The present invention relates to the formation of biocompatible materials onto a medical implant device, and more particularly to the use of laser based metal deposition of biocompatible materials onto a porous base material.
The advancement of enhanced materials for the use of medical implants, such as joint prostheses have immensely improved the quality of life for many people over the past century. Devices such as artificial hips, knees, shoulders and other devices have allowed people who would otherwise have suffered from chronic pain and physical limitation to live active, comfortable lives. The development of such devices has confronted scientists and engineers with many technical challenges, such as in the area of materials science engineering wherein to achieve optimal implant performance various biocompatible materials with different physical and mechanical properties are bonded to each other.
Materials used for such devices must not only be non-corrosive, but must also be sufficiently resilient (having high tensile and compressive strength), and hard (having sufficient wear resistance). Since a device such as an artificial joint must undergo a great number of cycles of wear during the lifetime of the host patient, such devices must also possess great fatigue properties.
Some medical implant devices such as artificial joints must bond in some way with the patient's natural bone. Early devices employed bonding polymers, commonly referred to as bone cement to bond the implant rigidly to the anatomic structure of bone. However, more recently such devices have been constructed of porous materials such as porous Titanium (Ti) and porous Tantalum (Ta). The bone of the host patient grows into the porous material creating a strong permanent mechanical bond without the use of bone cements. Consequently, such implants are more reliable and durable in the long term than those relying on bone cement for fixation.
Such implant devices are typically manufactured from a wrought alloy, forged alloy or a powder metal injection molded process. While this produces an implant device with bulk properties that are optimized for certain overall design criteria such as biocompatibility strength and modulus of elasticity, these properties may not be optimized for property requirements specific to certain portions of the implant, such as wear or bone ingrowth characteristics.
For instance, while the use of porous materials such as porous Ti provides crucial and beneficial bonding properties, such materials may not have optimal properties in other areas. For example, porous materials, may not be as hard as some other biocompatible materials and therefore may not have acceptable wear properties. However, because of the overriding importance of strong permanent bonding with the host patient bone, such porous materials have continued to be used in spite of less than optimal wear properties.
In order to enhance the wear properties of a device such as an artificial joint, prior art devices have been constructed in more than one piece. A first potion of the joint implant, that which will bond to the bone, has typically been constructed of a porous material such as porous titanium, and a second piece, such as the bearing surface of the joint, has been constructed of a much harder, more wear resistant material such as alloys of cobalt and chrome (Co—Cr). The first and second pieces are then bonded together in an attempt to obtain the benefits of both materials. One challenge to using such a technique is that of achieving a sufficiently strong, permanent bond between the first and second portions, without the use of adhesives that may be biologically incompatible or may fail under the stresses imposed by the body of the patient. Attempting to weld such materials together can cause the non-porous material to flow into the porous material, destroying the porosity of the porous material and degrading the ability of the device to bond with the patient's bone. In addition, such materials, being dissimilar metals, often experience galvanic corrosion when bonded together in such a manner.
Therefore, there remains need for a device (and method for making the same) such as an artificial joint which can take advantage of the properties of a first material, such as the porosity of porous Ta or Ti, and also take advantage of the properties of a second material, such as the hardness of a material like Co—Cr, for use in a bearing environment such as a ball or socket of a joint. Such a device would preferably not exhibit any delamination between the two materials and would not experience any galvanic corrosion. Such a device would also preferably not diminish the porosity of the porous material due to the flow of the other material thereinto.
The present invention provides a method for constructing a medical implant such as a hip prosthesis, having a bulk portion constructed of a porous material which can fuse with a host patient's bone structure, and which also has a hard, wear resistant material only at portions of the device where such properties are desired. According to the invention, a Laser based metal deposition (LBMD) layer of relatively dense hard material, can be applied to a porous material.
The relatively hard, wear resistant biocompatible material can be for example an alloy of cobalt and chrome alloy, whereas the porous material could be a biocompatible material conducive to bony tissue ingrowth when formed in a porous structure such as porous Titanium, Ti6Al4V, Ti6Al4V ELI, Titanium—Nickel alloys, Tantalum, Tantalum alloys, and porous structures made from other materials that have an exposed surface made from biocompatible materials.
According to the LBMD material application of the present invention, the applied material can be applied as, for example, powdered metal, as a wire or as a foil. The applied material is then melted by a high-energy laser immediately upon or soon after application. The use of a laser to heat the applied material advantageously allows the heating to be very localized, thereby minimizing any adverse effects of such heat on the underlying material.
In addition, the extremely localized heating of the laser in conjunction with the heat sinking properties of the underlying material leads to very rapid subsequent cooling, resulting in a beneficial small grain structure as well as allows the addition of carbon interspersions when conducted in a carbon-rich environment or with powered or alloyed carbon added to the deposition material, both of which provide increased hardness to the deposited material.
Furthermore, since the LBMD deposited material is heated and cooled so quickly and locally, the applied material tends not to flow excessively into the porous material, thereby maintaining the desirable porous properties of the porous bulk portion of the device and a relatively small bonding zone between the porous material and the LBMD deposited material. This allows for a thin layer of LBMD deposited material to be deposited onto the porous material. Because this layer of deposited material is thin, implants can be fabricated that are optimized in size to limit the amount of bone that must be removed to facilitate the bulk of the implant. For example, a 5 millimeter thick sheet-like implant with a 3 millimeter thick porous bone ingrowth underside, a 0.5 millimeter bonding zone, and 1.5 millimeter bearing surface made from a first layer of Titanium and a second layer of Cobalt—Chrome can be placed as bearing pads on the proximal tibial plateau as a tibial hemiplasty implant in the knee. This construct of the 5 millimeter thick implant is significantly bone conserving compared to traditional 9 millimeter to 20 millimeter thick tibial implants that are currently used to resurface the proximal tibia of the knee.
In another aspect of the invention, a relatively hard material such as Co—Cr can be applied to the surface of a porous base such as porous Tantalum, and the Co—Cr surface used to bond to a Co—Cr bulk portion of the device. This overcomes the problems that have previously been experienced, when trying to bond a material such as Co—Cr to another material such as porous Tantalum. A corrosion barrier, such as a layer of Ti may be provided between the porous Tantalum and the Co—Cr.
The present invention provides a manufacturing method for producing an implant made from traditional or novel implant metals with layers of material having differing densities and structures.
The present invention provides a surface material deposition process that allows for a gradient of materials with varying selective properties to be deposited on the bulk implant material. After the base structure is formed, additional material is added to the base structure using the laser based metal deposition (LBMD) process.
The implant is formed in the approximate final shape from a common or novel orthopedic alloy such as Co—Cr alloys, titanium alloys, stainless steel alloys, or base pure metal such as tantalum, titanium or platinum. Because the basic structure of the implant is formed by conventional manufacturing means out of implant grade materials, the majority of the cost of the manufacturing is similar to existing implants.
Applicable implant shapes that can benefit from LBMD deposition of harder materials onto the base material include knee, shoulder, hip, finger, spine, top, foot, elbow, wrist, dental, jaw, and ankle prosthesis, just to name a few.
Besides improving bearing properties of implants, the LBMD process can be used to increase the bone ingrowth properties of implant surfaces. This can be done by either depositing a hard material onto a porous base material or depositing a porous material onto a hard material.
In the case of adding a hard material to a base material, a monoblock of a porous structure of an implant material is the base material. A closely packed fine grain structure of an implant material is then added to the base material by laser based metal deposition (LBMD) methods. The closely packed grain structure would result in improved wear properties.
The majority of the bulk of the implant can be manufactured by conventional methods. The hardened surface may then be added by LBMD deposition. Unlike structures that are completely made by methods such as LBMD, this method would allow the majority of the structure to be built by conventional methods with only thin layers of hard material added to the structure. Accordingly, cost savings can be achieved.
LBMD allows for a highly focused laser beam of energy to melt a very small amount of powder over a short period of time. Because the large bulk material acts as a heat sink, this process results in a rapidly cooled LBMD deposited material. Rapid cooling of materials such as metals results in a finer grain structure, which results in increased hardness. In addition, in a carbon rich environment, carbides form resulting in an even harder material. Since the hardness of a material is typically directly related to wear resistance, materials having high hardness become very attractive for use on bearing surfaces such as those on knee, hip, wrist and elbow joints as well as myriad other implant devices.
Using the material deposition process of the present invention, like materials can be deposited onto like materials such as Co—Cr alloys LBMD deposited on Co—Cr wrought materials. However, dissimilar materials may also be deposited, such as titanium alloys deposited on Co—Cr alloys, or Co—Cr alloys can be deposited on titanium and its alloys.
Other aspects and advantages of the present invention will become apparent from the following detailed description, which, when taken in conjunction with the drawings, illustrate by way of example the principles of the invention.
For a fuller understanding of the nature and advantages of this invention, as well as the preferred mode of use, reference should be made to the following detailed description read in conjunction with the accompanying drawings.
The following description is the best embodiment presently contemplated for carrying out this invention. This description is made for the purpose of illustrating the general principles of this invention and is not meant to limit the inventive concepts claimed herein.
With reference to
The hip prostheses 100 must be constructed completely of biocompatible materials in order to ensure acceptance of the prostheses by the patient's body. A biocompatible material is one that will not cause an adverse reaction with a host patient, and that will not corrode when exposed to human tissue and fluids within the host patient. The hip 100 includes a base portion 102, which may include a shank 104 and a ball 106, and that is constructed predominantly or completely of a porous material such as porous Ti or Ta (or alloys thereof). Constructing the shank 104 of a porous material such as Ti or Ta advantageously promotes bone growth into the porous material and strong fusion therewith. This provides a strong, permanent, resilient bond with the bone of the host patient without the need for adhesives. As discussed above, the use of adhesives to bond the hip 100 to the bone of the host patient would not only provide a somewhat unreliable bond, but could also lead to adverse reactions with the host patient.
As also mentioned above, the base 102 is constructed either completely or predominantly of a porous material, such as a porous matrix of Ta or Ta alloy, Ti or Ti alloy, for example Ti-6Al-4V, Ti—Ni, Ti6Al4V ELI, Titanium—Nickel alloys, and porous structures made from other materials that have an exposed surface made from biocompatible materials. The base 102 can be formed by methods such as casting, machining or forging.
A preferred material for the base 102 is porous tantalum. One such porous tantalum is sold under the brand name HEDROCEL® by IMPLEX® Corporation, 80 Commerce Drive, Allendale, N.J. 07401.
The preferred porous tantalum material such as HEDROCEL® has an open cell, tantalum metal structure that has the appearance of cancellous bone, and that can be formed or machined into complex shapes. It is distinguished from current porous materials by its uniformity and structural continuity as well as by its strength, toughness, and resistance to fatigue failure.
The tantalum metal structure consists of interconnecting pores, resulting in a construct that is >60% porous, and ideally >75% porous. In addition, the tantalum material preferably has flexural modulus properties that are similar to those of human bone. For articulating joint replacement devices, compression molded polyethylene can be infused into the tantalum structure, creating a bond as strong as the polyethylene itself. In addition, the titanium structure can be fabricated into products without the need for solid metal support.
The preferred porous tantalum metal (e.g., HEDROCEL®) has a similar cellular geometric appearance to bone graft, and also offers many beneficial attributes. The porous structure is preferably a uniform and homogeneous biomaterial, having load carrying capabilities that are engineered to the orthopedic application. Bone graft, whether harvested from the patient or taken from the bone bank, has varying, often unknown degrees of mechanical properties and overall quality. Similarly, the bone must incorporate into the surrounding bone for long-term clinical success. If the bone dies or does not generate new bone, the fatigue characteristics will be poor and can lead to collapse, loosening, pain, and re-operation. The preferred tantalum material is highly fatigue resistant and maintains its strength for the duration of clinical usage. The mechanical properties should not degrade with time. Since the stiffness properties of the preferred tantalum material are similar to bone, the load pattern to the surrounding bone should be maintained without a compromise of quality.
The preferred tantalum material has a volumetric porosity greater than traditional prosthetic materials and bone fixation surface coatings. This high porosity allows a more normal restoration of the bone in contact with the porous material, unlike the bone density change phenomenon seen with minimally porous or non-porous implant materials. The solid metals used in current implants are at least ten times stiffer than bone, whereas the tantalum material preferably has a stiffness similar to that of bone.
Initial stability is equally important and is necessary for proper bone in-growth. The tantalum material will preferably have high frictional characteristics when contacting bone. In the early post-operative period, these frictional and structural properties allow the implant device to remain very stable.
For soft tissue applications, the properties of porous tantalum have an important role. Similar to bone, the overwhelming volumetric porosity allows fast penetration of precursor cells and relatively fast formation of soft tissue fibral strands and blood supply. Unlike solid metal screws, washers or synthetic sutures, porous tantalum achieves the primary mode of tissue attachment to the implant device while the tissues heal at their own variable pace. The struts of the porous tantalum material interlock with the tissue, offering immediate, secure and functional mechanical attachment. This allows for the necessary healing and reproducible tissue incorporation into the porous matrix. The use of a porous tantalum soft tissue anchoring device may therefore result in both soft tissue in-growth and bone in-growth for long-term fixation.
One method for forming a base 102 of porous tantalum is described in U.S. Pat. No. 5,282,861 to Kaplan, issued Feb. 1, 1994, and which is herein incorporated by reference. According to the method, the metal, such as tantalum, is deposited on a carbon foam substrate. A reaction chamber encloses a chlorination chamber and a hot wall furnace. A resistance heater surrounds the chlorination chamber and an induction heating coil surrounds the reaction chamber to heat the hot wall furnace. Tantalum metal is located within the chlorination chamber and a carbon foam substrate is positioned within the hot wall furnace. Chlorine gas is injected into the chlorination chamber to react with the tantalum to form tantalum chloride. The tantalum chloride mixes with hydrogen injected into the chamber and then passes through an opening in the hot wall furnace. The mixture is heated within the hot wall furnace of a temperature of approximately 1100° C. to produce the following reacting surface TaCl5+5/2H2→Ta+5HCl. The surface reaction deposits the tantalum on the carbon foam substrate to produce a uniform thin film over the individual ligaments of the substrate. The hydrogen chloride is then exhausted.
It should be appreciated that although the substrate has been indicated to be carbon, other carboneous materials, such as graphite, may be used. In addition, other open cell materials, such as high temperature ceramics, may also be used. Also, other layers may be deposited on the substrate, such as intermediate layers to provide additional strength. Other aspects of the invention could be the incorporation of a core of solid material, such as tantalum or niobium or alloys of each, with the porous substrate fitted around the solid core and with the subsequent deposition of metal not only covering the substrate but also locking the porous substrate to the solid core.
The base 102 may also comprise porous tantalum formed on a substrate material. A method for forming the base 102 of porous tantalum on a substrate material is disclosed in U.S. Pat. No. 6,063,442 to Cohen et al, issued May 16, 2000, and which is herein incorporated by reference.
In another method of forming the base 102, spherical beads or particles (not shown) of Ti or Ti alloy can be charged into a mold or form. The beads are preferably of relatively uniform shape. It is within the skill of one in the art to select a bead size range to result in a desired porous matrix with the desired pore size. The beads can then be exposed to high temperature in a Hot Isostatic Pressing (HIP) process to sinter the beads into the desired solid matrix form.
The HIP process is carried out in an oven that includes an airlock. The base 102 is prepared as described above and placed within the oven, which is then evacuated and charged with an inert (e.g., argon) atmosphere. The oven is heated to the desired temperature while the atmosphere therein is pressurized to the desired pressure. The HIP process applies an isostatic pressure through the inert gas (e.g., argon). By applying sufficient pressure during the heating step, the beads are fused together at temperature below that which would adversely affect the microstructure of the material.
With continued reference to
With reference to
The outer surface region 108, including the corrosion barrier layer 110 and the outer material 112, can be constructed as laser based metal deposition (LBMD) layers. An example of a LBMD process is Laser Engineered Net Shaping (LENS™), Sandia Corporation of Albuquerque, N.Mex., is described in U.S. Pat. No. 6,046,426 to Jeantette, et al., issued on Apr. 4, 2000, and which is incorporated herein by reference. Initially, a layer is deposited directly on the ball 106. Thereafter, subsequent layers can be deposited on previous layers in a controlled manner until a desired surface shape is formed. The material can be deposited for example as a powdered metal emitted from one or more nozzles. Alternatively, the material could be provided as a wire or as a foil, held in proximity to the base and heated with the laser.
As shown in
The deposited corrosion barrier layer 110 may be deposited as a single layer, or as multiple layers applied by successive passes of LBMD deposition. For instance, laminates of corrosion-resistant material (e.g., Ti and/or Ti alloys, etc.) can be formed to create the corrosion barrier layer 110.
Referring to
Either of the layers 110, 112 can also be formed to have a gradient of material qualities; for example the outer material 112 could be formed to become progressively harder toward the outer surface of the outer material 112.
Additional layers can also be added above, below, or between the corrosion barrier layer 110 and layer of outer material 112 per the desires of the manufacturer or need in the industry.
The LBMD deposition process is preferably performed in a controlled atmosphere chamber (not shown) which contains an inert gas to inhibit the formation of surface oxide in the deposition area. This reduces the amount of laser energy needed to achieve full melting of the powder. Although deposition can be performed outside the controlled atmosphere chamber, the inert atmosphere will promote full density in the deposited structure and ultimately lead to improved strength of the applied surface material.
It should be appreciated that the laser heats the LBMD deposited material in a very localized manner and for a very short duration. Because of this the heat does not appreciably heat the base material, and thus the heat does not adversely affect the structure of the base material. Furthermore, the large heat sink of the ball 106 combined with the very small area of localized heating causes the heated deposited material to very rapidly cool. This results in a finer grain structure than would occur with a slower cooling, and also results in carbide interspersions when conducted in a carbon-rich environment. As those skilled in the art will appreciate, fine grain structure and the presence of carbide interspersions both contribute to improved hardness and therefore improved wear properties.
In addition, because of the rapid rate of heating and cooling, the applied material does not tend to excessively flow into the porous material, thereby maintaining the desirable porous properties of the porous bulk portion of the device and a relatively small bonding zone between the porous material and the LBMD deposited material. This allows for a thin layer of LBMD deposited material to be deposited onto the porous material. Because this layer of deposited material is thin, implants can be fabricated that are optimized in size to limit the amount of bone that must be removed to facilitate the bulk of the implant. For example, a 5 millimeter thick sheet-like implant with a 3 millimeter thick porous bone ingrowth underside, a 0.5 millimeter bonding zone, and 1.5 millimeter bearing surface made from a first layer of Titanium and a second layer of Cobalt-Chrome can be placed as bearing pads on the proximal tibial plateau as a tibial hemiplasty implant in the knee. This construct of the 5 millimeter thick implant is significantly bone-conserving compared to traditional 9 millimeter to 20 millimeter thick tibial implants that are currently used to resurface the proximal tibia of the knee.
As mentioned above, the deposited layers may be deposited as multiple layers applied by successive passes of LBMD deposition. It should be pointed out the heat used to apply each layer and/or the material composition can be adjusted with each pass to achieve a gradient of material properties if desired. For example, the layer could be applied so that the applied layers are progressively harder toward the surface of the structure.
Another preferred embodiment includes a multi-layer “sandwich” of Co—Cr alloy (outer material 112) on titanium (corrosion barrier layer 110) on a porous tantalum or titanium base material. LBMD is used to directly deposit titanium onto porous tantalum or titanium and Co—Cr onto the previously deposited titanium. Illustrative dimensions of such an embodiment follow. The thickness of the porous tantalum can be about 0.040 to 1.000 inches, the thickness of the mixed titanium and tantalum layer can be between about 0.010 and 0.050 inch. The thickness of the titanium layer can be between about 0.010 and 0.050 inch. The thickness of the mixed titanium and Co—Cr layer can be about 0.001 to 0.010 inch. The thickness of the Co—Cr layer can be about 0.010 to 0.500 inch. Thus, a sandwich of tantalum, titanium, Co—Cr could range from about 0.071 inches to 1.61 inches. Of course these dimensions are provided by way of example, and will vary depending on the type and use of the implant device.
According to another preferred embodiment, multi-layer structures such as that described in the preceding paragraph can be formed for coupling to another device such as a commercially available implant. For instance, such multi-layer structures can be fusion or diffusion bonded to implants that are made by traditional methods. Thus, for example, the Co—Cr surface of a 0.200 inch three layer structure could be diffusion bonded to a hip or knee implant, as shown in
In fusion bonding, the substrates are first forced into intimate contact by applying a high contact force. The substrates are then placed in a furnace and annealed at high temperature, after which a solid bond is formed between the substrates. In diffusion bonding, the substrates are forced into intimate contact under high contact force, and heated at a temperature below the melting point of the substrate materials. Fusion bonds involve the complete melting and mixing of both metals. Diffusion bonding can be viewed as a form of fusion bonding but with much less melting and mixing of both metals.
With reference to
According to the present invention, a corrosion barrier layer 406 can be deposited onto the first portion 400 by laser based metal deposition (LBMD). Thereafter, a layer of Co—Cr 408 can be deposited onto the corrosion barrier layer, again by LBMD deposition. Co—Cr can be bonded very well with Co—Cr. Therefore, the LBMD deposited Co—Cr outer surface 408 of the second portion 404 can achieve excellent bonding with the Co—Cr of the first portion 400 without any corrosion problems.
Note that an implant similar to the implant 504 of
While the present invention has been disclosed in its preferred form, the specific embodiments thereof as disclosed and illustrated herein are not to be considered in a limiting sense, as numerous variations are possible. The invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive. No single feature, function, element or property of the disclosed embodiments is essential. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. The following claims define certain combinations and subcombinations that are regarded as novel and non-obvious. Other combinations and subcombinations of features, functions, elements and/or properties may be claimed through amendment of the present claims or presentation of new claims in this or related applications. Such claims, whether they are broader, narrower or equal in scope to the original claims, are also regarded as included within the subject matter of applicant's invention. All changes that come within the meaning and range of equivalency of the claims are to be embraced within their scope. For example, for purposes of simplicity the invention was described in terms of a hip prosthesis. However this was only by way of example, and as those skilled in the art will appreciate the present invention could be practiced in many other applications. Other variation and embodiments falling within the scope of the invention will, no doubt be apparent to those skilled in the art. Thus, the breadth and scope of a preferred embodiment should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.
This patent application claims benefit of pending prior U.S. Provisional Patent Application Ser. No. 60/527,118, filed Dec. 3, 2003 by Daniel F. Justin et al. for LASER ENGINEERED NET SHAPING OF IMPLANT STRUCTURES, which patent application is hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3947653 | Fairbairn | Mar 1976 | A |
4048459 | Earle | Sep 1977 | A |
4117302 | Earle et al. | Sep 1978 | A |
4200669 | Schaefer et al. | Apr 1980 | A |
4218494 | Belmondo et al. | Aug 1980 | A |
4243867 | Earle et al. | Jan 1981 | A |
4269868 | Livsey | May 1981 | A |
4284443 | Hilton | Aug 1981 | A |
4289952 | Haggerty | Sep 1981 | A |
4299860 | Schaefer et al. | Nov 1981 | A |
4300474 | Livsey | Nov 1981 | A |
4323756 | Brown et al. | Apr 1982 | A |
4367017 | Jimbou et al. | Jan 1983 | A |
4434189 | Zaplatynsky | Feb 1984 | A |
4537793 | Kehrer et al. | Aug 1985 | A |
4542539 | Rowe et al. | Sep 1985 | A |
4568565 | Gupta et al. | Feb 1986 | A |
4603257 | Packer et al. | Jul 1986 | A |
4615903 | Miller | Oct 1986 | A |
4644127 | La Rocca | Feb 1987 | A |
4677274 | Bisiach | Jun 1987 | A |
4681640 | Stanley | Jul 1987 | A |
4701592 | Cheung | Oct 1987 | A |
4724299 | Hammeke | Feb 1988 | A |
4732778 | Kawasaki | Mar 1988 | A |
4743308 | Sioshansi et al. | May 1988 | A |
4804815 | Everett | Feb 1989 | A |
4818562 | Arcella et al. | Apr 1989 | A |
4832982 | Mori et al. | May 1989 | A |
4853250 | Boulos et al. | Aug 1989 | A |
4863538 | Deckard | Sep 1989 | A |
4927992 | Whitlow et al. | May 1990 | A |
4938816 | Beaman et al. | Jul 1990 | A |
4944817 | Bourell et al. | Jul 1990 | A |
4947463 | Matsuda et al. | Aug 1990 | A |
4976930 | Kishida et al. | Dec 1990 | A |
5017753 | Deckard | May 1991 | A |
5038014 | Pratt et al. | Aug 1991 | A |
5043548 | Whitney et al. | Aug 1991 | A |
5111021 | Jolys et al. | May 1992 | A |
5132143 | Deckard | Jul 1992 | A |
5147680 | Slysh | Sep 1992 | A |
5155324 | Deckard et al. | Oct 1992 | A |
5156697 | Bourell et al. | Oct 1992 | A |
5182170 | Marcus et al. | Jan 1993 | A |
5182430 | Lagain | Jan 1993 | A |
5208431 | Uchiyama et al. | May 1993 | A |
5242706 | Cotell et al. | Sep 1993 | A |
5245155 | Pratt et al. | Sep 1993 | A |
5252264 | Forderhase et al. | Oct 1993 | A |
5272312 | Jurca | Dec 1993 | A |
5285046 | Hansz | Feb 1994 | A |
5290368 | Gavigan et al. | Mar 1994 | A |
5308661 | Feng et al. | May 1994 | A |
5314003 | Mackay | May 1994 | A |
5316580 | Deckard | May 1994 | A |
5368947 | Denney | Nov 1994 | A |
5383934 | Armini et al. | Jan 1995 | A |
5384523 | Masuda | Jan 1995 | A |
5385780 | Lee | Jan 1995 | A |
5393613 | MacKay | Feb 1995 | A |
5393957 | Misawa et al. | Feb 1995 | A |
5398193 | deAngelis | Mar 1995 | A |
5413641 | Coulon | May 1995 | A |
5418350 | Freneaux et al. | May 1995 | A |
5431967 | Manthiram et al. | Jul 1995 | A |
5434880 | Burrows et al. | Jul 1995 | A |
5449536 | Funkhouser et al. | Sep 1995 | A |
5453329 | Everett et al. | Sep 1995 | A |
5471541 | Burtnyk et al. | Nov 1995 | A |
5477026 | Buongiorno | Dec 1995 | A |
5478983 | Rancourt | Dec 1995 | A |
5484980 | Pratt et al. | Jan 1996 | A |
5498302 | Davidson | Mar 1996 | A |
5512162 | Sachs et al. | Apr 1996 | A |
5530221 | Benda et al. | Jun 1996 | A |
5578227 | Rabinovich | Nov 1996 | A |
5607730 | Ranalli | Mar 1997 | A |
5611306 | Takano | Mar 1997 | A |
5612099 | Thaler | Mar 1997 | A |
5620552 | Denney | Apr 1997 | A |
5640667 | Freitag et al. | Jun 1997 | A |
5647931 | Retallick et al. | Jul 1997 | A |
5688564 | Coddet et al. | Nov 1997 | A |
5697043 | Baskaran et al. | Dec 1997 | A |
5786023 | Maxwell et al. | Jul 1998 | A |
5837960 | Lewis et al. | Nov 1998 | A |
5961858 | Britnell | Oct 1999 | A |
5980974 | Armini et al. | Nov 1999 | A |
5985056 | McCay et al. | Nov 1999 | A |
5993550 | Eloy | Nov 1999 | A |
5993554 | Keicher et al. | Nov 1999 | A |
6046426 | Jeantette et al. | Apr 2000 | A |
6064030 | Sato | May 2000 | A |
6122564 | Koch et al. | Sep 2000 | A |
6203861 | Kar et al. | Mar 2001 | B1 |
6261322 | Despres et al. | Jul 2001 | B1 |
6268584 | Keicher et al. | Jul 2001 | B1 |
6306467 | White et al. | Oct 2001 | B1 |
6316744 | Nowotny et al. | Nov 2001 | B1 |
6344246 | Fischer et al. | Feb 2002 | B1 |
6410125 | Brenner et al. | Jun 2002 | B1 |
6429402 | Dixon et al. | Aug 2002 | B1 |
6476343 | Keicher et al. | Nov 2002 | B1 |
6504127 | McGregor et al. | Jan 2003 | B1 |
6526327 | Kar et al. | Feb 2003 | B1 |
6534745 | Lowney | Mar 2003 | B1 |
6548125 | Warnecke | Apr 2003 | B1 |
6656409 | Keicher et al. | Dec 2003 | B1 |
6703137 | Subramanian | Mar 2004 | B1 |
6717106 | Nagano et al. | Apr 2004 | B1 |
Number | Date | Country | |
---|---|---|---|
20050123672 A1 | Jun 2005 | US |
Number | Date | Country | |
---|---|---|---|
60527118 | Dec 2003 | US |