This application claims priority from DE 10 2004 062 849.1 filed Dec. 27, 2004, incorporated herein by reference in its entirety.
The invention relates to a laser-active optical fiber for a fiber laser or an optical fiber amplifier. The invention further relates to a fiber laser having such a laser-active optical fiber.
Fiber lasers or fiber amplifiers contain an optical fiber as laser-active medium, the fiber core of which is doped with a laser-active material such as neodymium Nd, ytterbium Yb, or erbium Er. This doped fiber core is enclosed by so-called pump light cladding into which the pump light is injected. The advantages of such a fiber laser or fiber amplifier lie in its simple design, high excitation efficiency, efficient cooling due to its large surface area, and high beam quality which can be attained.
High beam quality is attainable in particular when a monomodal or fund amental mode fiber is used as optical fiber, the laser-active fiber core of which has a diameter in the range of only several μm. For such a small diameter of the fiber core, only the fundamental mode TEM00 which has optimal beam quality can oscillate in such a small diameter of the fiber core.
However, a disadvantage of the small diameter of the fiber core required herefor is that, at such a small diameter, high laser power is associated with correspondingly high power densities. These power densities may result in undesired nonlinear effects, and may even lead to destruction of the optical fiber. To allow higher power to be achieved, it is therefore necessary to enlarge the fiber core. However, this is accompanied by a degradation of the beam quality. At fiber core diameters greater than approximately 20 μm, oscillation of higher modes may be suppressed only with great difficulty.
The object of the invention is to provide a laser-active optical fiber for a fiber laser or an optical fiber amplifier which allows a high-power laser beam to be generated which has suitable high beam quality, in particular for machining a workpiece with high beam quality. A further object of the invention is to provide such an improved fiber laser.
The invention will be described in greater detail in the disclosure which follows.
The referenced objects are achieved by the features of claims 1 and 3. Since the laser-active fiber core of the optical fiber has an undoped inner region which is surrounded by an outer region that is doped with a laser-active material, a laser beam is generated which has a stable mode structure in the form of a ring mode or a mixture of various ring modes. These stable ring modes are formed by the shape of the tubular laser-active region, since no amplification occurs in the undoped inner region. As a result of the larger volume which is then present in the annular- or tubular-shaped outer region, it is possible to increase the power of the fiber laser or of the optical fiber amplifier at the same power density. In particular, a stable ring mode TEM01* (donut mode) may be produced by suitable dimensioning of the inner and outer regions, even for a larger diameter of the fiber core.
The invention is based on the consideration that, for a number of applications in the power range above 500 W, in particular for laser cutting or laser drilling, a ring mode may be even more advantageous that the fundamental mode.
A fiber laser constructed using such an optical fiber preferably contains an optical element inside the resonator for producing radial polarization of the laser beam. Such a radial polarization of the laser beam is particularly advantageous for laser drilling or laser cutting, since the machining is independent of the azimuth angle, i.e., is rotationally symmetrical about the beam axis.
To further explain the invention, reference is made to the exemplary embodiment in the drawing, the only figure of which shows an optical fiber according to the invention in a cross-sectional schematic illustration.
The optical fiber contains a laser-active fiber core 2, which is surrounded by fiber or pump light cladding 4 for guiding the pump light. This pump light cladding 4 is enclosed by an outer sheathing 6. The fiber core 2 is composed of an undoped, i.e., laser-inactive, cylindrical inner region 22, which in the sectional view is annularly surrounded by a hollow-cylindrical outer region 24 that is doped with a laser-active material. To produce a TEM01* ring mode, the diameter of the undoped inner region 22 preferably is approximately between 5 μm and 10 μm, while the diameter of the outer region 24 is preferably between 30 μm and 40 μm.
When the optical fiber is used as a fiber laser, it is provided on its end faces, for example, with highly reflective or partially reflective mirrors, which may be dielectric reflective layers or so-called volume Bragg gratings. An optical element for producing radial polarization of the laser beam may also be provided inside the resonator. To this end, the rear mirror, for example, may be provided with a diffractive structure.
Other facts of the invention will be clear to the skilled artisan and need not be reiterated here.
The terms and expression which have been employed are used as terms of description and not of limitation, and there is no intention in the use of such terms and expression of excluding any equivalents of the features shown and described or portions thereof, it being recognized that various modifications are possible within the scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
10 2004 062 849 | Dec 2004 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
5259046 | DiGiovanni et al. | Nov 1993 | A |
6084996 | Judkins et al. | Jul 2000 | A |
6240108 | Ionov | May 2001 | B1 |
6288835 | Nilsson et al. | Sep 2001 | B1 |
6445494 | Nilsson et al. | Sep 2002 | B1 |
6965469 | Avizonis et al. | Nov 2005 | B2 |
20040218635 | Schlueter et al. | Nov 2004 | A1 |
20060056807 | Grier | Mar 2006 | A1 |
20060103919 | DiGiovanni et al. | May 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20060140570 A1 | Jun 2006 | US | |
20060233511 A9 | Oct 2006 | US |