The present invention relates generally to laser assisted machining and, more particularly, to systems and processes that utilizes multiple laser units to assist in machining a turning workpiece.
Laser assisted machining is based upon the idea that the strength of materials generally decreases at elevated temperatures, and has been in use since the late 1970s when lasers became a viable heat source capable of producing intense heat in a very precise region. Laser assisted machining typically involves using a high power laser as a heat source to soften workpiece material ahead of a cutting tool in a lathe or milling machine, for example, to facilitate material removal and prolong tool life.
Due to inefficiencies associated with laser-metal interactions and high initial startup costs, economic justification for laser assisted machining of metals was not achieved, and interest in laser assisted machining was diverted to other areas of research. However, continued improvements in lasers, such as higher power Nd:Yag lasers and solid state diode lasers, have provided potential for improvements in laser assisted machining of metals. The present invention involves the use of multiple distributed lasers to assist in the machining of materials, such as ceramics, high temperature alloys, and composites, for example, which are typically difficult to machine.
One aspect of the present invention includes a turning process utilizing multiple distributed lasers to assist a cutting tool in machining a rotating workpiece. The process involves cutting material from the rotating workpiece with the cutting tool, thereby creating a chamfer on the rotating workpiece. A first laser unit is provided with independent operational control that heats the chamfer at a first point circumferentially ahead of the cutting tool. A second laser unit is provided with independent operational control that heat the workpiece at a second point circumferentially ahead of said first point, sequentially incrementally heating the rotating workpiece. Temperature gradients within the workpiece are controlled with the independent operational controls of the laser units.
Another aspect of the present invention involves a laser assisted machining apparatus. The apparatus includes a lathe having a workpiece holder that rotates about an axis and a cutting tool holder that moves along a path parallel to the rotational axis of said workpiece holder. First and second laser units are connected to said cutting tool holder and are controlled by a control means for independently controlling output of each of the laser units.
The objects and advantages of the present invention will be more apparent upon reading the following detailed description in conjunction with the accompanying drawings.
For the purpose of promoting an understanding of the principles of the invention, reference will now be made to the embodiments illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended, such alterations and further modifications in the illustrated device and such further applications of the principles of the invention as illustrated therein being contemplated as would normally occur to one skilled in the art to which the invention relates.
One aspect of the present invention involves a turning process utilizing multiple distributed lasers to assist a cutting tool in machining a workpiece.
The multiple laser beams 26 and 32 provide sequential incremental heating from different directions and positions such that only the material zone to be removed reaches the temperature conducive to machining, while the remaining bulk material is relatively unaffected. Furthermore, sequential heating can generate surface treatment effects, which can improve absorptivity for the following laser beams, thereby significantly improving energy efficiency for the laser assisted machining of materials with high reflectivity such as metals.
Another aspect of the present invention involves a lathe with multiple distributed lasers for performing laser assisted turning operations. One embodiment of the lathe, used in turning austenitic stainless steel P550, is shown in
Laser units 36 and 38 in the embodiment shown are connected to the cutting tool holder 40 of the lathe 34 so that they jointly translate with the cutting tool (not shown) as the cutting tool holder 40 moves along a path parallel to the rotational axis of the workpiece holder 42. Laser unit 38 is positioned about 10-13 degrees circumferentially ahead of the cutting tool, and laser unit 36 is positioned about 55 degrees circumferentially ahead of the cutting tool. Utilizing two independently controlled laser units allows more precise control over temperature gradients within the workpiece 44, avoids undesirable subsurface thermal damage, prevents microstructural change in the workpiece, and improves overall energy efficiency of the laser assisted machining process.
Laser assisted turning operations using the embodiment of the lathe shown in
While the invention has been illustrated and described in detail in the drawings and foregoing description, the same is to be considered as illustrative and not restrictive in character, it being understood that only the preferred embodiment has been shown and described and that all changes and modifications that come within the spirit of the invention are desired to be protected.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 60/714,799, filed Sep. 7, 2005.
Number | Date | Country | |
---|---|---|---|
60714799 | Sep 2005 | US |