It is an object of the present invention a laser apparatus for human skin surface treatments.
The above mentioned laser apparatus enables to perform medical treatments such as resurfacing, skin rejuvenation, spot treatments and other human skin treatments by using an intermittent CO2 laser beam generated by the biomedical apparatus and through an articulated transmission system conveyed to a scanning device, meant to direct said intermittent CO2 laser beam towards the patient's skin according to a particular scanning algorithm described later.
It is known that a human skin surface treatment apparatus, which makes use of CO2 laser beams, provides scanning systems which cover the skin area to be evenly treated using differently-sized spots or unevenly treated using spots with a diameter greater than 1 mm.
In both cases, the spots are positioned on said area according to criteria which in most cases cause:
It is an aim of the present invention to overcome the above mentioned drawbacks.
Said aims are thoroughly achieved by means of the afore mentioned laser apparatus for the human skin surface treatment which is characterized by what stated in the appended claims.
Features and drawbacks will be better understood from the following description of a preferred—but not exclusive—embodiment, to be considered by way of an example and not restrictive, as shown in the accompanying drawings, in which:
With reference to
The biomedical apparatus 1 consists of a general safety shutter 7 which—when activated—allows the continuous CO2 laser beam from the above mentioned laser source to go through; a blocking system 8 of said continuous CO2 laser beam having an electric motor 9 which rotates a slotted disk 10 provided with alternate solid and empty sectors.
The above mentioned blocking system further provides an optical sensor 11 to detect the position of the solid and empty sectors of the slotted disk 10.
A control and guide device 12 for the mobile scanning device 5, connected to said element 5 and to the optical sensor 11 by means of wiring 15, is also provided.
It should be noted that the term “spot” refers to the mark the CO2 laser beam leaves on the patient's skin area hit by said beam.
It must be noted that during the automatic sequence positioning of the spots, the skin area to be treated 13 is assumed to be divided into four parts each having spots located exactly the same way, horizontally and vertically spaced apart at a distance ranging from 0.2 to 4 times the diameter of each spot, preferably 1.5 times.
Another relevant aspect of the present invention is that the final pattern, shown in
The invention works as follow:
The medical treatment starts when the operator, after activating the laser source 2, opens the general safety shutter 7, enabling the biomedical apparatus 1 to supply CO2 laser beams towards the patient's skin 6 by means of the scanning device 5.
Once the opening of the general safety shutter has been activated, the CO2 laser beam passes through the blocking system, hitting the slotted disk rotating as shown in
Such intermittent laser beam will then go through an articulated transmission system consisting, for example, of an optical fibre or a multi-mirror articulated arm which will direct it towards the scanning device able to radiate said laser beam towards the patient's skin.
The optical sensor inside the blocking system has the function to detect the solid and empty sectors of the slotted disk and accordingly to verify the passage or the interrupting of the laser beam entering the blocking system (see
By means of an electric signal, the optical sensor provides the detected position of the slotted disk for the control and guide device which, in turn, will synchronize the signal received to the movement of the motors, inside the scanning device, for directing the intermittent laser beam on the skin area to be treated. The control and guide device will ensure the moving of the motors to reach exactly the position along the coordinates where the next spot will hit the area to be treated exclusively in the space when the laser beam is blocked by a solid sector of the above mentioned slotted disk.
As the slotted disk 10 is continuously rotated by the electric motor 9, the passage of each solid sector of said disk is obviously followed by an empty one which will cause the CO2 laser beam to go through the blocking system and to radiate towards the patient's skin and again the passage of another solid sector, during which the above stated motor swill position along the new coordinates of the next spot.
Clearly the skin exposure time to each CO2 laser beam radiated from the scanning device 5 is a function of the rotational speed of the slotted disk 10 and the number of slots in said disk.
The above mentioned sequences of motor positioning and CO2 laser beam emissions follow one another and continue till the end of each scan, that is till the positioning of the last spot inside each skin area to be treated.
During the scanning step, the control and guide device 12 determines the coordinates according to an algorithm as described from page 5, line 2 to page 6 line 1 which takes into account the scan size, the spot diameter and the thermal relaxing of every single skin area under treatment.
Number | Date | Country | Kind |
---|---|---|---|
MO2007A0030 | Jan 2007 | IT | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2008/000654 | 1/28/2008 | WO | 00 | 3/3/2010 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2008/092626 | 8/7/2008 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4718422 | Rosenberg | Jan 1988 | A |
5995265 | Black et al. | Nov 1999 | A |
6585725 | Mukai | Jul 2003 | B1 |
20050049582 | DeBenedictis et al. | Mar 2005 | A1 |
20060095096 | DeBenedictis et al. | May 2006 | A1 |
Number | Date | Country |
---|---|---|
2276014 | Sep 1994 | GB |
9622741 | Aug 1996 | WO |
9824512 | Jun 1998 | WO |
Number | Date | Country | |
---|---|---|---|
20100174276 A1 | Jul 2010 | US |