1. Field
The subject matter disclosed herein relates to data communication systems. In particular, the subject matter disclosed herein relates to transmitting data in an optical transmission medium.
2. Information
Data transmission in an optical transmission medium such as fiber optic cabling has enabled communication at data rates of 10 gigabits per second and beyond according to data transmission standards set forth in IEEE Std. 802.3ae-2002, Synchronous Optical Network/Synchronous Digital Hierarchy (SONET) protocol as indicated in a set of standards provided by the American National Standards Institute (ANSI T1.105.xx) or Synchronous Digital Hierarchy (SDH) as indicated in a set of recommendations provided by the International Telecommunications Union (e.g., ITU-T G.707, G.708, G.709, G.783 and G.784). To transmit data in the optical transmission medium, a laser device typically modulates an optical signal in response to a data signal. The laser device typically modulates the optical signal using wave division multiplexing (WDM) in response to the data signal.
Non-limiting and non-exhaustive embodiments of the present invention will be described with reference to the following figures, wherein like reference numerals refer to like parts throughout the various figures unless otherwise specified.
Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, the appearances of the phrase “in one embodiment” or “an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in one or more embodiments.
An “optical transmission medium” as referred to herein relates to a transmission medium capable of transmitting light energy in an optical signal which is modulated by a data signal such that the data signal is recoverable by demodulating the optical signal. For example, an optical transmission medium may comprise fiber optic cabling coupled between a transmitting point and a receiving point. However, this is merely an example of an optical transmission medium and embodiments of the present invention are not limited in this respect.
A “laser device” as referred to herein relates to a device to transmit a light signal in response to a power source. For example, a laser device may transmit a light signal in an optical transmission medium which is modulated by a data signal. A laser device may comprise a laser diode to transmit a light signal in response to a current. However, these are merely examples of a laser device and embodiments of the present invention are not limited in these respects.
A “laser driver circuit” as referred to herein relates to a circuit to provide power to a laser device to be used for transmitting a light signal in an optical transmission medium. For example, a laser driver circuit may provide a controlled current signal to provide power for transmitting the light signal. However, this is merely an example of a laser driver circuit and embodiments of the present invention are not limited in these respects.
A laser driver circuit may provide a current signal to a laser device having a “bias current” component combined with a “data current” component which is modulated by a data signal. The data current may be generated by modulating a “modulation current” with the data signal. The modulation current may determine an extent to which the magnitude of the current signal may deviate from the bias current component. However, these are merely examples of a bias current and modulation current, and embodiments of the present invention are not limited in these respects.
A “reference modulation current” as referred to herein relates to a current signal having a magnitude that approximates a magnitude of a desired modulation current. For example, a reference modulation current may have a magnitude that is tailored to provide a data current signal according to specific characteristics of a laser device and a desired intensity of a light signal to be generated by the laser device to represent a data signal. However, this is merely an example of a reference modulation current and embodiments of the present invention are not limited in this respect.
A “transistor” as referred to herein relates to an active solid state device to generate an output current having a magnitude that is based upon an input signal. A “bipolar transistor” as referred to herein relates to a transistor that generates an output current having a magnitude that is based upon a current applied to a base terminal of the transistor. A “field effect transistor” (FET) as referred to herein relates to a transistor that generates an output current having a magnitude that is based upon a voltage applied to a gate terminal of the transistor. However, these are merely examples of a transistor, bipolar transistor and FET, and embodiments of the present invention are not limited in these respects.
A “photodiode” as referred to herein relates to a device that provides an output current in response to light energy collected on a surface. For example, a photodiode may provide an output voltage or an output current in response to charge collected at a photodiode gate. However, this is merely an example of a photodiode and embodiments of the present invention are not limited in this respect.
Briefly, an embodiment of the present invention relates to a laser driver circuit comprising a bipolar transistor for transmitting a modulated power signal to the laser device. The bipolar transistor may generate the modulated power signal in response to a modulation current and a base current representative of a serial data signal. The laser driver circuit may further comprise a circuit to combine a replica of the base current with a reference modulation current to provide the modulation current. However, this is merely an example embodiment and other embodiments are not limited in these respects.
A physical medium dependent (PMD) section 104 may provide circuitry, such as a transimpedance amplifier (TIA) (not shown) and/or limiting amplifier (LIA) (not shown), to receive and condition an electrical signal from the optical transceiver 102 in response to the received optical signal 112. The PMD section 104 may also provide to a laser device (not shown) in the optical transceiver 102 power from a laser driver circuit (not shown) for transmitting an optical signal. A physical medium attachment (PMA) section 106 may include clock and data recovery circuitry (not shown) and de-multiplexing circuitry (not shown) to recover data from a conditioned signal received from the PMD section 104. The PMA section 106 may also comprise multiplexing circuitry (not shown) for transmitting data to the PMD section 104 in data lanes, and a serializer/deserializer (Serdes) for serializing a parallel data signal from a layer 2 section 108 and providing a parallel data signal to the layer 2 section 108 based upon a serial data signal provided by the clock and data recovery circuitry.
According to an embodiment, the layer 2 section 108 may comprise a media access control (MAC) device coupled to the PMA section 106 at a media independent interface (MII) as defined IEEE Std. 802.3ae-2002, clause 46. In other embodiments, the layer 2 section 108 may comprise forward error correction logic and a framer to transmit and receive data according to a version of the Synchronous Optical Network/Synchronous Digital Hierarchy (SONET) protocol as indicated in a set of standards provided by the American National Standards Institute or Synchronous Digital Hierarchy (SDH) as indicated in a set of recommendations provided by the International Telecommunications Union. However, these are merely examples of layer 2 devices that may provide a parallel data signal for transmission on an optical transmission medium, and embodiments of the present invention are not limited in these respects.
The layer 2 section 108 may also be coupled to any of several input/output (I/O) systems (not shown) for communication with other devices in a processing platform. Such an I/O system may include, for example, a multiplexed data bus coupled to a processing system or a multi-port switch fabric. The layer 2 section 108 may also be coupled to a multi-port switch fabric through a packet classifier device. However, these are merely examples of an I/O system which may be coupled to a layer 2 device and embodiments of the present invention are not limited in these respects.
The layer 2 device 108 may also be coupled to the PMA section 106 by a backplane interface (not shown) over a printed circuit board. Such a backplane interface may comprise devices providing a 10 Gigabit Ethernet Attachment Unit Interface (XAUI) as provided in IEEE Std. 802.3ae-2002, clause 47. In other embodiments, such a backplane interface may comprise any one of several versions of the System Packet Interface (SPI) as defined by the Optical Internetworking Forum (OIF). However, these are merely examples of a backplane interface to couple a layer 2 device to a PMA section and embodiments of the present invention are not limited in these respects.
A reference modulation current Irefmod may be applied to the emitter terminals of bipolar transistors Q1, Q2 and Q3. According to an embodiment, the output data current of the bipolar transistor Q2 (in response to a data signal of “1”) to be combined with bias current IBIAS has a magnitude that is substantially equal to the magnitude of the reference modulation current Irefmod. Accordingly, a transistor M5 may generate a current that is substantially equal to a base current loss from the base terminal of bipolar transistor Q2.
According to an embodiment, the bipolar transistors Q1, Q2 and Q3 may be formed substantially identically and behave substantially the same in response to process, temperature and power supply variations. Transistors M3, M4 and M5 are mirror coupled such that they generate the same current in response to a gate voltage. The current at the base terminal of transistor bipolar transistor Q3 is substantially equal to the current at the base terminal of bipolar transistor Q2. This current at the base terminal of bipolar transistor Q3 is then measured and mirrored by transistors M1, M2 and M3 to feedback the base current loss to mirror coupled transistors M4 and M5. Accordingly, the M5 current provides the base loss current back to the emitter terminal of bipolar transistor Q2.
While there has been illustrated and described what are presently considered to be example embodiments of the present invention, it will be understood by those skilled in the art that various other modifications may be made, and equivalents may be substituted, without departing from the true scope of the invention. Additionally, many modifications may be made to adapt a particular situation to the teachings of the present invention without departing from the central inventive concept described herein. Therefore, it is intended that the present invention not be limited to the particular embodiments disclosed, but that the invention include all embodiments falling within the scope of the appended claims.
The subject matter disclosed herein relates to U.S. pat. appl. Ser. No. 10/442,829, filed on May 21, 2003.