The present invention relates to lasers, more particularly to providing lasers with suitable cooling fins.
Typical cooling of a laser utilizes cooling fin arrays coupled with fans to convect heat away from the laser. The fins are typically milled into the body of the laser housing or are part of an extruded heat sink that is bolted to the laser body. In either case the milling or extruding limits the size, pitch and shape of the resulting fins. In particular, heat transfer is largely dependent on the heat transfer surface area. When milling fins, the pitch of the fins, i.e. the number of fins per unit distance, is limited by the milling tool size. The extrusion process has limits on fin width, fin pitch and the fin width to length ratio.
The heat transfer characteristics of the cooling system are important for the operation of the laser. For example, provision of a better heat transfer mechanism could allow either improved laser operating characteristics to be obtained or a more compact cooling system to be provided.
According to a first aspect of the invention there is provided a laser system comprising: a laser module having a cooling face; and heat exchange element constructed as at least one folded sheet of thermally conductive material comprising a plurality of flat portions connected in thermal contact with the cooling face, and a plurality of interconnecting portions extending between the flat portions and away from the cooling face to form cooling fins.
Using a folded sheet as a basis for the cooling fins is not only highly convenient from an assembly point of view, and inexpensive, but also provides for highly effective heat exchange away from the laser module. First, the folded sheet can be attached to the laser module cooling face with a large area of good thermal contact via its flat portions. Second, the fins formed by the interconnecting portions of the sheet can present a high-drag to a fluid flow being forced past the fins by a fan or pump, thereby inducing significant turbulence which is an aid to carrying heat away from the fins. As a result a highly efficient heat exchanger can be provided in a small size.
Typically the thermally conductive material which the folded sheet is made of will be a metal, most preferably aluminum. Another suitable metal is copper which has a high thermal conductivity but is more expensive and more difficult to work with. Other materials could also be used.
The interconnecting portions may be two or more flat portions separated by folds, or may be a single bowed portion. For example, if the interconnecting portions are formed of two flat portions, then the fins will have a generally triangular profile. Another example is when the interconnecting portions are formed of three flat portions to provide a trapezoidal profile. In this case, the middle flat portion may be parallel to the cooling face.
The cooling fins can be formed from a flat sheet by a punching process known as lancing. The cooling fins may be referred to as lanced offset fins.
In some embodiments the cooling fins extend in a plurality of strips arranged alongside each other such that the cooling fins in adjacent ones of the strips are offset from one another. This staggered fin design can further increase turbulent flow, thereby further increasing the thermal transfer efficiency between the fins and the cooling fluid. Multiple strips of mis-aligned cooling fins can be manufactured using a separate sheet for each strip, or by forming multiple strips in one sheet. In the latter case, the fin pattern can be created from a flat sheet using lancing by stretching or otherwise moving the sheet between lancing steps to produce the desired offset between adjacent strips. If the offset is 50% (i.e. half a period) and the fins extend over a length roughly equal to the length of the flat portions, then after the lancing adjacent strips are barely connected, and the sheet can be considered to have two sets of aligned strips interleaved with one another.
The flat portions are preferably connected to the cooling face with a bond, such as with a thermally conductive adhesive (e.g. epoxy resin) or a brazing solder. In principle, fasteners could be used instead, but this is not preferred from an ease of assembly point-of-view and may also not maximize thermal contact unless used in combination with bonding.
In some embodiments, the interconnecting portions are apertured. Single or multiple apertures may be provided in each interconnecting portion as desired. These apertures further assist cooling by facilitating turbulence in fluid flowing past the fins.
According to a second aspect of the invention there is provided a method of assembling a laser package, the method comprising: providing a laser module having a cooling face; providing a folded sheet of thermally conductive material comprising a plurality of flat portions arrangeable on a common plane and a plurality of interconnecting portions extending between the flat portions and away from the common plane to form fins; and bonding the flat portions of the folded sheet to the cooling face so that the folded sheet forms a heat exchange element for the laser module with the interconnecting portions extending away from the cooling face to form cooling fins.
This method of assembly is particularly convenient and efficient. In this way, the folded sheet can be simply offered up and attached to the laser module in a single step.
The best mode is to place a thermally conductive adhesive between the cooling face and the flat portions of the folded sheet. An alternative is to use brazing solder instead.
A further significant advantage of using a folded sheet is that the folded sheet can be provided so that it is extensible and compressible by its interconnecting portions. The folded sheet can then be extended or compressed by a desired amount before bonding it to the cooling face in its extended or compressed state. This allows adjustment of the fin spacing, and the distance of maximum extent of the fins from the cooling face. This kind of freedom is not possible with a conventional fin array where the fin size and pitch is fixed at the time of manufacture of the fin array. It is possible to exploit this design freedom by varying the fin spacing according to the cooling requirements. Moreover, the fin spacing can be varied along a single sheet by different degrees of extension or compression along different portions, for example to provide different cooling capacity along the length of a cooling face to take account of hot spots. The folded sheet is thus extended or compressed by different amounts along different sections thereof so that the flat portions are separated by different amounts in the different sections.
Further areas of applicability of embodiments of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating exemplary embodiments of the invention, are intended for purposes of illustration only and fail to limit the scope of the invention.
Embodiments of present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:
The following description of exemplary embodiment(s) is merely illustrative in nature and is in no way intended to limit the invention, its application, or uses.
Although the discussion herein may not discuss all details associated with the cooling of laser systems, such details, as known by one of ordinary skill, are intended to be included within the scope of embodiments discussed herein.
Fluid cooling of a laser system (e.g. air, gas, water, and other fluids as can be used as determined by one of ordinary skill), can involved flowing the fluid over a fin array, where the fin array conducts heat from the laser. The heated fin array in turn heats the flowing fluid, which convects the heat away from the fin array. The heated portion of the fluid flow depends upon the area of the fin array, the thermal transfer efficiency between the fins and the cooling fluid, and the volume of the fluid passing over the fin array. Laminar fluid flow has a lower heat transfer coefficient than the same volume of turbulent fluid flow.
To create turbulent flow at least one exemplary embodiment can include fins with turbulence increasing features (e.g. ridges, creases, discontinuities, abrasions, protrusions, steps, bends in the fins, and other shapes and/or additions that one of ordinary skill would understand increases turbulent flow). The fin array, attached to a laser, conducts heat from the laser, which is carried away by a fluid flow. In at least one embodiment, the fin array includes fins, which can be of various shapes. In at least one exemplary embodiment the fins are made from folded heat conductive material (e.g. Aluminum, Cu, Fe, alloys including these metals, and other heat conductive material known to one of ordinary skill). Folded fins allow for far greater fin cooling area in the same volume than extruded or milled fin arrays can obtain.
To change the surface cooling area, the number of fins per unit distance in the direction perpendicular to the folds can be varied by extending or compressing the flexible folded sheet prior to attachment to the cooling face 320 of the laser module.
The fin array 300 can be attached to a portion of the laser 320 (e.g. by fasteners, thermal epoxy, welding, brazing, or other connection mechanisms as understood by one of ordinary skill). In the best mode, the fin array is bonded to the laser module with a thermally conductive epoxy resin, namely Cast-Coat Inc. #CC3-450.
A device (e.g. fan or pump) can move the fluid flow 350 parallel to the fins 305, where the features 360 interrupt a portion of the fluid flow increasing the turbulence of the fluid flow 355. The increased turbulent fluid flow 355 increases heat transfer efficiency between heated fins and the fluid flow. Various fin shapes are intended to lie within the scope of embodiments.
In at least one exemplary embodiment the fin array is flexible so that it can be compressed or expanded to shape the fin array to fit the portion of the laser attached to and provide the available surface area for convective cooling. The fin array may also in principle be bent if it is ever needed to fit the cooling fin array to a curved cooling face.
It will also be appreciated that although the foregoing embodiments show only one cooling face to which the fin array is attached, fin arrays may be attached to multiple cooling faces on the laser module.
The description of the invention is merely exemplary in nature and, thus, variations that do not depart from the gist of the invention are intended to be within the scope of the embodiments of the present invention. Such variations are not to be regarded as a departure from the spirit and scope of the present invention.
Number | Date | Country | |
---|---|---|---|
60535549 | Jan 2004 | US | |
60605157 | Aug 2004 | US | |
60622054 | Oct 2004 | US |