The present invention relates to a laser cutting method and machine, and an automatic programming apparatus.
When a processed part is cut from a plate-shaped workpiece by laser processing, the processed part may be caught in a plurality of pin supports on which the workpiece is placed or may rest on the workpiece to hinder movement of the laser processing head, or the processed part may go under the workpiece. In order to prevent the thing like this, the workpiece and the processed part are connected by a fine connection portion (joint portion) called a micro joint, and the processed part is prevented from being completely separated from the workpiece. In this case, if the processed part is removed from the workpiece, fine protrusions due to the micro joint may occur to the processed part, and a step of removing the fine protrusions is required. Therefore, it is proposed to connect a workplace to a processed part without using a micro joint (refer to Patent Literature 1 or 2 described below).
Note that “micro joint” is generally joint processing to tie a processed part to a workpiece so that the processed part does not fall from the workpiece during laser processing, and is also called “wire joint”. In micro joint processing, a processed part is tied to a workpiece by cutting the outline of the processed part while leaving a micro joint having a width of several micrometers to several hundreds micrometers.
Patent Literature 1: Japanese Patent Application Laid-Open Publication No. H05-245671
Patent Literature 2: Japanese Patent Application Laid-Open No. H06-238475
The above described Patent Literature 1 discloses a laser processing method that deters separation of a cut piece from a workpiece by supplying an adhesive onto a cut line (slit) of laser processing when cutting the cut piece (processed part) from the plate-shaped workpiece by laser processing. Accordingly, it is necessary to remove the adhesive when separating the cut piece from the workplace.
The above described Patent Literature 2 discloses a laser processing method that deters separation of a product from a workplace by further melting an edge of a cut slit that is cut, by laser and causing the melted residue to adhere to the workpiece when cutting the product from the workpiece by laser processing. Depending on the laser processing condition, the product may be melted by the melted residue, and the melted residue may firmly adhere to the product. In this case, it is necessary to remove the melted residue adhering to the product.
Further, a focused beam diameter of fiber laser with a wavelength in a 1 μm band is smaller as compared with a focused beam diameter of carbon dioxide gas laser with a wavelength in a 10 μm band, and therefore a cut slit by fiber laser is narrow. In cutting by carbon dioxide gas laser, the cut slit is wide, and therefore a cut piece slips among a plurality of pin supports and falls without being caught. However, since in cutting by fiber laser, the cut slit is narrow, there is a high possibility that the cut piece is caught in the workpiece, and there is a concern that movement of a laser processing head is hindered.
A first feature of the present invention provides a laser cutting method for cutting a processed part from a plate-shaped workpiece, including: (a) laser-cutting, in advance, a cut slit of a welding protruding-tab configured to be bent by laser cutting along an outline of the processed part and press a peripheral surface of the processed part in a periphery of the processed part that is cut from the workpiece; and (b) forming an outline slit by performing laser-cutting along the outline of the processed part and welding a free end of the welding protruding-tab to the peripheral surface of the processed part.
A second feature of the present invention provides a laser cutting machine cutting a processed part from a plate-shaped workpiece, and including: a laser processing head relatively movable in X-, Y- and Z-directions with respect to the workpiece; and a control device configured to control an operation of the laser processing head, wherein the control device comprises: a processing program memory configured to store a processing program for laser-cutting the processed part; a program analyzer configured to analyze the processing program and calculate a shape and dimensions of the processed part; a weight arithmetic section configured to calculate a weight of the processed part based on the shape and dimensions of the processed part that are analyzed, and a thickness of the workpiece; a number arithmetic section configured to calculate a number of welding protruding-tabs each of which bends and causes a free end of the welding protruding-tab to be welded to a peripheral surface of the processed part when an outline slit is formed by laser cutting along an outline of the processed part, based on an arithmetic calculation result of the weight arithmetic section; a welding protruding-tab arranger configured to arrange the welding protruding-tab in a periphery of the processed part, based on an arithmetic calculation result of the number arithmetic section; a processing program generator configured to generate a laser cutting program for forming the welding protruding-tab in a position arranged by the welding protruding-tab arranger; the processing program memory configured to store the laser cutting program generated by the processing program generator; and an axial motion controller configured to control axial motion of the laser processing head in accordance with the laser cutting program stored in the processing program memory.
A third feature of the present invention provides an automatic programming apparatus of a laser cutting machine, including: a weight arithmetic section configured to calculate a weight of a processed part based on a shape and dimensions of the processed part and a thickness t of a workpiece that are input from CAD; a number arithmetic section configured to calculate a number of welding protruding-tabs each of which bends and causes a free end of the welding protruding-tab to be welded to a peripheral surface of the processed part when an outline slit is formed by laser cutting along an outline of the processed part, based on an arithmetic calculation result of the weight arithmetic section; welding protruding-tab arranger configured to arrange the welding protruding-tab in a periphery of the processed part, based on an arithmetic calculation result of the number arithmetic section; a processing program generator configured to generate a laser cutting program for forming the welding protruding-tab in a position arranged by the welding protruding-tab arranger, and laser-cutting the processed part; a processing program memory configured to store the laser cutting program generated by the processing program generator; and a program transferrer configured to transfer the laser cutting program stored in the processing program memory to a control device of the laser cutting machine.
According to the above described features, it is possible to retain the processed part by the welding protruding-tab reliably and stable for a long period, and is possible to easily separate the processed part from the workpiece with almost no trace left on the processed part, by welding the free end of the welding protruding-tab and the peripheral surface of the processed part.
A laser cutting method according to an embodiment will be described with reference to
The cut slit 7 is formed into an L-shape by a length slit 7L and a width slit 7W. The length slit 7L includes a base-end hole 7Ls that will be described in detail later as a cutting start end of the length slit 7L. The length slit 7L is formed parallel with the outline 9L. The width slit 7W is formed perpendicularly to the length slit 7L. In other words, the cut slit 7 is formed by laser-cutting the length slit 7L in a direction of an arrow A in
In
A relationship between the outline slit 9 and the tip end of the width slit 7W at a time of formation of the outline slit 9 is illustrated in
Accordingly, the escape distance R does not become larger than the slit width SW [R≤SW].
The base-end hole 7Ls that is the cutting start end of the cut slit 7 (length slit 7L) will be described. The base-end hole 7Ls is a through-hole. Further, when a radius of the base-end hole 7Ls is made larger than a radius of a pierced hole (mere through hole by piercing), it is possible promote deflection (bend) of the welding protruding-tab 11 that is formed to an outline slit 9 side. That is to say, it is possible to promote bend of the welding protruding-tab 11 and form a int portion X with welding reliably by bringing a bend fulcrum P (point closest to the outline slit 9 or the outline 9L on an inner peripheral edge of the base-end hole 7Ls: refer to
As described above, in the present embodiment, the free end of the welding protruding-tab 11 is welded to the peripheral surface of the processed part 3, and the processed part 3 after cutting is tied to the scrap 5. However, even if the free end of the welding protruding-tab 11 and the peripheral surface of the processed part 3 are not welded, it is also possible to tie (retain) the processed part 3 to the scrap 5 by a press force following bend of the welding protruding-tab 11. However, the present inventors have found that it is possible to retain the processed part 3 more reliably and stably for a longer period by welding the free end of the welding protruding-tab 11 to the peripheral surface of the processed part 3. The inventors have found that there is a noticeable difference between retention by a mere processing force and retention by welding. Further, the inventors have also found that the retention force by welding of the free end of the welding protruding-tab 11 and the peripheral surface of the processed part 3 is influenced by the aforementioned escape distance R.
The relationships between the dimensions (the lengths L and the widths W (mm)) of the welding protruding-tabs 11 and the retention forces (N) were actually measured by using the workpieces 1 made by a mild-steel-based material, a stainless-steel-based material, and an aluminum-based material. First, the relationship was measured by using a cold rolled steel sheet as the mild-steel-based material. Hereinafter, tables and graphs are shown by generically referring to the mild-steel-based material using an abbreviation of SPCC, using an abbreviation of SUS for the stainless-steel-based material, and using an abbreviation of AL for the aluminum-based material. Cutting was performed by using fiber laser. Further, in measurement here, the escape distance R=0.15 mm (=a half of the slit width SW of the outline slit 9=0.30 mm). Change in the retention force following a change in the escape distance R will be described in detail later. Further, in the measurement here, the diameter of the base-end hole 7Ls of the length slit 7L was set as the same as the width of the length slit 7L. That is to say, the base-end hole 7Ls is the mere cutting start end (the aforementioned pierced hole) of the length slit 7L. Note that it is obvious to a person skilled in the art that the slit width SW changes according to the thickness t. For example, when the thickness t increases, the slit width SW increases (the slit width SW is increased). Accordingly, as the thickness t increases, the escape distance R also increases.
Table 1 below shows the relationship between the dimensions (the length L and the width W (mm)) of the welding protruding-tab 11 and the retention force (N) in SPCC with the thickness t=1.0 mm. The retention force shown in Table 1 is based on actual measurement. A size of the processed part 3 used in measurement is a square with a side of 65 mm, and the one welding protruding-tab 11 is formed on each side. The free end (joint portion X) of the welding protruding-tab 11 is located in a center of each of the sides. The retention force in the table is the retention force per one welding protruding-tab 11. Note that measurement with the thicknesses 0.5 mm and 0.8 mm was tried, but it was not possible to form the joint portion X with welding. Accordingly, it has been found that concerning SPCC, a lower limit value of the thickness t is 1.0 mm.
A case where the retention force in the table is 0.0 shows that it was not possible to retain the processed part 3 by the formed welding protruding-tab 11 and the processed part 3 fell. A case where the retention force has a positive value shows that the formed welding protruding-tab 11 was able to retain the processed part 3. Of the cases where the processed part 3 was able to be retained, boxes each showing a case where the free end of the welding protruding-tab 11 and the peripheral surface of the processed part 3 are not welded and the processed part 3 is retained by only the press force following bend of the welding protruding-tab 11 are shown by thick dotted lines. Boxes each showing a case where the free end of the welding protruding-tab 11 and the peripheral surface of the processed part 3 are welded and the processed part 3 is retained are shown by thick solid lines.
Likewise, a case of SPCC with the thickness t=3.2 mm is shown in Table 2 below, and a case of SPCC with the thickness t=9.0 mm is shown in Table 3 below.
A graph of Table 1 is illustrated in
As known from Table 1 to Table 3 and
Further, as the thickness t becomes larger, the range where the joint portion X with welding is formed becomes wider, and the range gradually tends to shift to increase in the length L and the width W (the plan dimensions of the welding protruding-tab 11 increasing). Further, when the joint portion X with welding is formed, the retention force tends to be larger as the thickness t becomes larger concerning the welding protruding-tabs 11 of the same plane dimensions (the length L and the width W). This is considered to be because a welding area of the joint portion X increases as the thickness t becomes larger (though a weight of the processed part 3 also increases as the thickness t becomes larger, an effect of the retention force increasing is more significant, and the processed part 3 can be retained without being caused to fall.)
Based on the measurement results, a preferable range to form the joint portion X with welding was obtained from the relationship with the thickness t with respect to each of the length L and the width W of the welding protruding-tab 11. Note that measurement of the retention force is also performed concerning thicknesses (t=2.3, 4.5 mm) other than the thicknesses shown in the tables and the graphs, and measurement results of the retention forces concerning these thicknesses are also used. First, with reference to
In a measurement result of SPDC with the thickness t=1.0 mm, a range of the length L in which the joint portion X with welding is stably formed is a range of 12.5 to 22.5 mm, and a similar range of the width W is a range of 1.00 to 1.50 mm (refer to italicized numerical values in Table 1). In this way, concerning the thickness t=1.0 mm, an upper limit value and a lower limit value of the length L are obtained. Likewise, with respect to other thicknesses t, upper limit values and lower limit values of the length L are obtained (refer to italicized numerical values in the tables concerning the thicknesses t shown in Table 2 and Table 3). These upper limit values and lower limit values are plotted on a graph in which a horizontal axis represents the thickness t (mm) and a vertical axis represents the length L (mm), and an approximate straight line is obtained by a known method with respect to each of the upper limit value and the lower limit value.
As a result, concerning SPCC, an approximate straight line of a lower limit of the length L is obtained as a function of: the thickness t as in expression (1) below.
L=0.5294t+12.8825 (1)
Likewise, an approximate straight line of an upper limit of the length L is obtained as a function of the thickness t as in expression (2) below.
L=0.6948t+21.2208 (2)
That is to say, concerning SPCC, a preferable range of the length L of the welding protruding-tab 11 for the thickness t is obtained as expression (3) below from expression (1) and expression (2) described above.
(0.5294t+12.8825)≤L≤(0.6948t+21.2208)[t≥1.0] (3)
Next, with reference to
As a result, concerning SPCC, an approximate straight line of a lower limit of the width W is obtained as a function the thickness t as expression (4) below.
W=0.0973t+0.8609 (4)
Likewise, an approximate straight line of an upper limit of the width W is obtained as a function of the thickness t as expression (5) below.
W=0.1833t+1.3168 (5)
That is to say, concerning SPCC, the preferable range of the width W of the welding protruding-tab 11 to the thickness t is obtained as expression (6) below from expressions (4) and (5) described above.
0.0973t+0.8609)≤W≤(0.1833t+3168)[t≥1.0] (6)
It is possible to form the int portion X with welding stably by forming the welding protruding-tab 11 having the thickness t, the length L and the width W that establish both expression (3) and expression (6) described above, with respect to SPCC. Note that the thickness t is also a thickness of the workpiece 1.
Next, the stainless-steel-based material (SUS) will be described. Table 4 below shows a relationship between dimensions (a length L and a width W (mm)) of the welding protruding-tab 11 and a retention force (N) in SUS with a thickness t=1.0 mm. Likewise, a case of SUS with the thickness t=4.0 mm is shown in Table 5 below, and a case of SUS with the thickness t=10.0 mm is shown in Table 6 below. Note that it was not possible to form the joint portion X with welding, with the thicknesses t=0.5 mm or 0.8 mm. Accordingly, it has been found that a lower limit value of the thickness is also 1.0 mm concerning SUS.
Further, a graph of Table 6 is illustrated in
Approximate straight lines for the length L are illustrated in
L=0.8718t+11.2949 (7)
Likewise, an approximate straight line of an upper limit of the length L is obtained as a function of the thickness t as expression (8) below.
L=1.5769t+16.4231 (8)
That is to say, concerning SUS, a preferable range of the length L of the welding protruding-tab 11 to the thickness t is obtained as expression (9) below from expression (7) and expression (8) described above.
(0.8718t+11.2949)≤L≤(1.5769t+16.4231)[t≥1.0] (9)
Likewise, approximate straight lines with respect to the width W are illustrated in
W=0.1167t+0.8167 (10)
Likewise, an approximate straight line of an upper limit of the width W is obtained as a function of the thickness t as expression (11) below.
W=0.1923t+1.3077 (11)
That is say, concerning SUS, a preferable range of the width W of the welding protruding-tab 11 to the thickness t is obtained as expression (12) below from expression (10) and expression (11) described above.
(0.1167t+0.8167)≤W≤(0.1923t+1.3077)[t≥1.0] (12)
It is possible to form the joint portion X with welding stably by forming the welding protruding-tab 11 having the thickness the length L and the width W that establish both expression (9) and expression (12) described above, with respect to SUS. Note that the thickness t is also the thickness of the workpiece 1.
Next, the aluminum-based material (AL) will be described. Table 7 below shows a relationship between dimensions (a length L and a width W (mm)) of the welding protruding-tab 11 and a retention force (N) in AL with a thickness t=1.0 mm. Likewise, a case of SUS with the thickness t=4.0 mm is shown in Table 8 below, and a case of SUS with the thickness t=10.0 mm is s in Table 9 below. Note that it was not possible to form the joint portion X with welding, with the thicknesses t=0.5 mm or 0.8 mm. Accordingly, it has been found that a lower limit value of the thickness t is also 1.0 mm concerning AL.
Further, a graph of Table 9 is illustrated in
Approximate straight lines for the length L are illustrated in
L=1.4615t+7.5385 (13)
Likewise, an approximate straight line of an upper limit of the length L is obtained as a function of the thickness t as expression (14) below.
L=1.7436+12.5897 (14)
That is to say, concerning AL, a preferable range of length L of the welding protruding-tab 11 to the thickness t is obtained as expression (15) below from expression (13) and expression (14) described above.
(1.4615t+7.5385)≤L≤(1.7436t+12.5897)[t≥1.0] (15)
Likewise, approximate straight lines with respect to the width are illustrated in
W=0.2910t+0.8256 (16)
Likewise, an approximate straight line of an upper limit of the width W is obtained as a function of the thickness t as expression (17) below.
W=0.3064t+1.2603 (17)
That is to say, concerning AL, a preferable range of the width W of the welding protruding-tab 11 to the thickness t is obtained as expression (18) below from expression (16) and expression (17) described above.
(0.2910t+0.8256)≤W≤(0.3064t+1.2603)[t≥1.0] (18)
It is possible to form the joint portion X with welding stably by forming the welding protruding-tab 11 having the thickness t, the length L and the width W that establish both expression (15) and expression (18) described above, with respect to AL. Note that the thickness t is also the thickness of the workpiece 1.
Next, the aforementioned “escape distance R” will be described in detail. Table 10 below shows a result of measuring a relationship between the escape distance R (mm) and the retention force (N) in SPCC. The retention force shown in Table 10 is based on actual measurement. A size of the processed part 3 used in measurement is a square with a side of 65 mm, and the one welding protruding-tab 11 is formed on each side. The free end (joint portion X) of the welding protruding-tab 11 is located in a center of each side. The retention force in the table is the retention force per one welding protruding-tab 11. The dimensions (the length L and the width W (mm)) of the welding protruding-tab 11 used in measurement here were determined based on the results (refer to Tables 1 to 3: the escape distance R is a half of the slit width SW) used to obtain expression (3) and expression (6) described above.
Specifically, the relationship between the escape distance R and the retention force was measured by using the dimensions (the length L and the width W) of the welding protruding-tab 11 recording a maximum retention force (welding peak value) for each thickness t. That is to say, in the case of the thickness t=1.0 mm, the welding protruding-tab 11 with the length L=17.5 mm and the width W=1.25 mm was used for the measurement (refer to Table 1). Likewise, in a case of the thickness t 2.3 mm, the welding protruding-tab 11 with the length L=17.5 mm and the width W=1.25 mm was used. In the case of the thickness t=3.2 mm, the welding protruding-tab 11 with the length L=17.5 mm and the width W=1.75 mm was used (refer to Table 2). In a case of the thickness t=4.5 mm, the welding protruding-tab 11 with the length L=17.5 mm and the width W=1.50 mm was used. In the case of the thickness t=9.0 mm, the welding protruding-tab tab 11 with the length L=22.5 mm and the width W=2.25 mm was used (refer to Table 3).
The case where the retention force in the table is 0.0 shows that the processed part 3 fell. Boxes each showing the case re the joint portion X with welding was formed are shown by thick dotted lines. Among them, the boxes showing cases where the retention forces have maximum values in the respective thicknesses t are shown by thick solid lines.
Further, a graph of Table 10 is illustrated in
Furthermore, based on the measurement result in Table 10, a preferable range of the escape distance R was obtained from a relationship with the thickness t. Referring to
R=0.0261t+0.1654 (19)
Next, a lower limit of the escape distance R with which the joint portion X with welding is formed is obtained. A lower limit value (welding lower limit value) with which the joint portion X with welding is formed is the escape distance R=0.000 mm at any thickness t as shown in Table 10, and therefore, expression (20) below is obtained as a constant function.
R=0 (20)
However, it is concerned that if the escape distance R is small, sufficient welding is not realized, as described later with reference to
R>0 (20)′
That is to say, concerning SPCC, a preferable range of the escape distance R to the thickness t is obtained as expression (21) below from expression (19) and expression (20)′ described above.
0<R≤(0.0261t+0.1654)[t≥1.0] (21)
Further,
R=0.0170t+0.1020 (22)
Here, it is conceivable that the retention force becomes small when the escape distance R is large because an α portion in
On the other hand, the reason why the retention force is small when the escape distance P. is small is considered to be that (a portion at an outline slit 9 side, of) the free end of the welding protruding-tab 11 is not sufficiently melted because laser cutting is not performed and heat is not generated when the laser beam crosses the tail end of the width slit 7W at the time of formation of the outline slit 9, as illustrated in
Here, a reason why the retention force reaches a peak when the escape distance R has a substantially half a value of the slit width SW is considered to be that heat generation is also maintained by a β portion when the laser beam crosses the tail end of the width slit 7W and a melted portion is reliably formed, as illustrated in
Further, in the graph in
Table 10 shows the relationship between the escape distance R and the retention force in SPCC. A relationship between an escape distance R (mm) and a retention force (N) was also measured similarly concerning SUS. Table 11 below shows a result of measuring the relationship between the escape distance R and the retention force in SUS. Further,
0<R≤(0.249t+0.2068)[t≥1.0] (23)
Further,
R=0.0250t+0.1000 (24)
A relationship between an escape distance R (mm) and a retention force (N) was also measured similarly concerning AL. Table 12 below shows a result of measuring the relationship between the escape distance and the retention force in AL. Further,
0<R≤(0.0221t+0.2063)[t≥1.0] (25)
Further,
R=0.0046t+0.1054 (26)
Here, one of advantages of the joint portion X with welding, over micro joints will be described with reference to
That is to say, it is possible to control the retention force more easily by using the joint portion X with welding of the welding protruding-tab 11 in the present embodiment than the micro joint. Further, as is understood from Table 1 to Table 9 described above, with the joint portion X with welding in the present embodiment, it is possible to control the retention force by changing not only the length L of the welding protruding-tab 11 but also the width W by several millimeters. Furthermore, it is also possible to control the retention force by changing the escape distance R.
It is certainly also possible to control the retention force by combining these parameters. That is to say, the number of control parameters is large, and from this point of view, control of the retention force is easily performed.
Next, a laser cutting machine 21 according to the embodiment will be described. A configuration of the laser cutting machine 11 will be described hereinafter. The laser cutting machine 21 includes a support frame 23 configured to support the workpiece 1 as illustrated in
The laser processing head 29 is provided relatively movably in the X-, Y- and Z-directions with respect to the workpiece 1. Relative positioning in the X-, Y-and Z-directions of the laser processing head 29 is controlled by driving an X-axis servo motor, a Y-axis servo motor and a Z-axis servo motor (not illustrated). In order laser-cut the workpiece 1 by the laser processing head 29, a fiber laser oscillator 31 as one example of a laser oscillator is provided. The fiber laser oscillator 31 and the laser processing head 29 are connected by an optical fiber 33.
The aforementioned laser cutting machine 21 is controlled by a control device 35 (refer to
The control device 35 includes a processing program memory 43 configured to store the processing program. Further, the control device 35 also includes a program analyzer 45. The program analyzer 45 reads the processing program stored in the processing program memory 43 ahead and analyzes the processing pro gram, and calculates an arrangement position on the workpiece 1, a shape and dimensions of the processed part 3. Further, the control device 35 also includes an arithmetic section 47 configured to perform various arithmetic calculations. The arithmetic section 47 includes a weight arithmetic section 47A configured to calculate a weight of the processed part 3 by referring to the shape and dimensions of the processed part 3 that are obtained by analyzing the processing program, and a material and thickness of the workpiece 1 and the like, and calculate a gravity-center position and/or a center position of the processed part 3. Further, the arithmetic section 47 also includes a retention force arithmetic section 476 configured to calculate a press force of the welding protruding-tab 11 arranged in a periphery of the processed part 3.
The retention force arithmetic section 476 calculates the retention force=f (the thickness t, the length L, the width W, and other laser cutting conditions) [f (a, b, c, d) shows functions of variables a to d] by referring to the thickness t of the workpiece 1, the length L and the width W of the welding protruding-tab 11, and the other laser cutting conditions. The other laser cutting conditions include laser output power, a processing velocity, a focus position, a pulse output power duty ratio, assist gas pressure, a head nozzle diameter and the like besides the aforementioned escape distance R. Accordingly, it is difficult to uniquely determine the laser cutting condition. Therefore, in order to uniquely determine the laser cutting condition, the control device 35 also includes a cutting condition parameter memory 57.
Various parameters are stored in the cutting condition parameter memory 57. In other words, residual stresses at the time of performing laser-cutting by changing the laser output power, processing velocity, focus position, pulse output duty ratio, assist gas pressure, head nozzle diameter and the like for each of the materials and the thicknesses t of the workpieces 1 are measured in advance, and the various processing conditions are stored in the cutting condition parameter memory 57 as parameters. Accordingly, appropriate parameters can be selected from the cutting condition parameter memory 57 correspondingly to the laser processing conditions.
Further, the control device 35 also includes a joint condition parameter memory 59 and the aforementioned escape distance R is stored in the joint condition parameter memory 59 by being associated with the thickness t. For example, when the material of the workpiece 1 is a mild-steel-based material (SPOC), the escape distance P is selected from a database of (the thickness t, the escape distance R) that satisfies expression (21) described above. Note that at this time, it is possible to set the retention force to be effectively large if expression (22) is satisfied, and therefore expression (22) may be taken into consideration at the time of selection. Alternatively, the joint condition parameter memory 59 may store expression (21) [namely, the graph=map in
Furthermore, the arithmetic section 47 also includes a number an section 47C configured to calculate the number of welding protruding-tabs 11 to be provided based on an arithmetic calculation result of the weight arithmetic section 47A and an arithmetic calculation result of the retention force arithmetic section 475. When the arithmetic calculation result includes a part after a decimal point, the number arithmetic section 47C rounds up the arithmetic calculation result to an integer.
Furthermore, the control device 35 also includes a welding protruding-tab arranger 49. The welding protruding-tab arranger 49 arranges the welding protruding-tab 11 in the periphery of the processed part 3 based on analysis data of the arrangement position, shape, dimensions and the like of the processed part 3 that are analyzed by the program analyzer 45 and stored in an analysis data memory 45A, and the arithmetic calculation result of the number arithmetic section 47C.
For example, when the single welding protruding-tab 11 is provided, the welding protruding-tab arranger 49 arranges the welding protruding-tab 11 at a position where a distance from a barycentric position or a center position of the processed part 3 to the outline 9L becomes minimum so that the press force of the welding protruding-tab 11 faces the barycenter or center. When the two or more welding protruding-tabs 11 are provided, the welding protruding-tabs 11 are arranged in the periphery of the processed part 3 equidistantly along a circumferential direction.
After arithmetic calculation of the number of welding protruding-tabs 11 by the number arithmetic section 47C, the processed part 3 may be displayed on a display screen 39A of the display device 39, and the welding protruding-tabs 11 may be arranged in the periphery of the processed part 3 by operating an input device such as a mouse. In this case, it is also possible to increase the number of welding protruding-tabs 11 to a larger number than the number calculated by the number arithmetic section 47C. Further, in this case, the display device 39, the mouse and the like also function as the welding protruding-tab arranger 49.
The shape and the dimensions (the length L and the width W of the rectangle) of the welding protruding-tab 11 are empirically obtained in advance as parameters correspondingly to the material (SPCC, SUS, AL or the like) and the thickness t of the workpiece 1. and the shape and dimensions of the processed part 3. Further, parameters for determining the shape and the dimensions of the welding protruding-tab 11 are stored in a workpiece parameter memory 51. Accordingly, the appropriate shape and dimensions of the welding protruding-tab 11 are selected from the workpiece parameter memory 51 correspondingly to the material and the thickness t of the workpiece 1.
The parameters stored in the workplace parameter memory 51 are selected from the database of (the thickness t, the length L, the width W) that satisfy both expression (3) and expression (6) described above when the material of the workpiece 1 is a mild-steel-based material (SPCC). Alternatively, expression (3) and expression (6) [namely, the graphs=maps in
When the shape and dimensions of the welding protruding-tab 11 are selected, the processing program (=laser cutting program) for laser-cutting the welding protruding-tab 11 is generated correspondingly to the selected shape and dimensions of the welding protruding-tab 11. In other words, the control device 35 includes a laser cutting program memory 53 in which various laser cutting programs (=processing programs) corresponding to the various shapes and dimensions of the welding protruding-tabs 11 are stored in advance. When the shape and dimensions of the welding protruding-tab 11 are determined by the parameters, a processing program generator 55 selects an appropriate laser cutting program from the laser cutting program memory 53 correspondingly to the determined parameters and stores the laser cutting program in the processing program memory 43.
Further, the control device 35 includes an axial motion controller 61. The axial motion controller 61 controls axial motions in the X-, Y- and Z-directions of the laser processing head 29 in accordance with the processing program stored in the processing program memory 43.
For example, when the processed part 3 is cut from the workpiece 1, analysis of a processing program is performed by the program analyzer 45 when the processing program generated by the automatic programming device 41 is stored in the processing program memory 43. The material and thickness of the workpiece 1, and the shape and dimensions of the processed part 3 are stored in the analysis data memory 45A as the analysis data.
When the processing program is analyzed, the weight arithmetic section 47A calculates the weight of the processed part 3 based on the analysis data (the material and thickness t of the workpiece 1, and the shape and dimensions of the processed part 3). Further, based on the analysis data, an appropriate shape and dimensions of the welding protruding-tab 11 are selected from the workpiece parameter memory 51 (as described above, expression (3) and expression (6) described above, and the like are used). Note that the analysis data may further include data for considering a force with which the processed part 3 is pressed by assist gas pressure at a time of processing when the weight arithmetic section 47A calculates the weight of the processed part 3 in relation to the retention force of the welding protruding-tab 11.
When the appropriate shape and dimensions of the welding protruding-tab 11 are selected from the workpiece parameter memory 51, the appropriate laser cutting conditions for laser-cutting the welding protruding-tab 11 are selected from the cutting condition parameter memory 57 and the joint condition parameter memory 59 (as described above, expression (21) described above and the like are used). Based on the laser cutting conditions and the shape and the dimensions of the welding protruding-tab 11 that are selected, the processing program generator 55 generates the laser cutting program (=processing program) of the welding protruding-tab 11, and stores the laser cutting program in the processing program memory 43. Further, the retention force arithmetic section 47B calculates the retention force of the welding protruding-tab 11 based on the laser cutting conditions and the length L and the width W of the welding protruding-tab 11 that are selected.
Based on the arithmetic calculation result of the weight arithmetic section 47A and the arithmetic calculation result of the retention force arithmetic section 47B, the number arithmetic section 47C calculates a required number of welding protruding-tabs 11 that retain the processed part 3 to prevent falling of the processed part 3 from the workpiece 1. Note that the number of welding protruding-tabs 11 in a standard shape that is required with respect to the weight of an object to be retained may be determined in advance through an experiment, and the required number of welding protruding-tabs 11 may be calculated based on the weight of the object to be retained, without using the retention force arithmetic section 47B.
When the number of welding protruding-tabs 11 is calculated by the number arithmetic section 47C, the welding protruding-tabs 11 are arranged in the periphery of the processed part 3 by the welding protruding-tab arranger 49. Note that the number arithmetic section 47C calculates a minimum required number. Accordingly, it is also possible to arrange the welding protruding-tab 11 additionally by the input device such as a mouse, in the periphery of the processed part 3 displayed on the display screen 39A of the display device 39, for example.
When the arrangement position of the welding protruding-tab 11 is set, the cut slit 7 is laser-cut correspondingly to the arrangement position of the welding protruding-tab 11. After laser-cutting of the cut slit 7, the outline 9L of the processed part 3 is laser-cut in accordance with the processing program stored in the processing program memory 43, and the outline slit 9 is formed. At this time, the free ends of the welding protruding-tabs 11 are welded to the peripheral surface of the processed part 3, and the processed part 3 is retained so as not to fall from the workpiece 1 by the plurality of welding protruding-tabs 11 arranged in the periphery of the processed part 3.
In the above described explanation, the processing program generated by the automatic programming device 41 is stored in the processing program memory 43 of the control device 35, and the program analyzer 45 of the control device 35 analyzes the processing program stored in the processing program memory 43. However, the automatic programming device 41 itself that generates the laser cutting program (=processing program) may analyze the laser cutting program, and the analyzed laser cutting program may be transferred to the control device 35 by a program transferrer 65 (see
A configuration of the automatic programming device 41 in this case will be described with reference to
As illustrated in
When arrangement positions of the welding protruding-tabs 11 are set in the periphery of the processed part 3, a processing program generator 55 generates a laser cutting program (=processing program) for laser-cutting of the welding protruding-tab 11 and the processed part 3. The processing program generator 55 stores the laser cutting program generated by the processing program generator 55 itself in a processing program memory 43. The program transferrer 65 transfers the laser cutting program stored in the processing program memory 43 to the control device 35.
Note that in the laser cutting machine 21 (refer to
In the aforementioned example, the length L and the width W of the welding protruding-tab 11 and the escape distance R are determined (selected) at the time of generation of the processing program (by the control device 35 of the laser cutting machine 21 or the automatic programming device 41). However, these parameters in the program may be corrected (adjusted) by (the control device 35 of) the laser cutting machine 21 based on input by the operator, when laser-cutting is performed. For example, these parameters may be corrected (adjusted) by the operator inputting a desired retention force to the laser cutting machine 21 (control device 35) using the input device 37. Since it is difficult to know the retention force from the aforementioned parameters (the thickness t, the length L, the width W, the escape distance R), the retention force that is direct and easy to know input to the control device 35, and the parameters are corrected (adjusted) based on the retention force.
A flowchart of one example of the case like this is illustrated in
The control device 35 identifies the laser cutting conditions (=laser processing conditions) that are read out (step S30). The processing conditions also include the aforementioned calculated arrangement position of the welding protruding-tab 11. Next, the control device 35 determines whether or not the processing conditions that are read out are the same as the processing conditions (joint conditions) based on the retention force input (adjusted) at the previous processing time (step S40). In other words, step S40 is determined based on input of a desired retention force. Note that at the same time as input of the desired retention force, the aforementioned other laser cutting conditions (the escape distance R, laser output power, processing velocity, focus position, pulse output duty ratio, assist gas pressure, head nozzle diameter and the like) may be also enabled to be input (corrected).
When the retention force that is input this time is equal to the retention force that is adjusted at the previous processing time, step S40 is affirmed. On the other hand, when the retention force that is input time differs from the retention force that is adjusted at the previous processing time, step S40 is denied. When step S40 is denied, it is determined whether or not to adjust the retention force (step S50). Note that when a desired retention force is not input and the retention force of the program is directly used, both step S40 and step S50 are denied, and the retention force of the program is directly used. When step S40 is affirmed, it is determined whether the retention force that is adjusted at the previous processing time is directly used (step S80). When step S80 is denied, and it is determined that the retention force that is adjusted at the previous processing time is not used, it is also determined whether or not to newly adjust the retention force this time (step S50).
When step S50 is affirmed, the retention force is calculated based on the input desired retention force, the length L, the width W and the escape distance R are corrected, and the adjusted processing conditions are determined. Subsequently, it is determined whether or not to store the processing conditions of this time after the adjustment (step S60). When step S60 is affirmed, the processing conditions (joint conditions) of this time after the adjustment are stored in the memory (step S70). The stored joint conditions are referred to in step S40 at a next processing time. After the processing conditions after the adjustment are stored in the memory, the program is changed under the processing conditions so as to perform laser cutting of this time under the processing conditions (step S90). Note that when step S50 is denied, the processing conditions of the previous time are used, and therefore the program is changed under the processing conditions of the previous time (step S90). When step S60 is denied, the program is changed under the processing conditions of this time without storing the processing conditions of this time in the memory (step S90).
Thereafter, after step S90, laser processing is started (step S100). When passing through step S70, laser processing is started with the retention force adjusted this time. When passing through affirmation of step S80, laser processing is started with the same retention force as the retention force that is adjusted at the previous time. In this case, calculating the retention force (steps S50 to S70) again can be omitted. Further, when passing through denial of step S50, laser processing is started with the retention force of the program.
After step S100, it is determined whether or not the retention force is appropriate during processing (step S110). Specifically, here, whether the processed part 3 deviates from or comes off the workpiece 1 (or whether the scrap 5 illustrated
When step S110 is denied, the laser cutting machine 21 is stopped, the processes from step S50 are performed again, and the retention force is calculated again. Note that step S120 may be automatically stopped, or may be stopped based on a stop operation (refer to the input device 37) of the laser cutting machine 21 by the operator after notification (refer to the display device 39) to the operator. When step S110 is affirmed, the workpiece 1 is laser-cut without a problem, and therefore processing is continued (step S130). When all processes of the program are finished, the processing is finished.
According to the present embodiment, it is possible to retain the processed part 3 (or the scrap 5 of the hole that is formed inside of the processed part 3) by welding to the welding protruding-tab 11. The welding is performed in an extremely small range of the free end of the welding protruding-tab 11, and therefore even after the welded joint portion X is removed, almost no trace is left. Further, the processed part 3 is retained by not only the press force due to the residual stress but also welding, and therefore can be reliably retained. Further, since the residual stress is released after a long time period elapses, the press force due to the residual stress is likely to be weak when the long time period elapses. Since the processed part 3 is retained by welding, the processed part 3 can be retained stably for a long period. Further, as described above, there is also an advantage that the retention force is more easily controlled as compared with micro joint.
In particular, by setting the aforementioned escape distance R (0<R<slit width SW) when the welding protruding-tab 11 is formed, it is possible to form the joint portion X with welding. Further, by forming the welding protruding-tab 11 in a rectangular shape, it is possible to reliably bend the welding protruding-tab 11 itself, and secure rigidity of the welding protruding-tab 11 itself. As a result, it is possible to realize reliable welding by securing the press force to the joint portion X of the free end by bending.
The welding protruding-tab 11 in a rectangular shape is easily formed, and the escape distance R can also be accurately and easily set, by forming the base-end hole 7Ls in the length slit 7L of the cut slit 7 for forming the welding protruding-tab 11, and laser-cutting the cut slit 7 (the length slit 7L and the width slit 7W) from the base-end hole 7Ls. Here, by making the diameter of the base-end hole 7Ls larger than the slit width SW of the outline slit 9, it is possible to bring a bend fulcrum P of the welding protruding-tab 11 closer to the outline slit 9 (the outline 9L). Accordingly, it is possible to reliably form the joint portion X with welding by promoting bending of the welding protruding-tab 11.
When the thickness t of the workpiece 1 (namely, the welding protruding-tab 11) is too thin, it is difficult to fort the joint portion X with welding. Accordingly, when the material of the workpiece 1 is a mild-steel-based material, stainless-steel-based material or an aluminum-based material, it is possible to form the joint portion X with welding by making the thickness t 1.0 mm or more.
Here, in the case of the mild-steel-based material, it is possible to realize a good retention force by forming the welding protruding-tab 11 in the shape having the dimensions defined by the thickness t, the length L and the width W that satisfy both expression (3) and expression (6) described above, as described by using the tables and graphs. Likewise, in the case of the stainless-steel-based material, it is possible to realize a good retention force by forming the welding protruding-tab 11 in the shape having the dimensions defined by the thickness t, the length L and the width W that satisfy both expression (9) and expression (12) described above. In the case of the aluminum-based material, it is possible to realize a good retention force by forming the welding protruding-tab 11 in the shape having the dimensions defined by the thickness t, the length L and the width W that satisfy both expression (15) and expression (18) described above. By using these expressions, it is possible to easily determine the dimensions (the length L and the width W) of the welding protruding-tab 11 that realizes a good retention force based on the thickness t.
Further here, in the case of the mild-steel-based material, it is possible to realize a better retention force by forming the welding protruding-tab 11 with the escape distance R that satisfies expression (21) described above, as described by using the table and the graph. Likewise, in the case of the stainless-steel-based material, it is possible to realize a better retention force by forming the welding protruding-tab 11 with the escape distance R that satisfies expression (23) described above. In the case of the aluminum-based material, it is possible to realize a better retention force by forming the welding protruding-tab 11 with the escape distance R that satisfies expression (25) described above. It is possible to easily determine the escape distance R that realizes the better retention force based on the thickness t by using these expressions.
The present invention is not limited to the aforementioned embodiment. For example, in the above described embodiment, the parameters selected for processing from the database of (the thickness t, the length L, the width W) that satisfy expression (3), expression (6) and the like are stored in the joint condition parameter memory 59 as the joint conditions. The database (or the graphs=maps in
The entire contents of Japanese Patent Application Laid-Open Publication No. 2018-177354 (filed on Sep. 21, 2018) are incorporated in the present specification by this reference. While the present invention is described as described above by referring to the embodiment of the present invention, the present invention is not limited to the aforementioned embodiment. The scope of the present invention is determined in the light of the claims.
Number | Date | Country | Kind |
---|---|---|---|
2018-177354 | Sep 2018 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2019/035139 | 9/6/2019 | WO | 00 |