The present Application for Patent is related to the following co-pending U.S. Patent Applications:
“SEEKER HAVING SCANNING-SNAPSHOT FPA” by Todd A. Ell, having Attorney Docket No. ID-0027511-US, filed Jun. 21, 2013, assigned to the assignee hereof, and expressly incorporated by reference herein; and
“HARMONIC SHUTTERED SEEKER” by Todd A. Ell and Robert D. Rutkiewicz, having Attorney Docket No. ID-0027492-US, filed Jun. 21, 2013, assigned to the assignee hereof, and expressly incorporated by reference herein.
The subject matter disclosed herein relates in general to guidance subsystems for projectiles, missiles and other ordinance. More specifically, the subject disclosure relates to the target sensing components of guidance subsystems used to allow ordinance to persecute targets by detecting and tracking energy scattered from targets.
Seeker guided ordnances are weapons that can be launched or dropped some distance away from a target, then guided to the target, thus saving the delivery vehicle from having to travel into enemy defenses. Seekers make measurements for target detection and tracking by sensing various forms of energy (e.g., sound, radio frequency, infrared, or visible energy that targets emit or reflect). Seeker systems that detect and process one type of energy are known generally as single-mode seekers, and seeker systems that detect and process multiples types of energy (e.g., radar combined with thermal) are generally known as multi-mode seekers.
Seeker homing techniques can be classified in three general groups: active, semi-active, and passive. In active seekers, a target is illuminated and tracked by equipment on board the ordinance itself A semi-active seeker is one that selects and chases a target by following energy from an external source, separate from the ordinance, reflecting from the target. This illuminating source can be ground-based, ship-borne, or airborne. Semi-active and active seekers require the target to be continuously illuminated until target impact. Passive seekers use external, uncontrolled energy sources (e.g., solar light, or target emitted heat or noise). Passive seekers have the advantage of not giving the target warning that it is being pursued, but they are more difficult to construct with reliable performance. Because the semi-active seekers involve a separate external source, this source can also be used to “designate” the correct target. The ordinance is said to then “acquire” and “track” the designated target. Hence both active and passive seekers require some other means to acquire the correct target.
In semi-active laser (SAL) seeker guidance systems, an operator points a laser designator at the target, and the laser radiation bounces off the target and is scattered in multiple directions (this is known as “painting the target” or “laser painting”). The ordinance is launched or dropped somewhere near the target. When the ordinance is close enough for some of the reflected laser energy from the target to reach the ordinance's field of view (FOV), a seeker system of the ordinance detects the laser energy, determines that the detected laser energy has a predetermined pulse repetition frequency (PRF) from a designator assigned to control the particular seeker system, determines the direction from which the energy is being reflected, and uses the directional information (and other data) to adjust the ordinance trajectory toward the source of the reflected energy. While the ordinance is in the area of the target, and the laser is kept aimed at the target, the ordinance should be guided accurately to the target.
Multi-mode/multi-homing seekers generally have the potential to increase the precision and accuracy of the seeker system but often at the expense of increased cost and complexity (more parts and processing resources), reduced reliability (more parts means more chances for failure or malfunction), and longer target acquisition times (complex processing can take longer to execute). For example, combining the functionality of a laser-based seeker with an image-based seeker could be done by simple, physical integration of the two technologies; however, this would incur the cost of both a focal plane array (FPA) and a single cell photo diode with its associated diode electronics to shutter the FPA. Also, implementing passive image-based seekers can be expensive and difficult because they rely on complicated and resource intensive automatic target tracking algorithms to distinguish an image of the target from background clutter under ambient lighting. Another factor limiting multi-mode seeker performance is the general incompatibility between the output update rate of a semi-active laser-based seeker system and the output update rate of a passive image-based seeker system. In general, the output update rate from an active laser-based seeker to its guidance subsystem is limited to the PRF of the laser designator (typically from 10 to 20 Hz.), whereas the output update rate of a passive, image-based seeker is limited by the frame rate of its imager and available ambient light (typically greater than 60 Hz.).
Because seeker systems tend to be high-performance, single-use items, there is continued demand to reduce the complexity and cost of seeker systems, particularly multi-mode/multi-homing seeker systems, while maintaining or improving the seeker's overall performance.
The disclosed embodiments include a laser-aided passive seeker comprising: an imager capable of detecting and decoding laser-based energy and image ambient energy; means for generating from said imager semi-active laser-based images containing a laser spot illuminating a target; means for generating from said imager passive ambient-energy images containing said target without said laser spot; means for updating said means for generating said semi-active laser-based images; and means for using said passive images and said means for updating to passively track said target.
The disclosed embodiments further include a method of laser-aided passive tracking comprising: detecting and decoding laser-based energy and image ambient energy at a single imager; generating from said imager semi-active laser-based images containing a laser spot illuminating a target; generating from said imager passive ambient energy-based images containing said target without said laser spot; updating said step of generating said semi-active laser-based images; and using said passive image-based images and said step of updating to passively track said target.
The accompanying drawings are presented to aid in the description of embodiments of the invention and are provided solely for illustration of the embodiments and not limitation thereof
In the accompanying figures and following detailed description of the disclosed embodiments, the various elements illustrated in the figures are provided with three-digit reference numbers. The leftmost digit of each reference number corresponds to the figure in which its element is first illustrated.
Aspects of the invention are disclosed in the following description and related drawings directed to specific embodiments of the invention. Alternate embodiments may be devised without departing from the scope of the invention. Additionally, well-known elements of the invention will not be described in detail or will be omitted so as not to obscure the relevant details of the invention.
The word “exemplary” is used herein to mean “serving as an example, instance, or illustration.” Any embodiment described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments. Likewise, the term “embodiments of the invention” does not require that all embodiments of the invention include the discussed feature, advantage or mode of operation.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of embodiments of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises”, “comprising,”, “includes” and/or “including”, when used herein, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
Further, many embodiments are described in terms of sequences of actions to be performed by, for example, elements of a computing device. It will be recognized that various actions described herein can be performed by specific circuits (e.g., application specific integrated circuits (ASICs)), by program instructions being executed by one or more processors, or by a combination of both. Additionally, the sequence of actions described herein can be considered to be embodied entirely within any form of computer readable storage medium having stored therein a corresponding set of computer instructions that upon execution would cause an associated processor to perform the functionality described herein. Thus, the various aspects of the invention may be embodied in a number of different forms, all of which have been contemplated to be within the scope of the claimed subject matter. In addition, for each of the embodiments described herein, the corresponding form of any such embodiments may be described herein as, for example, “logic configured to” perform the described action.
Turning now to an overview of the disclosed embodiments, an important performance parameter for seeker systems, particularly multi-mode/multi-homing systems, includes how quickly, reliably and efficiently the seeker system detects, decodes and localizes the laser designator energy it receives in its FOV. In the present disclosure, the term “detect,” when used in connection with reflected laser energy, generally refers to sensing energy from an unknown target. The term “decode” refers to verifying that a PRF of the detected laser energy matches the pre-determined, expected PRF of the projectile/designator pair. The term “localize” refers to resolving where the detected, decoded energy occurs in the FOV.
The disclosed embodiments take advantage of the capability to merge two uniquely different types of seeker homing modes of functionality (e.g., semi-active laser-based and passive image-based) into a single, dual-mode/dual-homing seeker, using only an FPA as the active sensor to achieve both modes of operation. Examples of suitable seeker designs are disclosed in the following co-pending U.S. Patent Applications: “SEEKER HAVING SCANNING-SNAPSHOT FPA” by Todd A. Ell, having Attorney Docket No. ID-0027511-US, filed Jun. 21, 2013, assigned to the assignee hereof, and expressly incorporated by reference herein; and “HARMONIC SHUTTERED SEEKER” by Todd A. Ell and Robert D. Rutkiewicz, having Attorney Docket No. ID-0027492-US, filed Jun. 21, 2013, assigned to the assignee hereof, and expressly incorporated by reference herein.
As weapons become more agile, and as there is an increased emphasis on hit placement performance, the seeker system's output update rate becomes one limiting factor in the overall weapon performance. The seeker output update rate from a semi-active, laser-based seeker to its guidance subsystem is limited to the PRF of the laser designator (typically 10 to 20 Hz.), whereas the output update rate of a passive, image-based seeker is limited by the frame rate of the imager and available ambient light (typically greater than 60 Hz.). The methods and structures of the disclosed embodiments provide seeker outputs at a rate consistent with a passive image-based seeker, yet does not demand the computational resources that are typically required by conventional automatic target acquisition, recognition, and tracking.
Continuing with
Thus, the seeker system 104a of
The imager 214a is configured to also capture images at an integer subdivision of the PRI. These additional images are intended to be passive-only images meaning they will intentionally not capture the laser pulses. This avoids potential problems with the passive tracker's moving target indicator 312 (described below), which would be sensitive to rapid changes in illumination. These images are referred to as “passive images.” Also, the first passive image of each PRI interval is captured close in time to the SAL image. The close time proximity is typically less than about 10 milli-seconds between exposures. However, it should be noted that this number is inversely proportional to the amount of ego-motion, e.g., angular rotation of the projectile. The relatively close time proximity is done to minimize the changes in the FOV between the SAL image and the passive image. This allows the laser spot coordinates (Δx, Δy)SAL from the semi-active image (SAI) to be mapped directly onto the passive image. This pair of images is referred to as a “pulse-pair” of images. The resulting image sequence from the imager 214a is depicted at the bottom of
The seeker system 104b includes a SAL seeker stage 302, along with a SAL-aided passive tracker stage 304. The SAL-aided stage 304 includes an image registration stage 308, a static target tracker stage 310, a moving target indicator stage 312, and a track selection logic stage 314. Image registration 308 is the process of overlaying two images of the same scene taken at different times, and from different viewpoints. It geometrically aligns two images, which, for the disclosed embodiments are the reference and current images. The image registration stage 308 searches for the correct scale, translation, rotation, etc. that will align a portion of the current image to a portion of the reference image. When a match is found, the images are said to have been “registered.” The image registration stage 308 registers sequential images from the laser imager 214a and outputs the offsets between the two images required to register them. These outputs are denoted as SA-P offsets and P-P offsets, respectively, if the offsets are between semi-active & passive images or passive & passive images. The image registration stage 308 also results in transform model estimation (i.e., the change in location, rotation, translation of the imager) used to align the reference and current image. Multiple image registration algorithms exist in industry. One such algorithm is the Affine Scale Invariant Feature Transform (ASIFT) method by Guoshen Yu and Jean-Michel Morel; Guoshen Yu; Morel, J-M, A Fully Affine Invariant Image Comparison Method, Acoustics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE International Conference on , vol., no., pp.1597,1600, 19-24 Apr. 2009. Another algorithm is the Features from Accelerated Segment Test (FAST) feature detector by Rosten, Edward, and Tom Drummond, described in Fusing Points and Lines for High Performance Tracking; Computer Vision, 2005. ICCV 2005, Tenth IEEE International Conference on, vol. 2, pp. 1508-1515, IEEE, 2005. The entire disclosures of the above publications are incorporated by reference herein.
Using the initial laser spot coordinates (Δx, Δy)SAL of the pulse-pair, SAI, the static target tracker stage 310 uses the registration offset and transform model estimation to track this location across all the passive images until the next semi-active image is captured. As long as the target does not move on the ground, the passively tracked point, from image to image, will correspond to the target. This track point is denoted (Δx, Δy)static. It should be noted that the static target tracker 310 is not registering the image of the target alone. It is registering the entire FOV from one image to the next so that the target pixels need not be separated from the background. The reason for creating closely timed pulse-pair images is because the exposure time of the semi-active images may be too short to capture background contrast so that the laser spot can be located in the laser spot tracker component. Hence, the pulse-pair of images may fail the registration process. In event of a registration failure, the (Δx, Δy) static is set equal to (Δx, Δy)SAL. Thus, the pulse-pair frame rate is preferably sufficiently high to minimize the error when mapping between these two images.
The moving target indicator stage 312 creates an image of changes between two views by registering sequential passive images and subtracting overlapping pixel values. Looking at the time evolution of these changes from image to image allows for the detection of objects in motion within the FOV. This can be accomplished using known optical flow techniques. The extent and location of these moving objects are reported to the track selection logic stage 314. Only those objects overlapping or close to the statically tracked point from the static target tracker stage 314 need be reported. These track points, if they exist, are denoted (Δxi, Δyi)dynamic. The track selection logic stage 314 uses the tautology (i.e., a statement that is always true) “a target is either moving or it is not” to determine if the actual target is determined by the static target tracker stage 310 or the moving target indicator stage 312. If a moving track point (Δxi, Δyi)dynamic exists and overlaps or is close enough to the static track point (Δxi, Δyi)static, then the moving track point is the actual target. Thus, the actual target estimate (Δx, Δy)est, follows the moving target track. If the target stops its motion, then the last known location becomes the new static track point static tracked by the static target tracker stage 310, which tracks this new point with respect to the entire background within the FOV. This situation of switching between the static & moving tracks continues until a new SAL track point (Δx, Δy)SAL arrives from the SAL-seeker 302 where the whole process is re-started.
Accordingly, it can be seen from the foregoing disclosure and the accompanying illustrations that one or more embodiments may provide some advantages. For example, the disclosed embodiments allow for the merging and exploitation of two uniquely different types of seeker functionality into a single, dual-homing seeker, using only an FPA as the active sensor to achieve both modes of homing operation. The disclosed embodiments also provide a means to actively designate & track, and also passively track the same target between active designation pulses to track a target at an update rate higher than the designator pulse rate with less demanding automatic target tracking algorithms. Further, the disclosed embodiments also eliminate the need for automatic target acquisition/recognition algorithms necessary for purely passive target tracking. The disclosed embodiments “aid” the passive tracking algorithm, based on frame-to-frame image registration, with active SAL track information to improve overall seeker guided weapon performance. The disclosed passive tracker is sufficiently robust that the system can be configured to, in the event the laser designator is turned off and/or lost, revert automatically to passive-only homing mode (without laser-aiding) making it possible for the designator operator to “designate-and-forget” instead of having to “designate-to-impact.”
Those of skill in the relevant arts will appreciate that information and signals may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof
Those of skill in the relevant arts will also appreciate that the various illustrative logical blocks, modules, circuits, and algorithm steps described in connection with the embodiments disclosed herein may be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the disclosed embodiments.
Finally, the methods, sequences and/or algorithms described in connection with the embodiments disclosed herein may be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. A software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art. An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. Accordingly, the disclosed embodiments can include a computer readable media embodying a method for performing the disclosed and claimed embodiments. Accordingly, the invention is not limited to illustrated examples and any means for performing the functionality described herein are included in the disclosed embodiments. Furthermore, although elements of the disclosed embodiments may be described or claimed in the singular, the plural is contemplated unless limitation to the singular is explicitly stated. Additionally, while various embodiments have been described, it is to be understood that aspects of the embodiments may include only some aspects of the described embodiments. Accordingly, the disclosed embodiments are not to be seen as limited by the foregoing description, but are only limited by the scope of the appended claims.