The present disclosure relates to methods of laser cutting and polishing optical fibers and to the resulting fibers, particularly to laser cutting the polishing methods that are well suited to producing both domed or rounded end face surfaces as well as perpendicular flat or angled flat end face surfaces, including off-axis rounded or domed surfaces.
For optical fibers provided with one or more polished end faces—and potentially also with connectors—at the factory, the mechanical cutting and polishing process is time and material-intensive. Sufficient performance and economies of scale are typically only achieved with bulk processing of many fibers simultaneously, adding to in-process inventory costs, and decreasing the opportunities for custom manufacturing. Accordingly, a generally applicable method for non-contact cutting and polishing of optical fiber is desirable. Some laser-based fiber cutting and polishing methods exist, but typically lack general applicability, being best suited to producing perpendicular flat or angled flat end face surfaces. It is desirable to have a non-contact cutting and polishing method well suited to producing domed or rounded end face surfaces as well as off-axis rounded or domed surfaces.
The present disclosure provides such a method. According to one aspect of the present disclosure, a method is provided of fabricating an optical fiber having a polished end face, the method including providing an optical fiber having an axis; positioning and maintaining the axis of the fiber, at a specific location along the fiber, at a fixed position; and forming a laser processed end face on the individual fiber at said specific location by irradiating the individual fiber at said location with one or more laser beams while moving the one or more laser beams in a rotational direction around the fiber. The method may be applied to a jacketed fiber and/or a fiber on a reel. Resulting fibers are also disclosed.
Variations of the methods and devices of the present disclosure are described in the text below and with reference to the figures, described in brief immediately below.
The following detailed description of specific embodiments of the present disclosure can be best understood when read in conjunction with the following drawings, where like structure is indicated with like reference numerals and in which:
According to one aspect of the present disclosure, and with particular reference to
According to one generally applicable variation of the methods of the present disclosure, the step of providing a fiber comprises providing a jacketed fiber or a fiber on a reel (reel not shown), and, where a jacketed fiber is used, the method further includes stripping the jacket 21 at least from said location L along the fiber 20.
The methods of the present disclosure may also include cutting the fiber 20 at said location L by irradiating the fiber 20 at said location L with said one or more laser beams 40.
Desirably, across all variations of the methods of the present disclosure, the fiber 20 is maintained in a vertical orientation curing laser cutting, if cutting is included, and during forming a laser processed end face 30, such that the end face is oriented downward during and immediately after formation. This aspect of the present methods helps prevent a common drawback of cutting a polishing an optical fiber with a laser or with any heat source: the tendency toward growth of the diameter of the fiber at the end face. This growth can result both from thermally induced expansion of the fiber at or near the end face and from a molten portion of the end face flowing laterally to create a lip or ledge on one or more sides of the fiber. For most applications, the outside diameter of the fiber at the end face or tip thereof is critical to the function and performance of the fiber.
By processing the fiber tip with the tip pointed downward, gravity applies a continuous axial force on the fiber, which minimizes the growth of the fiber in the radial direction due to flowing of the end face 30. Desirably, the laser beam 40 is also swept across the axis A of the fiber 20, rather than always directed on-axis, so that total heat transfer to the fiber may be minimized, reducing any diameter growth due to thermally induced expansion of the fiber.
With particular reference to
As shown in
As an alternative to the apparatus of
As shown in
The methods of the present disclosure are particularly suited for producing fibers with end faces as shown in the cross-sectional views of
An additional alternative embodiment of an apparatus useful in practicing certain methods according to the current disclosure is shown in the cross-sectional diagrams of
It is noted that terms like “desirably” “preferably,” “commonly,” and “typically,” when utilized herein, are not utilized to limit the scope of the claimed invention or to imply that certain features are critical, essential, or even important to the structure or function of the claimed invention. Rather, these terms are merely intended to identify particular aspects of an embodiment of the present disclosure or to emphasize alternative or additional features that may or may not be utilized in a particular embodiment of the present disclosure.
Having described the subject matter of the present disclosure in detail and by reference to specific embodiments thereof, it will be apparent that modifications and variations are possible without departing from the scope of the invention defined in the appended claims. More specifically, although some aspects of the present disclosure are identified herein as preferred or particularly advantageous, it is contemplated that the present disclosure is not necessarily limited to these aspects.
It is noted that one or more of the following claims utilize the term “wherein” as a transitional phrase. For the purposes of defining the present disclosure, it is noted that this term is introduced in the claims as an open-ended transitional phrase that is used to introduce a recitation of a series of characteristics of the structure and should be interpreted in like manner as the more commonly used open-ended preamble term “comprising.”
This application claims the benefit of priority under 35 USC §119 of U.S. Provisional Application No. 61/661,771 filed on Jun. 19, 2012 and U.S. Provisional Application No. 61/578,868 filed on Dec. 21, 2011 the content of which is relied upon and incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4147402 | Chown | Apr 1979 | A |
4345930 | Basola et al. | Aug 1982 | A |
4510005 | Nijman | Apr 1985 | A |
4626652 | Bjork et al. | Dec 1986 | A |
4678268 | Russo et al. | Jul 1987 | A |
4859827 | Coyle, Jr. et al. | Aug 1989 | A |
4932989 | Presby | Jun 1990 | A |
5011254 | Edwards et al. | Apr 1991 | A |
5101090 | Coyle, Jr. et al. | Mar 1992 | A |
5131745 | Whitney et al. | Jul 1992 | A |
5226101 | Szentesi et al. | Jul 1993 | A |
5256851 | Presby | Oct 1993 | A |
5291570 | Filgas et al. | Mar 1994 | A |
5317661 | Szentesi et al. | May 1994 | A |
5421928 | Knecht et al. | Jun 1995 | A |
5772720 | Taira-Griffin et al. | Jun 1998 | A |
5954974 | Broer et al. | Sep 1999 | A |
5966485 | Luther et al. | Oct 1999 | A |
6139196 | Feth et al. | Oct 2000 | A |
6246026 | Vergeest | Jun 2001 | B1 |
6282349 | Griffin | Aug 2001 | B1 |
6361219 | Blyler, Jr. et al. | Mar 2002 | B1 |
6413450 | Mays, Jr. | Jul 2002 | B1 |
6509547 | Bernstein et al. | Jan 2003 | B1 |
6534741 | Presby | Mar 2003 | B2 |
6653592 | Andersen | Nov 2003 | B2 |
6696667 | Flanagan | Feb 2004 | B1 |
6738544 | Culbert et al. | May 2004 | B2 |
6742936 | Knecht et al. | Jun 2004 | B1 |
6754416 | Boyer et al. | Jun 2004 | B1 |
6774341 | Ohta | Aug 2004 | B2 |
6805491 | Durrant et al. | Oct 2004 | B2 |
6817785 | Tian | Nov 2004 | B2 |
6822190 | Smithson et al. | Nov 2004 | B2 |
6825440 | Ohta et al. | Nov 2004 | B2 |
6886991 | Endo | May 2005 | B2 |
6888987 | Sercel et al. | May 2005 | B2 |
6902327 | Johnson | Jun 2005 | B1 |
6939055 | Durrant et al. | Sep 2005 | B2 |
6951994 | Mays, Jr. | Oct 2005 | B2 |
6955478 | Durrant et al. | Oct 2005 | B2 |
6957920 | Luther et al. | Oct 2005 | B2 |
6960627 | Huth et al. | Nov 2005 | B2 |
6963687 | Vergeest et al. | Nov 2005 | B2 |
6968103 | Schroll et al. | Nov 2005 | B1 |
7023001 | Cournoyer et al. | Apr 2006 | B2 |
7029187 | Chapman et al. | Apr 2006 | B2 |
7082250 | Jones et al. | Jul 2006 | B2 |
7142741 | Osborne | Nov 2006 | B2 |
7147384 | Hardcastle et al. | Dec 2006 | B2 |
7216512 | Danley et al. | May 2007 | B2 |
7264403 | Danley et al. | Sep 2007 | B1 |
7267491 | Luther et al. | Sep 2007 | B2 |
7306376 | Scerbak et al. | Dec 2007 | B2 |
7324723 | Shioda et al. | Jan 2008 | B2 |
7324724 | Levesque et al. | Jan 2008 | B2 |
7377700 | Manning et al. | May 2008 | B2 |
7419308 | Ma | Sep 2008 | B2 |
7509004 | Coleman | Mar 2009 | B2 |
7540668 | Brown | Jun 2009 | B2 |
7630609 | Mays, Jr. et al. | Dec 2009 | B1 |
7695201 | Douglas et al. | Apr 2010 | B2 |
7802927 | Benjamin et al. | Sep 2010 | B2 |
7947921 | McFall et al. | May 2011 | B2 |
8052836 | Cale et al. | Nov 2011 | B2 |
8101855 | Benitez et al. | Jan 2012 | B2 |
8101885 | Nakamae et al. | Jan 2012 | B2 |
8104974 | Gurreri | Jan 2012 | B1 |
8109679 | Danley et al. | Feb 2012 | B2 |
8132971 | Luther et al. | Mar 2012 | B2 |
20020175151 | Ohta et al. | Nov 2002 | A1 |
20020189297 | Meisser | Dec 2002 | A1 |
20030031450 | Maher et al. | Feb 2003 | A1 |
20040003612 | Ghodbane et al. | Jan 2004 | A1 |
20040234211 | Durrant et al. | Nov 2004 | A1 |
20050008307 | Culbert et al. | Jan 2005 | A1 |
20050232564 | Jones et al. | Oct 2005 | A1 |
20050284852 | Vergeest et al. | Dec 2005 | A1 |
20060137403 | Barr et al. | Jun 2006 | A1 |
20060147157 | Manning et al. | Jul 2006 | A1 |
20060266743 | Chi et al. | Nov 2006 | A1 |
20080067158 | Levesque | Mar 2008 | A1 |
20100101277 | Gonthier et al. | Apr 2010 | A1 |
20100215319 | Childers et al. | Aug 2010 | A1 |
20100303416 | Danley et al. | Dec 2010 | A1 |
20120014649 | Duis et al. | Jan 2012 | A1 |
20120027356 | Gurreri | Feb 2012 | A1 |
20120027358 | Webb et al. | Feb 2012 | A1 |
20130089294 | Zimmel | Apr 2013 | A1 |
20130319052 | Bansal et al. | Dec 2013 | A1 |
Number | Date | Country |
---|---|---|
0161394 | Aug 2001 | WO |
0161395 | Aug 2001 | WO |
0161870 | Aug 2001 | WO |
WO0161394 | Aug 2001 | WO |
WO0161395 | Aug 2001 | WO |
WO0161870 | Aug 2001 | WO |
2004003612 | Jan 2004 | WO |
2004003612 | Jan 2004 | WO |
2008103239 | Aug 2008 | WO |
2008103239 | Aug 2008 | WO |
Number | Date | Country | |
---|---|---|---|
61661771 | Jun 2012 | US | |
61578868 | Dec 2011 | US |