-line high energy Yb Fiber Laser Based Chirped Pulse Amplifier System”, Laser and Electro-Optics, 2004, (CLEO) Conference of San Francisco, CA USA May 20-21, 2004, Piscataway, NJ, USA, IEEE, vol. 1, May 17, 2004, pp. 563-565, XP010745382, ISBN: 978-1-55752-7777.
Hellstrom, E. et al., “Third-order Dispersion Compensation Using a Phase Modulator”, Journal of Lightwave Technology, vol. 21, No. 5, pp. 1188-1197, May 2003.
Heritage, J. P. et al., “Picosecond Pulse Shaping by Spectral Phase and Amplitude Manipulation,” Optics Letters, vol. 10, No. 12, pp. 609-611, Dec. 1985.
Heritage, J.P. et al., “Spectral Windowing of Frequency-Modulated Optical Pulses in a Grating Compressor,” Applied Physics Letters, vol. 47, No. 2, pp. 87-89, Jul. 15, 1985.
Hill, K. et al., “Fiber Bragg Grating Technology Fundamentals and Overview,” Journal of Lightwave Technology, Aug. 1997, vol. 15, No. 8, pp. 1263-1276.
Jiang, et al., “Fully Dispersion Compensated ˜500 fs Pulse Transmission Over 50 km Single Mode Fiber,” Optics Letters, vol. 30, No. 12, pp. 1449-1451, Jun. 15, 2005.
Jiang, et al., “Fully Dispersion Compensated ˜500 fs Pulse Transmission Over 50 km Single Mode Fiber,” Purdue University ECE Annual Research Summary, Jul. 1, 2004-Jun. 30, 2005.
Killey, et al., “Electronic Dispersion Compensation by Signal Predistortion Using Digital Processing and a Dual-Drive Mach-Zehnder Modulator,” IEEE Photonics Technology Letters, vol. 17, No. 3, pp. 714-716, Mar. 2005.
Kim, K. et al., “1.4kW High Peak Power Generation from an All Semiconductor Mode-locked Master Oscillator Power Amplifier System Based on eXtreme Chirped Pulse Amplification (X-CPA)”, Optics Express, Jun. 2, 2005, pp. 4600-4606, vol. 13, No. 12.
Kwon, et al., “Tunable Dispersion Slope Compensator Using a Chirped Fiber Bragg Grating Tuned by a Fan-shaped Thin Metallic Heat Channel,” IEEE Photonics Technology Letters, vol. 18, No. 1, pp. 118-120, Jan. 1, 2006.
Kyungbum, Kim et al., “1.4kW High Peak Power Generation from an all Semiconductor Mode-locked Master Oscillator Power Amplifier System Based on eXtreme Chirped Pulse Amplification (X-CPA)”, Optics Express, Jun. 2, 2005, pp. 4600-4606, vol. 13, No. 12.
Liao, K. et al.., “Large-aperture Chirped Volume Bragg Grating Based Fiber CPA System,” Optics Express, Apr. 16, 2007, vol. 15, No. 8, pp. 4876-4882.
Lo, S. et al., “Semiconductor Hollow Optical Waveguides Formed by Omni-directional Reflectors”, Optics Express, vol. 12, No. 26, Dec. 27, 2004, pp. 6589-6593.
Malinowski A. et al., “Short Pulse High Power Fiber Laser Systems,” Proceedings of the 2005 Conference on Lasers and Electro-Optics (CLEO), Paper No. CThG3, pp. 1647-1649, May 26, 2005.
Mehier-Humbert, S. et al., “Physical Methods for Gene Transfer: Improving the Kinetics of Gene Delivery Into Cells,” Advanced Drug Delivery Reviews, vol. 57, pp. 733-753, 2005.
Nibbering, E.T.J., et al. “Spectral Determination of the Amplitude and the Phase of Intense Ultrashort Optical Pulses,” Journal Optical Society of America B, vol. 13, No. 2, pp. 317-329, Feb. 1996.
Nicholson, J. et al., “Propagation of Femotsecond Pulses in Large-mode-area, Higher-order-mode Fiber,” Optics Letters, vol. 31, No. 21, 2005, pp. 3191-3193.
Noda, J. et al., “Polarization-maintaining Fibers and Their Applications”, Journal of Lightwave Technology, vol. Lt-4, No. 8 Aug. 1986, pp. 1071-1089.
Palfrey et al., “Generation of 16-FSEC Frequency-tunable Pulses by Optical Pulse compression” Optics Letters, OSA, Optical Society of america, Washington, DC, USA, vol. 10, No. 11, Nov. 1, 1985, pp. 562-564, XP000710358 ISSN: 0146-9592.
Pelusi, M. D., et al., “Electrooptic Phase Modulation of Stretched 250-fs Pulses for Suppression of Third-Order Fiber Disperson in Transmission,” IEEE Photonics Technology Letters, vol. 11, No. 11, pp. 1461-1463, Nov. 1999.
Pelusi, M. D., et al., “Phase Modulation of Stretched Optical Pulses for Suppression of Third-order Dispersion Effects in fibre Transmission,” Electronics Letters, vol. 34, No. 17, pp. 1675-1677, Aug. 20, 1998.
Price et al., “Advances in High Power, Short Pulse, Fiber Laser Systems and Technology”, Proceedings of SPIE—vol. 5709, Fiber Lasers II: Technology, Systems, and Applications, Apr. 2005, pp. 184-192.
Price et al., “Advances in High Power, Short Pulse, Fiber Laser Systems and Technology”, Photonics West 2005, San Jose, California, Jan. 2005, pp. 5709-3720.
Ramachandran, S., et al., “High-power Amplification in a 2040-μm2 Higher Order Mode,” SPIE Photonics West 2007, Post-deadline.
Schreiber, T., et al., “Design and High Power Operation of a Stress-induced single Polarization Single-transverse Mode LMA Yb-doped Photonic Crystal Fiber,” Fiber Lasers III: Technology, Systems, and Applications, Andrew J.W. Brown, Johan Nilsson, Donald J. Harter, Andreas Tünnermann, eds., Proc. of SPIE, vol. 6102, pp. 61020C-1-61020C-9, 2006.
Schreiber, T., et al., “Stress-induced Single-polarization Single-transverse Mode Photonic Crystal Fiber with Low Nonlinearity,” Optics Express, vol. 13, No. 19, Sep. 19, 2005, pp. 7621-7630.
Limpert et al., “All Fiber Chiped-Pulse Amplification System Based on Compression in Air-Guiding Photonic Bandgap Fiber”, Optics Express, Dec. 1, 2003, vol. 11, No. 24, pp. 3332-3337.
Related Publications (1)
Number Date Country
20060084957 A1 Apr 2006 US
Provisional Applications (7)
Number Date Country
60494275 Aug 2003 US
60494274 Aug 2003 US
60494273 Aug 2003 US
60494322 Aug 2003 US
60494267 Aug 2003 US
60494172 Aug 2003 US
60503578 Sep 2003 US
Continuation in Parts (7)
Number Date Country
Parent 10849585 May 2004 US
Child 11224867 US
Parent 10916367 Aug 2004 US
Child 10849585 US
Parent 10916368 Aug 2004 US
Child 10916367 US
Parent 10916365 Aug 2004 US
Child 10916368 US
Parent 10850325 May 2004 US
Child 10916365 US
Parent 10849586 May 2004 US
Child 10850325 US
Parent 10849587 May 2004 US
Child 10849586 US