The present invention relates to tuning a laser with an external laser cavity.
In the optical communication industry there is a need for testing e.g. optical components and amplifiers with lasers at different wavelengths. For this purpose, various types of laser cavities are known.
Tunable lasers are described e.g. as the so-called Littman geometry in “Liu and Littman, Novel geometry for single-mode scanning of tunable lasers, Optical Society of America, 1981”, or as the so-called Littrow geometry in EP 0 952 643 A2. Bragg-reflector type cavities are shown e.g. “A. Nahata et al., Widely Tunable Semiconductor Laser Using Dynamic Holographically-Defined Distributed. Bragg Reflector, 2000 IEEE”. The teaching of those documents shall be incorporated herein by reference.
It is an object of the invention to provide improved tuning of a laser. The object is solved by the independent claims.
For the sake of clarity, the terms ‘vary’, ‘variation’, ‘variable’, etc. as used herein are to be interpreted as an intended changing of a property.
An advantage of a preferred embodiment of the present invention is the possibility of (e.g. non-mechanically) performing a compensation for deviations, e.g. geometrical or optical deviations, in the laser cavity setup to provide mode hop free tuning of the laser. Furthermore, it is possible to (e.g. non-mechanically) tune the laser according to a preferred embodiment of the invention.
In a preferred embodiment the variation of the wavelength characteristic of the dispersion element is done by using a periodic structure as the dispersion element and varying the wavelength characteristic of the dispersion element by varying the periodicity of the periodic structure. The variation of the periodicity of the periodic structure can be done by varying the length of a substrate for the periodic structure.
Alternatively or additionally it can be done by using as a material for the substrate any material having a voltage-, magnetism-, pressure-, humidity-, light- and/or temperature-sensitive length, and varying the length of the material by varying the voltage, magnetism, pressure, humidity, light and/or temperature applied to the material.
Alternatively or additionally, it can also be done by using a chirped Bragg grating as the dispersion element and varying the wavelength characteristic of the dispersion element by moving the chirped Bragg grating. A chirped Bragg grating is a grating in which the period of the grating varies with position in the grating. The moving of the chirped Bragg grating can be performed by at least one of the following: translating the chirped Bragg grating, rotating the chirped Bragg grating.
Moreover, alternatively or additionally it is possible to vary the periodicity of the periodic structure by using variable electromagnetic or acoustic waves creating a periodic structure or acting on a periodic structure. The variability of the waves comprising at least one of the following: varying their wavelength, varying the angle of incidence on the variable periodic structure.
Due to deviations of real geometry with respect to perfect configuration and/or chromatic dispersion of the necessary optical components, in inventive embodiments using a geometry for continuous tenability, e.g. a Littman or Littrow geometry, a pivot point can generally only be found for a limited wavelength range. According to the present invention, corrections of these deviations or of the dispersion are made by varying the wavelength characteristic of the dispersion element in order to provide mode hop free tuning in an enlarged tuning range of the cavity.
In preferred embodiments of the inventive apparatus to perform the inventive method the shifting or rotation of the chirped Bragg grating relative to the laser beam can be driven by a piezo-electric translocating element which can precisely shift or rotate the grating.
Other preferred embodiments are shown by the dependent claims.
It is clear that the invention can be partly embodied or supported by one or more suitable software programs, which can be stored on or otherwise provided by any kind of data carrier, and which might be executed in or by any suitable data processing unit.
Other objects and many of the attendant advantages of the present invention will be readily appreciated and become better understood by reference to the following detailed description when considering in connection with the accompanied drawings. The components in the drawings are not necessarily to scale, emphasis instead being placed upon clearly illustrating the principles of the present invention. Features that are substantially or functionally equal or similar will be referred to with the same reference sign(s).
Embodiment 1 further comprises a dispersion element 10 introduced in the path 3 of the beam 4 for selecting at least one (preferably a longitudinal) mode of the laser. The dispersion element 10 comprises a variable grating 12 (see
Embodiment 1 is configured in a Littman-type configuration. Therefore, the tuning element 8 can be rotated by an actuator (not shown) about a (not shown) pivot axis to tune the laser. The pivot axis is theoretically defined by the intersection of the optical surface planes of the cavity end element 7b of the laser diode 6, the dispersion element 10 and the tuning element 8.
The variable grating 12 of the dispersion element 10 can be varied by varying the wavelength characteristic of the grating 12, i.e. by varying the period of the grating 12. For this purpose the grating 12 is mounted on a substrate.
Alternatively, the tuning itself can be done by the variation of the period 22 of the grating 12. This is also done by varying the voltage 14 and therefore the length of the substrate 11.
Alternatively, the compensation or the tuning can be done by varying the length of the substrate with other measures, e.g. with heat, pressure, light, magnetism, humidity and/or temperature.
As an alternative to the piezo-electric element as the dispersion element 10 of embodiment 1 and 100 a variable periodic index structure can be generated in the dispersion element 10 with light or by sound (not shown). E.g. a periodic light structure exposes a material and the generated carrier density yields a periodic index structure or variable acoustic waves generated by a piezo oscillator or an acusto-optic modulator generate a periodic structure (not shown). The variation of such a periodic light or sound structure can be done by a variation of the irradiation wavelength or a variation of the irradiation angle (not shown).
Alternatively, as shown in a fourth embodiment 400 according to
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP02/05443 | 5/17/2002 | WO |