This application relates to laser tools and related systems and methods for stimulating hydrocarbon bearing formations using high power lasers.
Wellbore stimulation is a branch of petroleum engineering focused on ways to enhance the flow of hydrocarbons from a formation to the wellbore for production. To produce hydrocarbons from the targeted formation, the hydrocarbons in the formation need to flow from the formation to the wellbore in order to be produced and flow to the surface. The flow from the formation to the wellbore is carried out by the means of formation permeability. When formation permeability is low, stimulation is applied to enhance the flow. Stimulation can be applied around the wellbore and into the formation to build a network in the formation. The first step for stimulation is commonly perforating the casing and cementing in order to reach the formation. One way to perforate the casing is the use of a shaped charge. Shaped charges are lowered into the wellbore to the target release zone. The release of the shaped charge creates short tunnels that penetrate the steel casing, the cement and the formation.
The use of shaped charges has several disadvantages. For example, shaped charges produce a compact zone around the tunnel, which reduces permeability and therefore production. The high velocity impact of a shaped charge crushes the rock formation and produces very fine particles that plug the pore throat of the formation reducing flow and production. There is the potential for melt to form in the tunnel. There is no control over the geometry and direction of the tunnels created by the shaped charges. There are limits to the penetration depth and diameter of the tunnels. There is a risk involved while handling the explosives at the surface.
The second stage of stimulation typically involves pumping fluids through the tunnels created by the shaped charges. The fluids are pumped at rates exceeding the formation breaking pressure causing the formation and rocks to break and fracture, this is called hydraulic fracturing. Hydraulic fracturing is carried out mostly using water based fluids called hydraulic fracture fluid. The hydraulic fracture fluids can be damaging to the formation, specifically shale rocks. Hydraulic fracturing produces fractures in the formation, creating a network between the formation and the wellbore.
Hydraulic fracturing also has several disadvantages. First, as noted above, hydraulic fracturing can be damaging to the formation. Additionally, there is no control over the direction of the fracture. Fractures have been known to close back up. There are risks on the surface due to the high pressure of the water in the piping. There are also environmental concerns regarding the components added to hydraulic fracturing fluids and the need for the millions of gallons of water required for hydraulic fracturing.
High power laser systems can also be used in a downhole application for stimulating the formation via, for example, laser drilling a clean, controlled hole. Laser drilling typically saves time because laser drilling does not require pipe connections like conventional drilling, and is an environmentally friendly technology with lower emissions compared to conventional drilling, as the laser is electrically powered. However, there are still limitations regarding the placement and maneuverability of a laser tool for effective downhole use.
Conventional methods for drilling holes in a formation have been consistent in the use of mechanical force by rotating a bit. Problems with this method include damage to the formation, damage to the bit, and the difficulty to steer the drilling assembly with accuracy. Moreover, drilling through a hard formation has proven very difficult, slow, and expensive. However, the current state of the art in laser technology can be used to tackle these challenges. Generally, because a laser provides thermal input, it will break the bonds and cementation between particles and simply push them out of the way. Drilling through a hard formation will be easy and fast, in part, because the disclosed methods and systems will eliminate the need to pull out of the wellbore to replace the drill bit after wearing out and can go through any formation regardless of its compressive strength.
The present disclosure relates to tools and methods for drilling a hole(s) in a subsurface formation utilizing high power laser energy (for example, greater than 1 kW). In particular, various embodiments of the disclosed tools and methods use a high power laser(s) with a laser source (generator) located on the ground, typically in the vicinity of a wellbore, with the power conveyed via optical transmission media, such as fiber optic cables, down the wellbore to a downhole target via a laser tool. Generally, the tool described in this application can drill, perforate, and orient itself in any direction.
An example laser perforation tool is for perforating a wellbore in a downhole environment within a hydrocarbon bearing formation. The laser perforation tool includes a plurality of perforation units disposed within an elongated body of the laser perforation tool. Each of the plurality of perforation units includes an optical transmission media passing a raw laser beam generated from a laser generator. The optical transmission media extends within an elongated body of the laser perforation tool. Each of the plurality of perforation units includes a laser head receiving the raw laser beam from, and coupled to the optical transmission media. The laser head includes an optical assembly controlling at least one characteristic of an output laser beam. Each of the plurality of perforation units includes a beam redirection tool coupled to the laser head. The beam redirection tool alters a direction of the output laser beam.
The beam redirection tool may include a prism, mirror, reflector, or a combination thereof. The laser perforation tool may generates two or more output laser beams, the two or more output laser beams propagating in at least two different directions. At least two of the two or more output laser beams may not be parallel to each other. At least two of the two or more output laser beams may cross each other.
The laser perforation tool may create at least two perforations in the wellbore, and the at least two perforation may not be parallel to each other. The at least two perforations may cross each other.
The elongated body may extend vertically within the wellbore. The laser perforation tool may create one or more perforations in the wellbore, and the one or more perforations may drain a hydrocarbon by gravitational force. The laser perforation tool may create one or more perforations in the wellbore, and the one or more perforations may drain a hydrocarbon by capillary force.
The laser perforation tool may create one or more perforations in the wellbore, and at least one of the one or more perforations may drain a hydrocarbon by gravitational force, and at least one of the one or more perforations may drain a hydrocarbon by capillary force.
The laser perforation tool may include a plurality of orientation nozzles disposed about an outer circumference of the laser head. The plurality of orientation nozzles may control motion and orientation of the laser head within the wellbore. The plurality of orientation nozzles may provide forward, reverse, or rotational motion to the laser head within the wellbore.
The laser perforation tool may include a purging assembly disposed at least partially within or adjacent to the laser head. The purging assembly may deliver a purging fluid to an area proximate the output laser beam.
The optical assembly may include one or more lenses. The optical assembly may include a first lens focusing the raw laser beam and a second lens shaping the output laser beam. A distance between the first lens and the second lens may be adjustable to control a size of the output laser beam.
The purging assembly may include purging nozzles. At least a portion of the purging nozzles may be vacuum nozzles connected to a vacuum source, and the purging nozzles may remove debris and/or gaseous fluids from the area proximate the output laser beam when vacuum is applied. The plurality of orientation nozzles may be purging nozzles providing thrust to the laser head for movement within the wellbore. The plurality of orientation nozzles may be movably coupled to the laser head thereby allowing the orientation nozzles to rotate or pivot relative to the laser head. The plurality of orientation nozzles may provide forward motion, reverse motion, rotational motion, or combinations thereof to the laser head relative to the tool.
The laser perforation tool may include a centralizer coupled to the laser perforation tool. The centralizer may hold the laser perforation tool in the wellbore. The laser perforation tool may include a plurality of centralizers disposed on the elongated body. A first portion of the plurality of centralizers may be disposed forward of the plurality of perforation units and a second portion of the plurality of centralizers may be disposed aft of the plurality of perforation units.
The laser head may be a distal portion of a tubing unit disposed within the elongated body and deployable from the elongated body.
An example method of using a laser perforation tool includes positioning the laser perforation tool within a wellbore within a hydrocarbon bearing formation. The laser perforation tool includes a plurality of perforation units disposed therein. Each of the plurality of perforation units includes an optical transmission media within an elongated body of the laser perforation tool. Each of the plurality of perforation units includes a laser head coupled to the optical transmission media, wherein the laser head comprises an optical assembly controlling at least one characteristic of an output laser beam. Each of the plurality of perforation units includes a beam redirection tool coupled to the laser head for altering a direction of the output laser beam. The method includes passing, through one or more optical transmission media, at least one raw laser beam generated by a laser generator. The method includes delivering a raw laser beam to each of the optical assemblies. The method includes manipulating the raw laser beams with the optical assemblies to generate output laser beams. The method includes manipulating the direction of the output laser beams with the beam redirection tools. The method includes delivering the output laser beams to the formation.
In order for the present disclosure to be more readily understood, certain terms are first defined below. Additional definitions for the following terms and other terms are set forth throughout the specification.
In this application, unless otherwise clear from context, the term “a” may be understood to mean “at least one.” As used in this application, the term “or” may be understood to mean “and/or.” In this application, the terms “comprising” and “including” may be understood to encompass itemized components or steps whether presented by themselves or together with one or more additional components or steps. As used in this application, the term “comprise” and variations of the term, such as “comprising” and “comprises,” are not intended to exclude other additives, components, integers or steps.
About, Approximately: as used herein, the terms “about” and “approximately” are used as equivalents. Unless otherwise stated, the terms “about” and “approximately” may be understood to permit standard variation as would be understood by those of ordinary skill in the art. Where ranges are provided herein, the endpoints are included. Any numerals used in this application with or without about/approximately are meant to cover any normal fluctuations appreciated by one of ordinary skill in the relevant art. In some embodiments, the term “approximately” or “about” refers to a range of values that fall within 25%, 20%, 19%, 18%, 17%, 16%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, or less in either direction (greater than or less than) of the stated reference value unless otherwise stated or otherwise evident from the context (except where such number would exceed 100% of a possible value).
In the vicinity of a wellbore: As used in this application, the term “in the vicinity of a wellbore” refers to an area of a rock formation in or around a wellbore. In some embodiments, “in the vicinity of a wellbore” refers to the surface area adjacent the opening of the wellbore and can be, for example, a distance that is less than 35 meters (m) from a wellbore (for example, less than 30, less than 25, less than 20, less than 15, less than 10 or less than 5 meters from a wellbore).
Substantially: As used herein, the term “substantially” refers to the qualitative condition of exhibiting total or near-total extent or degree of a characteristic or property of interest.
Circumference: As used herein, the term “circumference” refers to an outer boundary or perimeter of an object regardless of its shape, for example, whether it is round, oval, rectangular or combinations thereof.
These and other objects, along with advantages and features of the disclosed systems and methods, will become apparent through reference to the following description and the accompanying drawings. Furthermore, it is to be understood that the features of the various embodiments described are not mutually exclusive and can exist in various combinations and permutations.
In the drawings, like reference characters generally refer to the same parts throughout the different views. Also, the drawings are not necessarily to scale, emphasis instead generally being placed upon illustrating the principles of the disclosed systems and methods and are not intended as limiting. For purposes of clarity, not every component may be labeled in every drawing. In the following description, various embodiments are described with reference to the following drawings, in which:
The centralizers 36 can be disposed at various points along the elongated body 28 as need to suit a particular application. The centralizers 36 can also help support the weight of the laser perforation tool 20 and can be spaced along the elongated body 28 as needed to accommodate the laser perforation tool 20 extending deeper into the formation. The centralizers 36 may include an elastomeric material that expands when wet, bladders that inflates hydraulically or pneumatically from the ground, or by other mechanical means.
As further shown in
Typically, a hard outer casing 64 is made from materials such as stainless steel, or other materials that can be used to penetrate the formation and withstand downhole conditions. An example of an experimental casing made of stainless steel is depicted in
Referring back to
In various embodiments, the fiber optic cables 27 may also be deployed by, or the deployment assisted by, the orientation nozzles 44 to be described later. The exit ports 34 shown in
The laser head 38 is depicted in detail in
The optical assembly 40 shown in
In addition, and as shown in greater detail in
The orientation nozzles 44 are located on an outer surface of the laser head 38. In the embodiment shown, there are four (4) orientation nozzles 44 shown disposed on and evenly spaced about an outer circumference of the laser head 38. However, different quantities and arrangements of the orientation nozzles 44 are possible to suit a particular application. For example, if the orientation nozzles 44 are used to assist with deploying the perforation units 32 from the elongated body 28, there may be additional orientation nozzles 44 disposed on the laser head 38.
Generally, the laser head 38 is oriented by controlling a flow of a fluid (either liquid or gas) through the orientation nozzles 44. For example, by directing the flow of the fluid in a rearward direction 45 as shown in
As shown in
In various embodiments, the orientation nozzles 44 may be fixedly connected to the laser head 38 for limited motion control or be movably mounted to the laser head 38 for essentially unlimited motion control of the perforation unit 32. In one embodiment, the orientation nozzles 44 are movably mounted to the laser head 38 via servo motors with swivel joints that may control whether the openings 43 face rearward (forward motion), forward (reverse motion), or at an angle to a central axis 47 (rotational motion or a combination of linear and rotational motion depending on the angular displacement of the orientation nozzle 44 relative to the central axis 47). For example, if the orientation nozzles 44 are aligned perpendicular to the central axis 47, the orientation nozzles 44 may only provide rotational motion. If the orientation nozzles 44 are parallel to the central axis 47, then the orientation nozzles 44 may only provide linear motion. A combination of rotational and linear motion is provided for any other angular position relative to the central axis 47. The fluid lines for providing the thrust may be coupled to the nozzles via swivel couplings as known in the art.
Generally, various advantages of using the high power laser tools disclosed herein include the elimination of using chemicals, such as acids, or other chemicals to penetrate the formation, and the elimination of using high pressures and forces, such as jetting, to drill the hole. However, the laser still requires one or more fluids, but these fluids are used to purge and clean the hole from the debris, opening up a path for the laser beam, and to orient the laser head 38.
In various embodiments, the laser perforation tool 20 is introduced into the wellbore 24 via a coiled tubing unit that provides a reel, power and fluid for the tool, and host all of the laser supporting equipment. The laser source may be also coupled to the coiled tubing unit. The laser generator 30 is switched off while the laser perforation tool 20 is being inserted into the wellbore 24. Once the laser perforation tool 20 reaches the target, typically an open hole, the centralizers 36 may inflate to centralize the tool at that location and the laser may turn on along with the source of purge fluid 58 for the purging nozzles 46 and orientation nozzles 44, if included. The perforation units 32 may be deployed into the formation from the coiled tubing or by the laser perforation tool 20 itself through a screw rod 68, as shown in
In various embodiments, each fiber optic cable 27, with shielding, measures about one (1) inch in diameter. Accordingly, an eight (8) inch wellbore can hold seven (7) fiber optic cables, and so on.
In some embodiments, the target must be reached by maneuvering the perforation units 232 to the target.
In various embodiments, the laser perforation tools 20, 120, 220 disclosed herein include additional nozzles or casings 70 that house the fiber optic cables 27, 127, 227 to assist in deploying and advancing the fiber optic cables 27, 127, 227 within the formation. The casing 70 may be pre-perforated or a mesh type to allow a flow of oil or gas from the formation 22, 122, 222 into the wellbore 24. In some embodiments, once the perforation units 32 and casings 70 reach their intended target, the fiber optic cables 27 may be retrieved and another set of fiber optic cables may be used for different locations in the wellbore 24. Alternatively or additionally, the fiber optic cables 27 may be removed to allow for the flow of gas or oil through the casings 70 to the wellbore 24.
One advantage of using high power laser technology is the ability to create controlled non-damaged, clean holes for various types of the rock.
The laser perforation tools disclosed herein have capability to penetrate in many types of rocks having various rock strengths and stress orientations, as shown in the graph of
In general, the construction materials of the laser perforation tool 20 may be of materials that are resistant to the high temperatures, pressures, and vibrations that may be experienced within an existing wellbore, and that can protect the system from fluids, dust, and debris. Materials that are resistant to hydrogen sulfide are also desirable. One of ordinary skill in the art will be familiar with suitable materials.
The laser generator 30 may excite energy to a level greater than a sublimation point of the hydrocarbon bearing formation, which is output as the raw laser beam. The excitation energy of the raw laser beam required to sublimate the hydrocarbon bearing formation can be determined by one of skill in the art. In some embodiments, the laser generator 30 may be tuned to excite energy to different levels as required for different hydrocarbon bearing formations. The hydrocarbon bearing formation may include limestone, shale, sandstone, or other rock types common in hydrocarbon bearing formations. The discharged laser beam may penetrate a wellbore casing, cement, and hydrocarbon bearing formation to form, for example, holes or tunnels.
The laser generator 30 may be of laser unit capable of generating high power laser beams, which may be conducted through a fiber optic cable 27, such as, for example, lasers of ytterbium, erbium, neodymium, dysprosium, praseodymium, and thulium ions. In some embodiments, the laser generator 30 includes, for example, a 5.34-kW Ytterbium-doped multi-clad fiber laser. In some embodiments, the laser generator 30 may be of laser capable of delivering a laser at a minimum loss. The wavelength of the laser generator 30 may be determined by one of skill in the art as necessary to penetrate hydrocarbon bearing formations.
In some embodiments, the beam redirection tool 72 includes one or more moveable optical elements 73, for example, a prism, a mirror, a reflector, or combinations thereof. In some embodiments, the beam redirection tool 72 operates the one or more optical elements 73 electrically or hydraulically, or both. In some embodiments, an optical element 73 may be rotated about one or more axes as indicated by arrow 75, thereby redirecting the laser beam 70 so that the redirected laser beam 74 advances in a different direction from laser beam 70.
In some embodiments, an angle between the laser beam 70 (i.e., the beam prior to entering redirection tool 72) and the redirected laser beam 74 (i.e., the beam after exiting the beam redirection tool 72) is within a range of 1° to 180°. In some embodiments, an angle between the laser beam 70 and the redirected laser beam 74 is within a range of 30° to 180°. In some embodiments, an angle between the laser beam 70 and the redirected laser beam 74 is within a range of 60° to 180°. In some embodiments, an angle between the laser beam 70 and the redirected laser beam 74 is within a range of 90° to 180°. In some embodiments, an angle between the laser beam 70 and the redirected laser beam 74 is within a range of 120° to 180°. In some embodiments, an angle between the laser beam 70 and the redirected laser beam 74 is within a range of 150° to 180°. In some embodiments, an angle between the laser beam 70 and the redirected laser beam 74 is within a range of 30° to 150°. In some embodiments, an angle between the laser beam 70 and the redirected laser beam 74 is within a range of 60° to 150°. In some embodiments, an angle between the laser beam 70 and the redirected laser beam 74 is within a range of 90° to 150°. In some embodiments, an angle between the laser beam 70 and the redirected laser beam 74 is within a range of 120° to 150°. In some embodiments, an angle between the laser beam 70 and the redirected laser beam 74 is within a range of 30° to 120°. In some embodiments, an angle between the laser beam 70 and the redirected laser beam 74 is within a range of 60° to 120°. In some embodiments, an angle between the laser beam 70 and the redirected laser beam 74 is within a range of 90° to 120°. In some embodiments, an angle between the laser beam 70 and the redirected laser beam 74 is within a range of 30° to 90°. In some embodiments, an angle between the laser beam 70 and the redirected laser beam 74 is within a range of 60° to 90°.
In some embodiments, a first laser beam exiting a first beam redirection tool propagates in a different direction from a second laser beam exiting a second beam redirection tool. For example, the laser perforation tool 20 may release laser beams propagating in multiple directions. In some embodiments, the redirected laser beams 74 exiting the beam redirection tool 72 may cross each other, forming laser beam network. In some embodiments, the redirected laser beams 74 exiting the beam redirection tool 72 may create a set of perforations in a first direction, and then, after advancing the laser perforation tool 20 downhole, create a second set of perforations, thereby forming network of perforations 76 as shown in
Referring to
At least part of the laser perforation tool and its various modifications may be controlled, at least in part, by a computer program product, such as a computer program tangibly embodied in one or more information carriers, such as in one or more tangible machine-readable storage media, for execution by, or to control the operation of, data processing apparatus, for example, a programmable processor, a computer, or multiple computers, as would be familiar to one of ordinary skill in the art.
It is contemplated that systems, devices, methods, and processes of the present application encompass variations and adaptations developed using information from the embodiments described in the following description. Adaptation or modification of the methods and processes described in this specification may be performed by those of ordinary skill in the relevant art.
Throughout the description, where compositions, compounds, or products are described as having, including, or comprising specific components, or where processes and methods are described as having, including, or comprising specific steps, it is contemplated that, additionally, there are articles, devices, and systems of the present application that consist essentially of, or consist of, the recited components, and that there are processes and methods according to the present application that consist essentially of, or consist of, the recited processing steps.
It should be understood that the order of steps or order for performing certain actions is immaterial, so long as the described method remains operable. Moreover, two or more steps or actions may be conducted simultaneously.
In order that the application may be more fully understood, the following examples are set forth. It should be understood that these examples are for illustrative purposes only and are not to be construed as limiting in any manner. The present Example describes creation of perforation(s) using the laser perforation tool as described in the present disclosure.
A sample shale block (4 inches in diameter by 5 inches in length) was perforated as shown in
Number | Name | Date | Kind |
---|---|---|---|
6755262 | Parker | Jun 2004 | B2 |
6888097 | Batarseh | May 2005 | B2 |
9677339 | Linetskiy et al. | Jun 2017 | B2 |
20040206505 | Batarseh | Oct 2004 | A1 |
20140345861 | Stalder et al. | Nov 2014 | A1 |
20150129203 | Deutch et al. | May 2015 | A1 |
20150198022 | Stanecki et al. | Jul 2015 | A1 |
20170191314 | Faircloth | Jul 2017 | A1 |
20190353032 | Batarseh | Nov 2019 | A1 |
20200392793 | Batarseh | Dec 2020 | A1 |
Number | Date | Country |
---|---|---|
203081295 | Jul 2013 | CN |
203334954 | Dec 2013 | CN |
WO-2014078663 | May 2014 | WO |
Entry |
---|
International Search Report for PCT/IB2020/056736, 3 pages (dated Dec. 9, 2020). |
Written Opinion for PCT/IB2020/056736, 6 pages (dated Dec. 9, 2020). |