The present invention relates to laser systems which use effects of interaction of laser radiation with light inflated balloons, in particular, for dynamic games.
A number of techniques and laser systems which use effects of the laser-material interaction, in particular, for processing materials are well known.
U.S. Pat. No. 3,941,973 to Luck, Jr., et al. reveals an apparatus for laser material removal from a work piece wherein optical means is provided for compressing portions of the beam.
U.S. Pat. No. 4,734,550 to Imamura, et al. discloses a laser processing method comprises the steps of generating a pulsed laser beam having a substantially circular shape and scribing the surface of a work piece with the rectangular beam to form grooves therein.
U.S. Pat. No. 4,941,093 Marshall, et al. discloses laser apparatus for eroding a surface comprises means to select and control the shape and size of the area irradiated by each pulse of laser energy without varying the energy density of the beam.
U.S. Pat. No. 5,178,725 to Takeno, et al. discloses a method for working ceramic material which includes an irradiation process of irradiating a laser beam to the base material in order to form an affected portion having cracks and a removing process for removing the affected portion.
U.S. Pat. No. 5,786,560 to Tatah, et al. proposes a method of treating a material by generating an ultraviolet wavelength laser beam having femtosecond pulses. Apparatus includes a beam splitter for splitting the ultraviolet laser beam into a plurality of separate laser beams; directing the separate laser beams onto a target point within a sample such that the separate beams overlap to create an intensity sufficient to treat the sample.
U.S. Pat. No. 6,465,756 to Tanaka describes a method and apparatus in which a laser beam from a portion softening mechanism of an apparatus is condensed onto a portion on a surface of a work piece for softening the portion.
U.S. Pat. No. 6,472,295 to Morris, et al. describes a method and apparatus for laser cutting a target material. The method includes the steps of generating laser pulses from a laser system and applying the laser pulses to the target material so that the laser pulses cut through the material.
U.S. Pat. No. 6,720,521 to Troitski discloses a method and laser system controlling breakdown process development by creation of special space structure of laser radiation.
U.S. Pat. No. 6,727,460 to Troitski discloses a system for high-speed production of high quality laser-induced damage images inside transparent materials by the combination of an electro-optical deflector and means for moving the article or focusing optical system.
U.S. Pat. No. 6,777,645 to Ehrmann, et al. describes a precision, laser-based method and system for high-speed, sequential processing of material of targets within a field. The system controls the irradiation distribution pattern of imaged spots.
U.S. Pat. No. 6,781,092 to De Steur, et al. discloses a method for drilling holes in a substrate by laser radiation. When holes are being drilled in an electric circuit substrate, a laser beam is moved on concentric circular track in the region of the hole to be drilled.
The purpose of the present invention is disclosure of a laser-dynamic system which is used for game with the light inflated balloons.
The invention discloses a method for the effect on the inflated balloons by a laser radiation and shows how the effects accompanying laser-material interaction can be used for a play with such balloons. In principal two general effects are used for the play: the destruction and the shift of the inflated balloons. The kind of the laser-material interaction is selected depending on the game structure so that the desirable effect is produced by the minimal laser energy. The minimal laser energy is provided by the selection of the surface properties, the laser radiation parameters, the characteristics of the gases surrounding and inflating balloons, and the creation of the corresponding gas pressure inside the balloons.
The desirable destructive effect on an inflated balloon is produced by the local surface softening, by the local removal of a part of the surface material, and by the pressure created by the strong shock waves generated as a result of the laser-material interaction. These effects are generated by the absorption of the used laser radiation or by the laser-induced breakdown. The destructive effect is produced by the breakdown, a distance of which from the surface balloon is smaller than the critical value and the shift effect is produced by the breakdown generated on a distance from the surface balloon which is larger than the said critical value.
One or more embodiments of the invention comprise a dynamic-laser system for using in games with inflated balloons, comprising: playing room with one or several light inflated balloons; an apparatus for creating gas conditions inside the room; a gas control system; a laser system; a beam delivery system; a control system for players; a computer control system.
Another embodiment of the invention comprises a method for using a dynamic-laser system for playing with the inflated balloons, comprising: determination of the game goal; determination of the game model and structure for the used kind of the laser-material interaction; determination of the rules of the play for the used laser radiation; determination of the play prizes and penalties; controlling the laser radiation; controlling the gas systems.
The invention discloses how the structure, rules and goals of a game with inflated balloons are determined by the laser-material interaction effects which are used in the game.
The invention comprises a method and laser-dynamic system for playing with inflated balloons.
The principal concepts of the invention are based on the generation and control of the physical processes accompanying the interaction of the laser radiation with the opaque and transparent material. Effects created by the interaction are used for playing with the inflated balloons. In particularly, two interaction effects are used for this purpose: the destruction of the inflated balloons and their shift.
When laser radiation strikes an inflated balloon of an opaque (or partly opaque) surface, part of the radiation is absorbed and another part is reflected. The absorbed radiation heats the surface. The heating effects due to absorption of the high-power beams can occur very rapidly and the area of the surface, where laser radiation is focused, quickly rises to its melting temperature. If the laser pulse duration is very short then melting occurs without vaporization and laser interaction occurs only with thin layer of the surface. Stretching the pulse length, it is possible to vaporize the part of the material and to melt the thicker layer.
From the point of view of inflated balloon destruction, it is important that heating, melting and vaporization effects soften a surface of an inflated balloon. The pressure of the internal gas is higher than the external gas and the balloon surface is very thin, therefore even minor softening of the surface leads to the balloon destruction.
When laser radiation strikes an inflated balloon of a transparent surface, no part of the radiation is absorbed and laser-induced breakdown becomes the general physical phenomena providing the interaction effects. In principle, the breakdown can be generated on the opaque or transparent surfaces, inside the transparent surfaces and inside the gases surrounding or inflating the balloons, when the laser energy increases the breakdown threshold corresponding to the medium at which the breakdown is generated. As a result of a laser-induced breakdown, a bright spark (hot plasma) is arisen. The hot plasma produces two effects: the first is the heating of the surface material that can destruct an inflated balloon, and the second is the creation of the high pressure. The second effect can be used for both the destruction and shift of an inflated balloon. If a breakdown is created nearer than the critical distance then the inflated balloon is destroyed; if a breakdown is generated farther than the critical distance (but not very far from the balloon surface) then the balloon is woved.
So the destruction of the opaque balloon surface can be produced by using two physical phenomena: the absorption of the laser radiation or the laser-induced breakdown. The destruction of the transparent balloon surface cannot be produced by the absorption and is produced by the laser-induced breakdown. In both cases, the balloon destruction is a result of the softening of the balloon surface. Softening opaque and transparent surfaces is produced by the local heating, the local melting, and the local removal of a part of the surface material. The local removal of a part of the surface material is produced by the local vaporization of the material, the joint action of melting and vaporization so that part of the material is removed as liquid and the part of the material is removed as vapor. The destruction of a balloon surface is also produced by the local pressure created by the strong shock waves generated as a result of laser-material interaction. These shock waves are generated by laser-induced breakdown produced inside the gases surrounding or inflating the balloons.
The selection of physical effect (absorption or laser-induced breakdown), which is reasonable to use for the balloon burst, is made depending on the game structure and so that the desirable effect is produced by the minimal laser energy. In its turn, the minimal laser energy is provided by selection of the balloon surface properties and the characteristics of the gases surrounding and inflating the balloons. If absorption effect is used then the surface cover and wavelength of laser radiation are selected so that the absorption coefficient of the surface for this laser radiation has maximum value. If the breakdown is used then the surface material or gases surrounding and inflating the balloons (depending on where breakdown is produced) and the laser radiation parameters are selected so that the breakdown threshold has minimal value. The gas pressure within an inflated balloon is selected so that the destruction of the balloon is produced by a laser radiation of minimal energy.
The location of the laser-material interaction area is very essential for production of the desirable effect. In case of using the absorption effect, the laser-material interaction is the balloon surface or its small part. In case of using the laser-induced breakdown effect, the breakdown is produced on the surface or inside the surface material, inside gasses surrounding or inflated balloons. The concrete place is determined by the structure of game. For destruction of a balloon of an opaque surface, a laser-induced breakdown is produced on the surface or inside surrounding gases within “firing range” (
Material of balloon surface is determined depending on a game: if a game goal is to burst an inflated balloon then the material is selected so that the balloon surface has maximal absorption coefficient, if a goal game is to move an inflated balloon then the material is selected so that the balloon surface has minimal absorption coefficient and maximal elasticity coefficient.
The location of the breakdown area determines the direction of the balloon movement. For example, if a player wishes to move a balloon to the right he should produce the breakdown from the left side of the balloon.
A speed which a balloon has as a result of the breakdown depends on the energy of the laser radiation generating the gas breakdown. The larger energy provides greater speed. The effect of the laser actions is increased by repetition of the breakdowns at the same point. The additional number of the breakdowns generated at the same point or at the neighbor points increases the laser-material interaction effect. The control of the laser-material interaction effect is produced by the control of the breakdown sparks sizes, sparks brightness and the number of the breakdowns.
Control of the breakdown location is produced so that the laser energy increases the breakdown threshold at the predetermined area only. For example, this area is the focal area of the used laser beam. Another method is based on the using several beams. If the energy of each beam is below the breakdown threshold and their total energy increases the breakdown threshold, then a breakdown is generated only at the area of their intersection.
One or more embodiments of the invention comprise a method for the effect on the inflated balloons by a laser, comprising:
A structure of a game with inflated balloon by using the laser radiation is determined by those opportunities, which the laser-material interaction gives. A game can be based only on the destruction effect. In this case, the game goal is to burst an inflated balloon as soon as possible. If a balloon has an opaque surface and the absorption effect is used then it is necessary to direct laser radiation on the balloon. The speed of the destruction is inverse proportional to the sizes of the focal spot. If destruction of a balloon is produced by the breakdown then it is necessary to generate sparks near the balloon. Destruction of a balloon by only one spark is produced if a player creates breakdown closer than the critical distance. A player can creates the breakdown by focusing the laser beam at the desirable area or by the intersection of several laser beams at the area. The breakdown sparks are visible, but they can be created by both visible and invisible laser radiation. In the last case, a player can use the cut-and-try method. However, it is possible to use additional low power visible laser beam, direction of which coincides with the general laser beam.
To complicate the game task it is reasonable to use special gas devices which generate the gas flows. These gas flows are directed to the balloon, which a player should burst, in accordance with a random algorithm or directions of the gas flows can be controlled by the second player, who plays against the first player.
An example of a play with balloon and corresponding laser-dynamic system are illustrated by
One or more embodiments of the invention comprise a dynamic-laser system for using in games with inflated balloons, comprising: a playing room with one or several light inflated balloons; an apparatus for creating gas conditions inside the room; a gas control system; a laser system; a beam delivery system; a control system for players; a computer control system.
One or more embodiments of the invention comprise a method for using dynamic-laser system for playing with the inflated balloons, comprising:
The game goal can be the distortion of one or several inflated balloons or shift of such balloons at the demanded locations. A model and a structure of the games are determined depending on the game goal, the kind of the selected laser-material interaction, the kind of the beam delivery, the kind of the control of the gas systems, the kind of the laser radiation and the kind of the localization of the laser radiation. For example, the game goal is the distortion of an inflated balloon; the selected laser-material interaction is generated by the laser-induced breakdown; the control of the gas system is produced automatically in a random way; the beam delivery is controlled by a player; used laser radiation is invisible for naked eye and the localization of the laser radiation is produced by focusing the radiation at the desirable area. In this case, a model and a structure of a game can be constructed by the following way: one player should destroy the predetermined inflated balloon, which moves in a random way due to the gas flows; the player does not see the laser radiation and see laser-induced sparks only; the gaming room contains several other inflated balloon, which move chaotically and can hide the predetermined balloon. The rule of the play prohibits the destruction of a balloon which is not predetermined. The player gets a penalty if he destroys another balloon. His prize is inverse proportional to the number of laser pulses which he used for the destruction of the predetermined balloon. A structure of a game is changed if two players take part in the game. For example, gas flows are controlled by the second player who controls the gas system so that to prevent from the destruction of the predetermined balloon. The game model is also changed if the used laser radiation is visible or if using additional visible radiation. This additional radiation has low energy and its direction coincides with the direction of the general invisible laser beam. Also game structure depends on the way of the creation of the breakdown area. If the area is created by focusing the used laser radiation then a player use only one beam delivery system combined with a focusing system. If the breakdown area is created by the intersection of several laser beams then a player controls several beam delivery systems. A game model can combine destructive effect and shift of inflated balloons so that a game structure forms the game goal and game prizes depending on the result of both effects. For example, destruction of the predetermined balloon can be produced only at the predetermined area at which the balloon should be shifted.
Number | Name | Date | Kind |
---|---|---|---|
3818700 | Kantrowitz et al. | Jun 1974 | A |
3851974 | Ravussin et al. | Dec 1974 | A |
3941973 | Luck, Jr. et al. | Mar 1976 | A |
4036012 | Monsler | Jul 1977 | A |
4426843 | Fowler et al. | Jan 1984 | A |
4734550 | Imamura et al. | Mar 1988 | A |
4941093 | Marshall et al. | Jul 1990 | A |
5152135 | Kare | Oct 1992 | A |
5178725 | Takeno et al. | Jan 1993 | A |
5786560 | Tatah et al. | Jul 1998 | A |
6465756 | Tanaka et al. | Oct 2002 | B2 |
6472295 | Morris et al. | Oct 2002 | B1 |
6530212 | Phipps et al. | Mar 2003 | B1 |
6720521 | Troitski | Apr 2004 | B2 |
6727460 | Troitski | Apr 2004 | B2 |
6777645 | Ehrmann et al. | Aug 2004 | B2 |
6781092 | De Steur et al. | Aug 2004 | B2 |
20040109480 | VanDruff | Jun 2004 | A1 |
20050153262 | Kendir | Jul 2005 | A1 |
20060175312 | Troitski | Aug 2006 | A1 |
Number | Date | Country |
---|---|---|
4-166982 | Jun 1992 | JP |
Number | Date | Country | |
---|---|---|---|
20060281560 A1 | Dec 2006 | US |