Laser illumination device

Information

  • Patent Grant
  • 10725312
  • Patent Number
    10,725,312
  • Date Filed
    Wednesday, March 13, 2019
    5 years ago
  • Date Issued
    Tuesday, July 28, 2020
    4 years ago
Abstract
An Electrically Switchable Bragg Grating (ESBG) despeckler device comprising at least one ESBG element recorded in a hPDLC sandwiched between transparent substrates to which transparent conductive coatings have been applied. At least one of said coatings is patterned to provide a two-dimensional array of independently switchable ESBG pixels. Each ESBG pixel has a first unique speckle state under said first applied voltage and a second unique speckle state under said second applied voltage.
Description
BACKGROUND OF THE INVENTION

The present invention relates to an illumination device, and more particularly to a laser illumination device based on electrically switchable Bragg gratings.


Miniature solid-state lasers are currently being considered for a range of display applications. The competitive advantage of lasers in display applications results from increased lifetime, lower cost, higher brightness and improved color gamut. As lasers are polarized, they are ideally suited to Liquid Crystal on Silicon (LCoS) or High Temperature Poly Silicon (HTPS) projectors. In contrast to incoherent sources, lasers do not result in light from unwanted polarization states being discarded.


Laser displays suffer from speckle, a sparkly or granular structure seen in uniformly illuminated rough surfaces. Speckle arises from the high spatial and temporal coherence of lasers. Speckle reduces image sharpness and is distracting to the viewer.


Several approaches for reducing speckle contrast have been proposed based on spatial and temporal decorrelation of speckle patterns. More precisely, speckle reduction is based on averaging multiple (M) sets of speckle patterns from a speckle surface resolution cell with the averaging taking place over the human eye integration time. The speckle resolution cell is essentially the smallest area of the image that the eye can resolve. Under optimal conditions speckle contrast is reduced from unity to the square root of M. The value of M should be as large as possible. However, the value of M is limited by the numerical aperture of the imaging optics. In other words the minimum cell size is approximately equal to the laser wavelength divided by the numerical aperture.


Speckle may be characterized by the parameter speckle contrast which is defined as the ratio of the standard deviation of the speckle intensity to the mean speckle intensity. Temporally varying the phase pattern faster than the eye temporal resolution destroys the light spatial coherence, thereby reducing the speckle contrast.


The basic statistical properties of speckle are discussed by J. W. Goodman in a first paper entitled “Some Fundamental Properties of Speckle” (J. Opt. Soc. Am. 66, pp. 1145-1149, 1976) and a second paper entitled “Statistical Properties of Laser Speckle Patterns” (Topics in Applied Physics volume 9, edited by J. C. Dainty, pp. 9-75, Springer-Verlag, Berlin Heidelberg, 1984).


There are two types of speckle: objective and subjective speckle. As noted in an article by D. Gabor in the IBM Journal of Research and Development, Volume 14, Number 5, Page 509 (1970) “Objective” speckle arises from the uneven illumination of an object with a multiplicity of waves that interfere at its surface. “Subjective” speckle arises at rough objects even if they are illuminated evenly by a single wave. In practical terms, objective speckle results from scattering in the illumination system while subjective speckle occurs at the projection screen. As its name implies objective speckle is not influenced by the viewer's perception of the displayed image. A photographic emulsion spread over the surface of the object would record all of the key characteristics of objective speckle. Even a perfect optical system cannot do better than to reproduce it exactly. Subjective speckle on the other hand arises by a diffraction effect at the receiving optics or, more exactly, by the limitation of the amount of light admitted into receiving optics (the eye, in the case of a display). The only remedy for subjective speckle is to widen the aperture of the receiving optics or to perform an equivalent optical process. This is due to fundamental information theory limitations and not any practical optical consideration.


The characteristics of objective and subjective speckle may be illustrated by considering a typical projection system. The illumination and beam shaping optics (for example components such as diffusers or fly's eye integrators) generates scattering that eventually creates a speckle pattern onto the microdisplay panel surface. The projection lens images this pattern onto the screen giving the objective speckle pattern. The screen takes the objective speckle pattern and scatters it into the viewing space. The human eye only collects a tiny portion of this light. Since the objective speckle acts like a coherent illumination field, the diffusion of the screen produces a new speckle pattern at the retina with a different speckle grain. This is the subjective speckle pattern. The subjective speckle pattern will be influenced by screen diffuser materials and lenticular structures and other features commonly used in screens. Since a well-designed projection lens usually collects most of the light transmitted through or reflected by the microdisplay panel, the objective speckle pattern generated is well reproduced at the screen, allowing for some modification due to optical aberrations. The cumulative speckle seen by the eye is the sum of the objective and subjective speckles.


Removing the objective speckle is relatively easy since the speckle pattern is well transferred from the illumination to the screen: any change in the illumination will be transferred to the screen. Traditionally, the simplest way has been to use a rotating diffuser that provides multiplicity of speckle patterns while maintaining a uniform a time-averaged intensity profile. This type of approach is often referred to as angle diversity. Note that, if the objective speckle is suppressed at the screen, it will be suppressed at every plane between the projection lens and the screen.


Suppression of subjective speckle is more difficult. Because of large disparity between the projection optics and eye optics numerical apertures (or F-numbers), the objective speckle grain is much larger than the subjective speckle grain. Therefore, the objective speckle provides a relatively uniform illumination to the screen within one resolution cell of the eye regardless of the position of the rotating diffuser or other speckle reduction means in the illumination path. For the purposes of quantifying the subjective speckle it is convenient to define the speckle contrast as the ratio of the resolution spots of the eye and the projection optic at the screen.


The characteristics of speckle depend on whether it is observed in the near or far field. The far field of an optical system is the angular spectrum of the plane waves traversing or generated by the optical system. In case of a diffractive optical element such as a Computer Generated Hologram (CGH), the far field is a series of points located in the two dimensional angular spectrum, each point representing the intensity of a specific plane wave diffracted, refracted, reflected or diffused at a specific angle. If only one beam strikes the optical element, no overlap of plane waves occurs, each plane wave being spatially demultiplexed in the far field. This is not the case for the near field. The far field effectively at infinity, which according to Rayleigh-Sommerfeld theory is any distance after a specific finite distance, which is a function of the size of the beam (that is, the effective aperture of the CGH), the wavelength, the size of the microstructures in the element (amount of beam deflection), and other factors. Therefore, in order to change the speckle pattern of an individual beamlet in the far field, it is best to use phase diversity. Angular diversity would not produce good results, since none of the wave fronts would be overlapping and interfering. However, phase diversity would create a different phase pattern on a single beamlet and this would change the speckle. Speckle patterns in the far field are characterized by very small-grained speckle structures.


In the near field (that is any location closer than the Rayleigh-Sommerfeld distance), many different wave fronts are interfere and overlap resulting in a very large amount of local wave front interference and hence speckle. Therefore, in order to reduce speckle in the near field, it is advantageous to make slight variations to the angles of the overlapping beamlets. In other words, angular diversity despeckling schemes will be the most effective. Speckle in the near field is characterized by larger grains. The different grain structure in the near and far fields can lead to the erroneous conclusion that Fresnel CGH (near field) gives less speckle than Fourier CGHs (far field). This is not the case; the nature of the speckle is different in the two cases.


The extent to which speckle can be corrected in the near and far fields has implications for the type of despecklers to be used in specific projector applications. In the case of a laser projector using traditional projection imaging apparatus, the image of a microdisplay is not in the far field of the despeckler, and thus angular diversity would be the most effective solution. In the case of a laser projector using diffractive imaging, the image is actually the far field of the microdisplay itself, and very close to the far field of the despeckler. Therefore, it is best to use a combination of angular diversity and phase diversity.


Techniques for speckle reduction are commonly classified into the categories of angular, phase and wavelength diversity according to the optical property used to generate the speckle patterns. Angular diversity typically relies on the use of rotating diffusers or vibrating screens. Phase diversity is typically provided by electrically controlled phase modulators. Wavelength diversity is provided by multiple laser sources or tuneable single laser sources. In the case of laser arrays, speckle reduces as the inverse of the square root of the number of die. Mechanical methods of suppressing speckle suffer from the problems of noise, mechanical complexity and size.


It is known that speckle may be reduce by using an electro optic device to generate variation in the refractive index profile of material such that the phase fronts of light incident on the device are modulated in phase and or amplitude. The published Internal Patent Application No. WO/2007/015141 entitled LASER ILLUMINATOR discloses a despeckler based on a new type of electro optical device known as an Electrically Switchable Bragg Grating (ESBG).


An ESBG in its most basic form is formed by recording a volume phase grating, or hologram, in a polymer dispersed liquid crystal (PDLC) mixture. Typically, ESBG despeckler devices are fabricated by first placing a thin film of a mixture of photopolymerizable monomers and liquid crystal material between parallel glass plates. Techniques for making and filling glass cells are well known in the liquid crystal display industry. One or both glass plates support electrodes, typically transparent indium tin oxide films, for applying an electric field across the PDLC layer. A volume phase grating is then recorded by illuminating the liquid material with two mutually coherent laser beams, which interfere to form the desired grating structure. During the recording process, the monomers polymerize and the HPDLC mixture undergoes a phase separation, creating regions densely populated by liquid crystal micro-droplets, interspersed with regions of clear polymer. The alternating liquid crystal-rich and liquid crystal-depleted regions form the fringe planes of the grating. The resulting volume phase grating can exhibit very high diffraction efficiency, which may be controlled by the magnitude of the electric field applied across the PDLC layer. When an electric field is applied to the hologram via transparent electrodes, the natural orientation of the LC droplets is changed causing the refractive index modulation of the fringes to reduce and the hologram diffraction efficiency to drop to very low levels. Note that the diffraction efficiency of the device can be adjusted, by means of the applied voltage, over a continuous range from near 100% efficiency with no voltage applied to essentially zero efficiency with a sufficiently high voltage applied. U.S. Pat. Nos. 5,942,157 and 5,751,452 describe monomer and liquid crystal material combinations suitable for fabricating ESBG despeckler devices. A publication by Butler et al. (“Diffractive properties of highly birefringent volume gratings: investigation”, Journal of the Optical Society of America B, Volume 19 No. 2, February 2002) describes analytical methods useful to design ESBG despeckler devices and provides numerous references to prior publications describing the fabrication and application of ESBG despeckler devices.


The apparatus disclosed in Internal Patent Application No. WO/2007/015141 suffers from the problem that insufficient speckle states are produced using the ESBG configurations taught therein.


It is a first object of the present invention to provide an ESBG despeckler device that can overcome the problem of laser speckle.


It is a second object of the present invention to provide a compact, efficient laser display incorporating an ESBG despeckler device that can overcome the problem of laser speckle.


SUMMARY OF THE INVENTION

It is a first object of the present invention to provide an ESBG despeckler device that can overcome the problem of laser speckle.


It is a second object of the present invention to provide a compact, efficient laser display incorporating an ESBG despeckler device that can overcome the problem of laser speckle.


In a first embodiment of the invention there is provided an ESBG despeckler device comprising a least one ESBG element. Said ESBG element is recorded in a HPDLC sandwiched between transparent substrates to which transparent conductive coatings have been applied. At least one of said coatings is patterned to provide a two-dimensional array of independently switchable ESBG pixels. At least first and second voltages are applied across each ESBG element. Each ESBG element is characterized by a first unique speckle state under the first applied voltage and a second unique speckle state under the second applied voltage. The ESBG despeckler device is disposed along an illumination optical path.


The ESBG despeckler device is configured to modify the optical characteristics of incoming light to provide a set of speckle cells. Said first and second voltages are points on a time varying voltage characteristic wherein the voltage applied to each ESBG pixel is cyclically varied from zero to some specified maximum value at a high frequency. The effect of the varying voltage is to vary the optical effect of the ESBG despeckler device on incoming light in a corresponding fashion. In effect, the ESBG despeckler device generates a multiplicity of different speckle patterns within the human eye integration time. A human eye observing the display integrates said patterns to provide a substantially de-speckled final image.


In one embodiment of the invention the ESBG despeckler devices are configured using two ESBG elements disposed in sequence. The ESBG elements are operated in tandem with alternating voltages applied across the ESBG pixels. The optical effect of each ESBG pixel is varied from zero to maximum value at a high frequency by applying an electric field that varies in a corresponding varying fashion. Each incremental change in the applied voltage results in a unique speckle phase cell.


In one embodiment of the invention the ESBG despeckler device comprises identical first and second ESBG arrays and the waveforms applied to overlapping elements of said first and second ESBG arrays operate in anti-phase.


In one embodiment of the invention the ESBG despeckler device comprises identical first and second ESBG arrays and said second ESBG array is rotated through 180 degrees with respect to said first ESBG array.


In one embodiment of the invention the ESBG despeckler device comprises at least one ESBG element recorded using a Computer Generated Hologram (CGH). The CGH has a first surface and a second surface wherein said CGH is designed to convert a laser beam incident at said first surface into a multiplicity of beams from said second surface wherein each beam has a unique direction in space and a diffusion angle, wherein said beams have single point of origin.


In one embodiment of the invention the ESBG despeckler device comprises at least one ESBG element recorded using a CGH). The CGH has a first surface and a second surface wherein said CGH is designed to convert a laser beam incident at said first surface into a multiplicity of beams from said second surface wherein each beam has a unique direction in space and a diffusion angle, wherein said beams have points of origin equally spaced around the periphery of said CGH.


In one embodiment of the invention the ESBG despeckler device comprises at least one ESBG element recorded using a CGH. The CGH comprises an array of diffracting elements. Each said diffracting elements is characterized by a unique light diffusion function.


In one embodiment of the invention the ESBG despeckler device comprises identical first and second ESBG arrays each containing selectively switchable ESBG pixels.


In one embodiment of the invention the ESBG despeckler device comprises identical first and second ESBG arrays containing selectively switchable ESBG pixels. Each ESBG pixel is characterized by a unique grating vector.


In one embodiment of the invention in which the ESBG despeckler device comprises identical first and second ESBG arrays containing selectively switchable ESBG pixels each said ESBG pixel converts incident collimated light into divergent light.


In one embodiment of the invention in which the ESBG despeckler device comprises identical first and second ESBG arrays containing selectively switchable ESBG pixels each ESBG pixel converts incident light into diffuse light.


In one embodiment of the invention in which the ESBG despeckler device comprises identical first and second ESBG arrays containing selectively switchable ESBG pixels and at least one of the ESBG arrays provides a set of Hadamard diffusers.


In one embodiment of the invention the ESBG despeckler device stack of similarly configured ESBG arrays.


In one embodiment of the invention the ESBG despeckler device comprises a stack of ESBG arrays designed to operate on red, green or blue light.


In one embodiment of the invention the ESBG despeckler device comprises ESBG arrays disposed adjacent to each other in a plane.


In one embodiment of the invention in which the ESBG despeckler device comprises identical first and second ESBG arrays containing selectively switchable ESBG pixels the ESBG pixels substantially overlap in the illumination beam cross section.


In one embodiment of the invention in which the ESBG despeckler device comprises identical first and second ESBG arrays containing selectively switchable ESBG pixels the ESBG pixels are offset by a fraction of the ESBG element width in at least one of the vertical or horizontal array axes in the illumination beam cross section.


In one embodiment of the invention in which the ESBG despeckler device comprises identical first and second ESBG arrays containing selectively switchable ESBG pixels the ESBG pixels are offset by a integer number of ESBG element width in at least one of the vertical or horizontal array axes in the illumination beam cross section.


In one embodiment of the invention the ESBG despeckler device further comprises a diffractive optical element for converting incident off axis light into a direction normal to the surfaces of the ESBG despeckler device.


In one embodiment of the invention the ESBG despeckler device further comprises a diffractive illumination profile shaping element.


In one embodiment of the invention the ESBG despeckler device further comprises an electrically controllable phase modulator operative to provide phase retardation.


In one embodiment of the invention the ESBG despeckler further comprises an electro-optical polarization switch providing a phase shift of 0 or π radians. The polarization switch may be a sub wavelength grating. The polarization switch is randomly switched with respect to the pixelated diffuser.


In one embodiment of the invention the ESBG despeckler device comprises at least one ESBG element wherein said ESBG element has a first phase retarding characteristic under a first voltage and a second phase retarding characteristic under a second voltage.


In one embodiment of the invention the ESBG despeckler device comprises at least one ESBG element wherein said ESBG element has a first light diffusing characteristic under a first voltage and a second light diffusing characteristic under a second voltage.


In one embodiment of the invention the ESBG despeckler device comprises at least one ESBG element which encodes the optical characteristics of an axicon.


In one embodiment of the invention the ESBG despeckler device comprises at least one ESBG element which encodes the optical characteristics of a sub wavelength grating phase retarder.


In one embodiment of the invention the ESBG despeckler device comprises at least one ESBG element which encodes the optical characteristics of a diffuser.


In one embodiment of the invention the ESBG despeckler device comprises a stack of three ESBG elements each having substantially the same optical function but designed to operate on red, green and blue light respectively.


In one embodiment of the invention the ESBG despeckler device comprises at least one ESBG element configured as either a variable diffuser a variable subwavelength grating or a variable axicon.


In one embodiment of the invention the ESBG despeckler device comprises red, green and blue ESBG elements disposed adjacent to each other.


In one embodiment of the invention there is provided a despeckler comprising a first ESBG array a second ESBG array and a DOE. The ESBG arrays are operated in anti-phase. The ESBG arrays and the DOE are aligned with their surface orthogonal to an optical axis. The DOE directs on-axis incident laser light into an off-axis direction. The first and second ESBG arrays each deflect incident off-axis light into an on-axis direction. Said DOE may be a holographic element such as a Bragg hologram, Said DOE may be a ESBG.


In one embodiment of the invention there is provided a despeckler comprising a first ESBG array a second ESBG array and a Diffractive Optical Element (DOE). The ESBG arrays and the DOE are aligned with their surface orthogonal to an optical axis. The DOE directs off axis incident laser light into a direction parallel to said optical axis. The first ESBG device deflects incident on-axis light into an off axis direction. The second ESBG device deflects light incident in said off-axis direction light into an on-axis direction.


In one embodiment of the invention there is provided a despeckler comprising a first ESBG array a second ESBG array and a DOE. The ESBG arrays and the DOE are aligned with their surface orthogonal to an optical axis. The DOE directs on-axis incident laser light into an off-axis direction. The first and second ESBG devices are each operative to deflect incident off-axis light into an on-axis direction.


In one embodiment of the invention there is provided an ESBG despeckler device comprising an array in which the ESBG pixels encode diffusion characteristics.


In one embodiment of the invention there is provided an ESBG despeckler device comprising an array in which the ESBG pixels encode keystone correction.


In one embodiment of the invention the ESBG despeckler device comprises at least one ESBG element recorded by means of an apparatus comprise a laser source, a beam expanding lens system, a beam splitter, a mirror, a second lens, a computer generated hologram (CGH) and a cell containing the HPDLC mixture into which the ESBG is recorded. The CGH is designed to generate a set of beamlets from a single input beam.


In one embodiment of the invention there is provided ESBG despeckler device comprising two ESBG arrays configured to provide switchable optical path differences wherein the ESBG pixels substantially overlap. The pixels of the first ESBG array deflect normally incident collimated light through a specified angle. The pixels of the second ESBG array diffract incident light at said angle into direction normal to the second ESBG array. When the ESBG pixels are not in their diffracting states incident light is transmitted without substantial deviation. The lateral displacement of the beam when the ESBG pixels are in a diffracting state results in an optical path difference given by the product of the separation of the ESBG arrays, the average refractive index of the optical path between the arrays and the tangent of the diffraction angle.


In one embodiment of the invention there is provided an ESBG despeckler device in comprising three ESBG arrays configured to provide switchable optical path differences. The apparatus comprises three ESBG arrays aligned in series along an optical axis. The pixels of the first ESBG array deflects normally incident collimated light through a first angle. The pixels of second ESBG diffracts incident light at said first angle into a direction parallel to the axis. The pixels of the third ESBG array diffract light incident at said first angle such into a direction parallel to the optical axis. When the ESBG arrays pixels are not in their diffracting states incident light is transmitted without substantial deviation. When the second and third ESBG array pixels are not in their diffracting states the diffracted light is transmitted without deviation. The lateral displacement of the incident light when the ESBG array pixels are in a diffracting state results in an optical path difference given by the product of the separation of first and second ESBG arrays or second and third ESBG arrays, the average refractive index of the optical path between said gratings and the tangent of the diffraction angle.


In one embodiment of the invention there is provided a method of fabricating an ESBG array for use in the invention comprising the following steps:


a first step in which a substrate to which a transparent electrode layer has been applied is provided;


a second step in which portions of said transparent electrode layer are removed to provide a patterned electrode layer including at least one ESBG pixel pad;


a third step in which a layer of UV absorbing dielectric material is deposited over said patterned electrode layer;


a fourth step in which the portion of said UV absorbing dielectric material overlapping said ESBG pixel pad is removed;


a fifth step in which a second substrate to which a transparent electrode layer has been applied is provided;


a sixth step in which the transparent electrode layer of the second substrate layer is etched to provide a patterned electrode layer including a second ESBG pixel pad substantially identical to and spatially corresponding with the first ESBG pixel pad;


a seventh step in which the two substrates processed according to the above steps are combined to form a cell with the electrode coated surfaces of the two cells aligned in opposing directions and having a small separation;


an eight step in which the cell is filled with a PDLC mixture;


a ninth step in which the cell face formed by the first substrate is illuminated by crossed UV laser beams, and simultaneously the cell face formed by the second is illuminated by an incoherent UV source forming an HPDLC region confined to the region between the first and second ESBG pixels and surrounded by a PDLC region.


In one embodiment of the invention there is provided a laser display comprising at least one laser die, a flat panel display, a projection lens and an ESBG despeckler device disposed along the path of the beam emitted by said laser. A variable voltage generator is coupled to the ESBG despeckler device.


In one embodiment of the invention there is provided a laser display according to the principles of the invention comprises a multiplicity of laser emitter die configured as a two dimensional array, a flat panel display, a projection lens and an ESBG despeckler device disposed along the path of the beam emitted by said laser. A variable voltage generator is coupled to the ESBG despeckler device.


In one embodiment of the invention a laser display further comprises an optical element disposed along the laser beam paths for shaping the intensity profile and cross sectional geometry of the illuminator beam.


In one embodiment of the invention a laser display further comprises a light integrator pipe may be disposed in the light path after the ESBG despeckler device.


In one embodiment of the invention a laser display further comprises a micro lens element may be disposed between the laser die and the ESBG despeckler device.


In an alternative embodiment of the invention the ESBG despeckler device is disposed between the flat panel display and the projection lens.


In a further embodiment of the invention the ESBG despeckler device is disposed within a projection lens.


In one embodiment of the invention a laser display further comprises a diffractive beam steering element disposed between the laser source and the ESBG despeckler device.


In one embodiment of the invention directed at providing color sequential red green and blue laser illumination there are provided separated red, green and blue laser modules each comprising at least one laser source, beam expansion and collimation lens system and an ESBG despeckler device further comprising a first ESBG array and a second ESBG array. The red green and blue beams are reflected into a common direction by means of dichroic filter. The reflected beams directed towards a display panel. A projection lens projects an image of the display panel onto a screen.


In a further embodiment of the invention there is provided an edge illuminator comprising an ESBG despeckler device wherein the substrates of the ESBG despeckler device provide a total internal reflection (TIR) light guiding structure. An input light-coupling optical element provides a means for injecting light from a laser source into the light guiding structure. An output light-coupling optical element provides a means for ejecting light from the light guide into an illumination path directed at a flat panel display.


In a further embodiment of the invention there is provided an edge illuminator comprising an ESBG despeckler device. The ESBG despeckler device comprises two or more ESBG layers. The substrates of the ESBG layers together form a TIR light guiding structure.


In a further embodiment of the invention there is provided a scrolling edge illuminator comprising an ESBG despeckler device wherein the substrates of the ESBG despeckler device provide a TIR light guiding structure. The ESBG despeckler device comprises at least one ESBG element. At least one ESBG element has electrodes are divided into a number of parallel stripes that define a corresponding number independently controllable ESBG stripes.


In a further embodiment of the invention there is provide an edge lit ESBG despeckler device that also performs the function of a spatial light modulator.


In a further embodiment of the invention there is provided an edge illuminator comprising an ESBG despeckler device wherein the substrates of the ESBG despeckler device provide a TIR light guiding structure and further comprising a second trapezoidal light guiding structure disposed adjacent the ESBG substrates. The ESBG despeckler device contains ESBG portions for coupling light into and out of said second light guiding structure.


A more complete understanding of the invention can be obtained by considering the following detailed description in conjunction with the accompanying drawings wherein like index numerals indicate like parts. For purposes of clarity details relating to technical material that is known in the technical fields related to the invention have not been described in detail.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A and 1B is a schematic side elevation view of a laser display according to one embodiment of the invention.



FIG. 2 is a schematic side elevation view of a laser display according to one embodiment of the invention.



FIG. 3A is a schematic side elevation view of a laser display according to one embodiment of the invention.



FIG. 3B is a chart showing a first ESBG applied voltage characteristic.



FIG. 3C is a chart showing a second ESBG applied voltage characteristic.



FIG. 4 is a schematic side elevation view of a laser display according to one embodiment of the invention.



FIG. 5A is a schematic side elevation view of a laser display according to one embodiment of the invention.



FIG. 5B is a front elevation of a first detail of the embodiment of FIG. 5A.



FIG. 5C is a front elevation of a first detail of the embodiment of FIG. 5A.



FIG. 6 is a schematic side elevation view of a further embodiment of the invention.



FIG. 7A is a schematic side elevation view of a prior art device related to one particular embodiment of the invention.



FIG. 7B is a schematic side elevation view of one particular embodiment of the invention.



FIG. 7C is a schematic side elevation view of a prior art device related to one particular embodiment of the invention.



FIG. 8 is a schematic side elevation view of a one embodiment of the invention.



FIG. 9 is a schematic side elevation view of a laser display according to one embodiment of the invention.



FIG. 10 is a schematic side elevation view of a laser display according to one embodiment of the invention.



FIG. 11 is a schematic side elevation view of a laser display according to one embodiment of the invention.



FIG. 12 is a schematic side elevation view of a laser display according to one embodiment of the invention.



FIG. 13 is a schematic side elevation view of a projection lens according to embodiment of the invention.



FIG. 14 is a schematic front elevation view of an ESBG array used in one embodiment of the invention.



FIG. 15 is a schematic front elevation view of an ESBG array used in one embodiment of the invention.



FIG. 16 is a schematic front elevation view of an ESBG array used in one embodiment of the invention.



FIG. 17 is a schematic front elevation view of an ESBG array used in one embodiment of the invention.



FIG. 18 is a schematic side elevation view of a laser display according to one embodiment of the invention.



FIG. 19 is a schematic side elevation view of a one particular operational embodiment of the invention.



FIG. 20 is a schematic side elevation view of a one particular operational embodiment of the invention.



FIG. 21A-21F is a series of schematic front elevation views of an ESBG element at successive stages in its fabrication according to the basic principles of invention.



FIG. 22A-22E shows a series of schematic side elevation views of an ESBG element at successive stages in its fabrication according to the basic principles of the invention.



FIG. 23 is a side elevation view of the assembled ESBG element.



FIG. 24 is a side elevation view of the assembled ESBG showing the recording process.



FIG. 25 is a flow diagram of a method of fabricating the ESBG according to the principles of the invention.



FIG. 26 is a plan view of a particular embodiment of an ESBG electrode array used in an embodiment of the invention.



FIG. 27 is a plan view of a particular embodiment of an ESBG electrode array used in an embodiment of the invention.



FIG. 28 is a schematic side elevation view of a laser display according to one embodiment of the invention.



FIG. 29 is a schematic side elevation view of a one particular operational embodiment of the invention.



FIG. 30 is a schematic side elevation view illustrating one method of recording an ESBG array for use with the invention.



FIG. 31 is a schematic side elevation view illustrating one method of recording an ESBG array for use with the invention.



FIG. 32A is a schematic side elevation view illustrating one method of recording an ESBG array for use with the invention.



FIG. 32B is a front elevation view showing one aspect of a computer generated hologram used to record an ESBG array for use with the invention.



FIG. 33A is a schematic side elevation view of a laser display according to one embodiment of the invention.



FIG. 33B is a schematic side elevation view of one particular operational embodiment of the invention.



FIGS. 34A and 34B is a schematic side elevation view of a laser display according to one embodiment of the invention.



FIG. 35A is a schematic side elevation view of a laser display according to one embodiment of the invention.



FIG. 35B is a schematic side elevation view of one particular operational embodiment of the invention.



FIG. 35C is a chart showing a first ESBG applied voltage characteristic used in the embodiment of FIG. 35A.



FIG. 35D is a chart showing a second ESBG applied voltage characteristic used in embodiment FIG. 35A.



FIG. 36 is a schematic side elevation view of a laser display according to one embodiment of the invention.



FIG. 37 is a schematic side elevational view of another particular embodiment of the invention.



FIG. 38 is a schematic side elevation view of one particular embodiment of the invention.



FIG. 39 is a schematic side elevation view of another particular embodiment of the invention.



FIG. 40 is a schematic front elevation view of aspects of a computer generated hologram used to record an ESBG array used in embodiments of the invention.



FIG. 41 is a schematic front elevation view of a computer generated hologram used to record an ESBG array used in embodiments of the invention.



FIG. 42 is a three dimensional schematic illustration of an ESBG array switching scheme used in the invention.



FIG. 43 shows the addressing scheme in more detail used in the invention.



FIG. 44 is a table showing the sequence of logic states applied to the rows of an ESBG array used in the invention.



FIG. 45 is a table showing the sequence of logic states applied to the columns of an ESBG array used in the invention.



FIG. 46 is a schematic front elevation view of the 3×3 ESBG array module used in one embodiment of the invention.



FIG. 47 is a chart illustrating the waveform applied to the ESBG in one embodiment of the invention.



FIG. 48 is a table illustrating a typical speckle sample generating process used in the embodiment of FIG. 46.



FIG. 49 is a schematic illustration of the complete set ESBG array patterns generated using the embodiment of FIG. 46.



FIG. 50 is a schematic side elevation view of a an ESBG despeckler device using ESBG arrays operating in random anti phase and further comprising a polarization switch stage.



FIG. 51 is a schematic side elevation view of one embodiment of the invention providing an edge lit ESBG despeckler device.



FIG. 52 is a schematic side elevation view of one embodiment of the invention providing an edge lit ESBG despeckler device.



FIG. 53 is a schematic side elevation view of one embodiment of the invention providing an edge lit ESBG despeckler device.



FIG. 54 is a schematic side elevation view of one embodiment of the invention providing an edge lit ESBG despeckler device.



FIG. 55 is a schematic side elevation view of one embodiment of the invention providing a color edge lit scrolling illuminator.



FIG. 56 is a schematic front elevation view of an aspect of a scrolling illuminator according to the principles of the invention.



FIG. 57A-57C is a schematic front elevation view of an aspect of a scrolling illuminator according to the principles of the invention.



FIG. 58A-58C is a schematic front elevation view of an aspect of a scrolling illuminator according to the principles of the invention.



FIG. 59 is a schematic side elevation view of one embodiment of the invention providing an edge lit scrolling ESBG despeckler device.



FIG. 60 is a schematic side elevation view of one embodiment of the invention providing an edge lit scrolling ESBG despeckler device.



FIG. 61 is a schematic side elevation view of one embodiment of the invention providing an edge lit scrolling ESBG despeckler device.



FIG. 62 is a schematic side elevation view of one embodiment of the invention providing an edge lit scrolling ESBG despeckler device.



FIG. 63 is a schematic side elevation view of one embodiment of the invention providing a color edge lit scrolling ESBG despeckler device.



FIG. 64A is a schematic plan view of an embodiment of the invention that uses path switchable light guiding structure.



FIG. 64B is a schematic side elevation view of an embodiment of the invention that uses path switchable light guiding structure.



FIG. 65A is a schematic plan view of another embodiment of the invention that uses path switchable light guiding structure.



FIG. 65B is a schematic side elevation view of another embodiment of the invention that uses path switchable light guiding structure.



FIG. 65C is a schematic front elevation view of an aspect of another embodiment of the invention that uses path switchable light guiding structure.





DETAILED DESCRIPTION OF THE INVENTION

It is a first object of the present invention to provide an ESBG despeckler device that can overcome the problem of laser speckle.


It is a second object of the present invention to provide a compact, efficient laser display incorporating an ESBG despeckler device that can overcome the problem of laser speckle.


To assist in clarifying the basic principles of the despeckler device the invention will be described in relation to a practical laser display which comprises a laser source comprising one or more red, green or blue laser die, a flat panel microdisplay and projection optics. It will be clear that the despeckler embodiment to be described is not restricted to application in laser display configurations of the type described.


For the purposes of explaining the invention an ESBG despeckler device will be understood to comprise one or more ESBGs layers or cells each comprising an ESBG encapsulated between parallel transparent glass walls according to the principles to be discussed below. In some cases an ESBG layer or cell may simply be referred to as an ESBG. An ESBG array will refer to an ESBG with switching electrodes patterned such that individual ESBG pixels can be switched selectively.


It will be apparent to those skilled in the art that the present invention may be practiced with only some or all aspects of the present invention as disclosed in the following description. For the purposes of explaining the invention well-known features of laser technology and laser displays have been omitted or simplified in order not to obscure the basic principles of the invention.


Parts of the following description will be presented using terminology commonly employed by those skilled in the art of optics and laser displays in particular.


It should also be noted that in the following description of the invention repeated usage of the phrase “in one embodiment” does not necessarily refer to the same embodiment.



FIG. 1A shows a schematic side elevation view of one embodiment of the invention in which a laser display comprises a laser source 1 and an Electrically Switchable Bragg Grating (ESBG) device 2, which is disposed along the laser beam path and a projection optical system generally indicated by 4. The laser source 1 comprises at least a single laser emitter die providing monochromatic light. The ESBG drive electronics are indicated by 3. The laser and ESBG despeckler device form part of an apparatus for illuminating an electronic display to provide a viewable image. The projection optical system may comprise an electronic display panel such as an LCD, a projection lens, and relay optics for coupling the ESBG despeckler device to the display panel, filters, prisms, polarizers and other optical elements commonly used in displays. The final image is projected onto a projection screen 5. A lens 7 may be used to convert diverging laser emission light 1100 into a collimated beam 1200. The collimated beam is diffracted into a direction 1300 by the ESBG despeckler device. The optical system 4 forms a diverging beam 1400, which illuminates the screen 5. The details of the projection optical system do not form part of the invention. The invention is not restricted to any particular type of display configuration. At least one viewable surface illuminated by the laser light exhibits laser speckle. Said viewable surface may be at least one of the projection screen 5 or an internal optical surface within the projection optical system. Although a rear projection screen is illustrated in FIG. 1A the invention may also be used in front projection.


The invention is not restricted to the projection of information displayed on an electronic display panel. The invention may also be applied to reducing speckle in laser scanner displays in which the projection optical system would typically comprised beam scanning components and light modulators well known to those skilled in the art of scanned laser displays. Although in FIG. 1A the ESBG despeckler device is disposed between the lens 7 and the projection optical system 4, the invention does not assume any particular location for the ESBG. Advantageously, the ESBG despeckler device is located in a collimated beam path to provide high diffraction efficiency.


An ESBG despeckler device according to the principles of the invention typically comprises at least one ESBG element. Each ESBG layer has a diffracting state and a non-diffracting state. Typically, the ESBG element is configured with its cell walls perpendicular to an optical axis. An ESBG element diffracts incident off-axis light in a direction substantially parallel to the optical axis when in said active state. However, each ESBG element is substantially transparent to said light when in said inactive state. An ESBG element can be designed to diffract at least one wavelength of red, green or blue light. In the embodiments to be discussed in the following description of the invention at least one ESBG layer in the ESBG despeckler device is configured as an array of selectively switchable ESBG pixels.


ESBG despeckler devices for reducing speckle according to the principles of the present invention are configured to generate set of unique speckle patterns within an eye resolution cell by operating on the angular and/or phase characteristic of rays propagating through the ESBG despeckler device. The ESBG despeckler devices disclosed herein may be used to overcome both objective and subjective speckle.


As will be explained below, in any of the embodiments of the invention the ESBG despeckler device may comprise more than one ESBG layer fabricated according to the principles described above. Furthermore, the ESBG despeckler device may be configured in several different ways to operate on one or more of the phase, and ray angular characteristics of incoming light.


Varying the electric field applied across the ESBG despeckler device varies the optical effect of the ESBG despeckler device by changing the refractive index modulation of the grating. Said optical effect could be a change in phase or a change in beam intensity or a combination of both. The optical effect of the ESBG despeckler device is varied from zero to a predetermined maximum value at a high frequency by applying an electric field that varies in a corresponding varying fashion. Said variation may follow sinusoidal, triangular, rectangular or other types of regular waveforms. Alternatively, the waveform may have random characteristics. Each incremental change in the applied voltage results in a unique speckle phase cell. A human eye 5 observing the display of FIG. 1A integrates speckle patterns such as those illustrated by 500a, 500b to provide a substantially de-speckled final image.


The basic principles of speckle reduction using angular diversity are illustrated schematically in FIG. 1B. The projection beam axis and the eye line of sight are assumed to lie on a common optical axis indicated by 1201. The exit pupil of the projection systems is indicated by 1202 and the entrance pupil of the eye is indicated by 1203. The diameters of the projection and eye pupils are D1 and D2 respectively and the projection and eye pupils are located at distances of R1 and R2 respectively from a transmissive screen 5. The projection light indicated by 1204 is provided by an optical system such as the one illustrated in FIG. 1A. The light detected by eye indicated by 1203 is imaged onto the retina. In order for the eye to detect the optimum speckle reduction the eye must resolve the laser illuminated area into resolution spots having a resolution spot size indicated by 1501 which is greater than or approximately equal to a speckle surface resolution cell such as the one indicated by 1502 For light of wavelength λ the diameter of the eye resolution spot is given by the Airy point spread function diameter 2.44λR1/D1. The diameter of the speckle resolution cell such as 1501 is given by 2.44λR2/D2. Temporally varying the phase pattern faster than the eye temporal resolution destroys the light spatial coherence, thereby reducing the speckle contrast.


The invention does not assume any particular type of laser or laser configuration. The laser source may be a single die or an array of die. In one embodiment of the invention shown in the schematic side elevation view of FIG. 2, the laser source comprises a multiplicity of laser emitter die configured as a two-dimensional array 10. A microlens array 70 containing microlens elements may be provided. For example in the array shown in FIG. 2 the lens element 71 converts diverging light 1101 from laser element 11 into a collimated beam 1201. The microlens array does not form part of the invention. The ESBG despeckler device 2 comprises at least one ESBG array where each array contains a multiplicity of separately controllable ESBG elements similar to the one shown in FIG. 1. As shown in FIG. 2, a collimated beam 1201 propagates through an ESBG array element 21. Each ESBG element is operative to receive light from one laser die. In one operational embodiment of the invention said lasers and said ESBGs are operated such that the illumination from the lasers is provided in a time sequence.


In a further embodiment of the invention, which is also illustrated by FIG. 2, the lasers emit light simultaneously. Each ESBG despeckler device provides a unique set of speckle phase cells from its corresponding laser die.


In further embodiments of the invention the ESBG despeckler devices in any of the embodiments described above may be configured using multiple ESBG elements disposed in sequence. For example, referring to the side elevation view of FIG. 3A, it will be seen that the ESBG element of FIG. 1A has been replaced by the two ESBG elements 2A, 2B, which are controlled by the ESBG controller 30. The ESBG elements are operated in tandem with alternating voltages applied across the ESBG layers. The optical effect of each ESBG despeckler device is varied from zero to maximum value at a high frequency by applying an electric field that varies in a corresponding varying fashion. Each incremental change in the applied voltage results in a unique speckle phase cell. Referring to FIG. 3B which is a chart showing voltage versus time applied to the ESBG elements it will be seen that there is a phase lag between the voltages 1001,1002 applied across the ESBGs. The effect of applying such waveforms is that the average intensity 1003 of the speckle phase cells remains substantially constant, thereby satisfying the statistical requirements for speckle reduction. Other types of waveforms may be applied, for example sinusoidal, triangular, rectangular or other types of regular waveforms. Alternatively, it may be advantageous in statistical terms to use waveforms based on a random stochastic process such as the waveforms illustrated in the chart of FIG. 3C. The chart of FIG. 3C shows voltage versus time characteristics for phase shifted random voltages 2001,2002 applied to the ESBG elements. Again, the effect of applying the waveforms is that the average intensity 2003 of the speckle phase cells remains substantially constant.


In any of the embodiments of the invention beam-shaping element disposed along the laser beam paths may be used to shape the intensity profile of the illuminator beam. Laser array tend to have emitting surface aspect ratios of that are incompatible with the aspect ratios of common microdisplay devices. FIG. 4 shows a side elevation view of an illuminator similar to the embodiment of FIG. 1, which further comprises the beam-shaping element 8. The beam-shaping element may be a light shaping diffuser such as the devices manufactured by POC Inc. (USA) or a Computer Generated Hologram. Other technologies may be used to provide the light shaping function.


The ESBG despeckler device may be configured to perform the additional function of beam steering. This may be advantageous with laser arrays in which the die has large separations. In such a configuration at least one ESBG layer is configured to generate speckle phase cells while a further one or more ESBG layers are configured to diffract incident light into a specified direction. Desirably, the second ESBG operates according to the basic principles described in U.S. Pat. No. 6,115,152 entitled HOLOGRAPHIC ILLUMINATION SYSTEM.


In one embodiment of the invention shown in the schematic side elevation view of FIG. 5A the laser display comprises a multiplicity of laser emitter die configured as a two dimensional array 10, a flat panel display, a projection lens and an ESBG despeckler device comprising a first array of separately controllable ESBG elements 2A and a second array of separately controllable ESBG elements 2B. The illuminator further comprises a multiplicity of ESBG elements configured as a stack 40. The first ESBG array operates in a similar fashion to the ESBG despeckler device illustrated in FIG. 2. However the function of the second ESBG array is to deflect beams from the laser die towards the ESBG stack 40. The illuminator may further comprise the microlens array 70. The ESBG stack directs light beams from said laser die towards the viewer. For example the converging light from the die 11 is collimated by the microlens element 71 into the beam direction 1201. The angular or polarization characteristics of the beam are modified by the ESBG element 21A. The ESBG element 21B deflects the beam 1201 into the beam direction 1300. The beam 1300 is deflected into the direction 1400 by element 41 of the ESBG stack 40. FIG. 5B is a front elevation view of a portion of the microlens array. FIG. 5C is a front elevation view of a portion of the laser die array. The configuration of FIG. 5A may be used in conjunction with any of the speckle reduction methods disclosed in the present application. It will be clear that that by eliminating the first ESBG array from the apparatus shown in FIG. 5 there is provide a means for combining beams from multiple laser sources into a common direction. In a further embodiment of the invention the functions performed by the ESBG arrays in FIG. 5 may be combined in a single ESBG layer.


As indicated above ESBG despeckler devices according to the principles of the present invention can be configured to provide a range of spatio-temporal speckle averaging schemes. In any of the embodiments shown in FIG. 15 the ESBG despeckler device could be configured as a variable subwavelength grating. Essentially the ESBG despeckler device acts as a variable phase retarder. FIG. 6 shows a cross section view of a sub wavelength grating 50. The light regions 51 represent polymer fringes. The shaded regions 52 represent PDLC fringes. The grating pitch must be much larger than the incidence light wavelength. Light 600 incident at an angle θ continues to propagate at the same angle after passing through the grating 601. Sub-wavelength gratings are high spatial frequency gratings such that only the zero order 600, forward diffracted 601 and backward “diffracted” waves 602 propagate. All higher diffracted orders are evanescent. Incident light waves cannot resolve the sub-wavelength structures and see only the spatial average of the grating material properties.


An ESBG configured as a sub wavelength grating exhibits a property known as form birefringence whereby polarized light that is transmitted through the grating will have its polarization modified. Subwavelength gratings behave like a negative uniaxial crystal, with an optic axis perpendicular to the PDLC planes. The basic principles of sub wavelength gratings discussed is Born and Wolf, Principles of Optics, 5th Ed., New York (1975). It is known that the retardance is related to the net birefringence, which is the difference between the ordinary index of refraction and the extraordinary index of refraction of the sub-wavelength grating.


Where the combined thickness of the PDLC plane and the polymer plane is substantially less than an optical wavelength the grating will exhibit form birefringence. The magnitude of the shift in polarization is proportional to the length of the grating. By carefully selecting the length of the subwavelength grating for a given wavelength of light, one can rotate the plane of polarization. Thus, the birefringence of the material may be controlled by simple design parameters and optimized to a particular wavelength, rather than relying on the given birefringence of any material at that wavelength.


It is known that the effective refractive index of the liquid crystal is a function of the applied electric field, having a maximum when the field is zero and a value equal to that of the polymer at some value of the electric field. Thus, by application of an electric field, the refractive index of the liquid crystal and, hence, the refractive index of the PDLC plane can be altered. When the refractive index of the PDLC plane exactly matches to the refractive index of the polymer plane, the birefringence of the subwavelength grating can be switched off. To form a half-wave plate, the retardance of the subwavelength grating must be equal to one-half of a wavelength and to form a quarter-wave plate, the retardance must be equal to one-quarter of a wavelength.


ESBGs based on sub-wavelength gratings as described above may be operated in tandem with alternating voltages applied across the ESBG layers according to the principles illustrated in FIG. 3. The retardance of each ESBG is varied from zero to maximum value at a high frequency by applying an electric field that varies in a corresponding varying fashion. Each incremental change in the applied voltage results in a unique speckle phase cell. The effect of applying waveforms such as those illustrated in FIG. 3 is that the average intensity of the speckle phase cells remains substantially constant thereby satisfying the statistical requirements for speckle reduction. Despeckling schemes based on controlling retardance are sometimes referred to as polarization diversity schemes.


ESBG despeckler devices according to the principles of the present invention can be also configured as variable axicon devices. In such embodiments of the invention the ESBG acts as a variable phase retarder. According to the basic theory of axicons, a uniform plane wave passing through an infinite axicon has a transverse intensity profile represented by a first order Bessel function. The intensity profile is constant along the path giving what is effectively a non-diffracting beam. The basic principles of axicons are discussed in an article by J. H. McLeod entitled “Axicons and Their Uses” (JOS A, 50 (2), 1960, p. 166) and another article by R. M. Herman and T. A. Wiggins entitled “Production and uses of diffraction less beams” (JOSA A, 8 (6), 1991). Practical axicons use collimated Gaussian input beams and generate output beams that are referred to in the literature as a Bessel-Gauss beams. Classical axicons are typically conical single element lenses. The transverse intensity distribution at a specific position is created by constructive interference from a small annulus of rays incident on the axicon. Beam intensity is characterized by an intense central region encircled by rings of lower intensity. Each ring contain same amount of energy. Axicons have minimal optical power imparting only a small deviation to the incoming beam.


ESBG despeckler devices based on axicons as described above may operate in tandem with alternating voltages applied across the ESBG layers according to the principles illustrated in FIG. 3. The retardance of each ESBG axicon device is varied from zero to a predetermined maximum value at a high frequency by applying an electric field that varies in a corresponding varying fashion. Each incremental change in the applied voltage results in a unique speckle phase cell. The effect of applying waveforms such as those illustrated in FIG. 3 is that the average intensity of the speckle phase cells remains substantially constant thereby satisfying the statistical requirements for speckle reduction. In one embodiment of the invention ESBG despeckler devices based on axicons could be configured in tandem. In such a configuration laser wavefronts will not be diffracted but will only experience phase retardation. The diffracted beams substantially overlay the non-diffracted beams. Both diffracted and non-diffracted beams undergo phase retardation.



FIG. 7A is a schematic side elevation view of one configuration 60 of a pair of conical lens axicons 61,62. FIG. 7B is a schematic side elevation view of an ESBG despeckler device 70 comprising a pair of ESBG layers 71,72 having optical characteristics equivalent to conical lens axicons 61,62 respectively. FIG. 7C is a schematic side elevation view of an alternative arrangement of conical lens axicons 80 comprising a pair of conical lens axicons 81, 82 which could be encoded into the ESBG layers 71,72 respectively.


ESBG despeckler devices according to the principles of the present invention can be also configured as variable diffusers or scatterers. A variable diffuser is provided by recording diffusing characteristics in to an ESBG layer using procedures well known to those skilled in the art of holography. Conventionally, holographic optical element with diffusing characteristics are recorded by using a holographic cross beam recording apparatus with a diffuser inserted into one of the recoding beams. ESBGs characterized as diffusers may be operated in tandem with alternating voltages applied across the ESBG layers according to the principles illustrated in FIG. 3. FIG. 8 is a schematic side elevation view of one configuration 90 of an ESBG despeckler device comprising a pair of ESBG diffusers 90A,90B. The transmittance of each ESBG is varied from zero to a predetermined maximum value at a high frequency by applying an electric field that varies in a corresponding varying fashion. Each incremental change in the applied voltage results in a unique speckle phase cell. The effect of applying waveforms such as those illustrated in FIG. 3 is that the average intensity of the speckle phase cells remains substantially constant thereby satisfying the statistical requirements for speckle reduction. Despeckling schemes based on diffusers or scatters are sometimes referred to as angular diversity schemes.


In a further embodiment of the invention shown in FIG. 9 which is similar to that illustrated in FIG. 2 it will be seen that the ESBG array 2 of FIG. 2 has been replaced by the two ESBGs 2a and 2b, which are controlled by the ESBG controller 30. The ESBGs 2a,2b may encode axicons, sub-wavelength gratings or diffusers. As discussed in the preceding paragraphs, the ESBGs 2a and 2b are operated in tandem with alternating voltages applied across the ESBG layers. The angular or polarization effect of each ESBG array cell is varied at a high frequency by applying an electric field that varies in a corresponding varying fashion. Each incremental change in the applied voltage results in a unique speckle phase cell. The laser source comprises a multiplicity of laser emitter die configured as a two-dimensional array 10. A microlens array 70 containing elements may be provided. For example in the array shown in the Figure the lens element 71 converts diverging light 101 from laser element 11 into a collimated beam 201. The beam 201 propagates through the ESBG array elements 21a and 21b in sequence.


A laser display according to the principles of the invention is shown in the side elevation view of FIG. 10. The laser display comprises a laser source 1 and an Electrically Switchable Bragg Grating (ESBG) device 2, which is disposed along the laser beam path. The apparatus of FIG. 10 further comprises a beam expander 73 a lens system indicated by 74 and a projection lens indicated by 75. There is further provided a flat panel display 45. The beam expander converts the laser output beam indicated by 1701 into the expanded beam indicated by 1702. The beam emerging from the ESBG despeckler device is indicated by 1703a. The ESBG despeckler device, which is not shown in detail, may be based on any of the ESBG despeckler devices discussed above. The ESBG despeckler device may be an array of selectively controllable cells as discussed above. In certain cases the ESBG despeckler device may comprise a single cell. The ESBG despeckler device may comprise a stack of similarly configured ESBG arrays or single cells. The ESBG despeckler device may include ESBG arrays designed to operate on red, green or blue light. The ESBG despeckler device may comprise arrays disposed adjacent to each other in a plane. In FIG. 10 the beam 1703a corresponds to the light emitted from a single cell of the ESBG despeckler device. The lens system 74 transforms the beam 1703a into the beam 1703b forming an illumination path that covers the active area of the flat panel display 45. The projection lens collects the image light indicated by 1705 from the flat panel display and focuses light indicated by 1705 to form an image at the screen 5. The laser source 1 comprises at least a single laser emitter die. Typically, the laser source comprises separate red, green and blue die. Alternatively, each of the red, green and blue lights may be provided by arrays of die. The invention is not restricted to any particular laser source configuration. The ESBG drive electronics are not illustrated. The flat panel display may be an LCD or any other type of device commonly used in video projection. The apparatus may further comprise relay optics, beam folding mirrors, light integrators, filters, prisms, polarizers and other optical elements commonly used in displays.


Another laser display according to the principles of the invention is shown in the side elevation view of FIG. 11. The laser display comprises a laser source 1 and an Electrically Switchable Bragg Grating (ESBG) device 2, which is disposed along the laser beam path. The apparatus of FIG. 11 further comprises a beam expander 73, a lens system indicated by 77, a projection lens indicated by 75 and a light integrator pipe indicated by 76. There is further provided a flat panel display 45. The beam expander converts the laser output beam indicated by 1701 into the expanded beam indicated by 1702. The beam emerging from the ESBG is indicated by 1703c. The ESBG despeckler device, which is not shown in detail, may be based on any of the ESBG despeckler devices discussed above. The ESBG despeckler device may be an array of selectively controllable cells as discussed above. In certain cases the ESBG despeckler device may comprise a single cell. The ESBG despeckler device may comprise a stack of similarly configured ESBG arrays or single cells. The ESBG despeckler device may include ESBG arrays designed to operate on red, green or blue light. The ESBG despeckler device may comprise arrays disposed adjacent to each other in a plane. In FIG. 11 the beam 1703c corresponds to a portion the light emitted from a single cell of the ESBG despeckler device. The lens system 77 transforms the beam 1703c into the beam 1703d forming an illumination patch at the aperture of the light integrator pipe. The integrator pipe emits light 1703e towards the flat panel display. It should be noted that further lens elements may be inserted at any point in the optical train illustrated in FIG. 11 for the purpose of beam illumination profile shaping and aberration correction. The projection lens collects the image light indicated by 1704 from the flat panel display and focuses light indicated by 1705 to form an image at the screen 5. The laser source 1 comprises at least a single laser emitter die. Typically the laser source comprises separate red, green and blue die. Alternatively, each of the red, green and blue lights may be provided by arrays of die. The invention is not restricted to any particular laser source configuration. The ESBG drive electronics are not illustrated. The flat panel display may be an LCD or any other type of device commonly used in video projection. The apparatus may further comprise relay optics, beam folding mirrors, light integrators, filters, prisms, polarizers and other optical elements commonly used in displays.


In the embodiments of the invention discussed above the ESBG despeckler device is located in the illumination path leading up to the flat panel display. In alternative embodiments of the invention the ESBG despeckler device may be located in the optical train after the flat panel display. Another laser display according to the principles of the invention is shown in the side elevation view of FIG. 12. The laser display comprises a laser source 1 and an Electrically Switchable Bragg Grating (ESBG) device 2, which is disposed along the laser beam path. The apparatus of FIG. 12 further comprises a beam expander 73 a lens system indicated by 78 and a projection lens indicated by 75. There is further provided a flat panel display 45. The beam expander converts the laser output beam indicated by 1701 into the expanded beam indicated by 1702. The ESBG despeckler device, which is not shown in detail, may be based on any of the ESBG despeckler devices discussed above. The ESBG despeckler device may be an array of selectively controllable cells as discussed above. In certain cases the ESBG despeckler device may comprise a single cell. The ESBG despeckler device may comprise a stack of similarly configured ESBG arrays or single cells. The ESBG despeckler device may include ESBG arrays designed to operate on red, green or blue light. The ESBG despeckler device may comprise arrays disposed adjacent to each other in a plane. In FIG. 10 the beam 1703a corresponds to the light emitted from a single cell of the ESBG despeckler device. The lens 78 essentially functions as a Fourier transform lens directing light indicated by 1707 towards a Fourier plane indicated by 1709. The ESBG despeckler device is disposed in close proximity to the Fourier plane. Desirably, the aperture of ESBG coincides with the illumination patch formed at the Fourier plane by the lens 78. The basic principles of Fourier optics are discussed in a book entitled “Introduction to Fourier Optics” by Joseph Goodman published by McGraw-Hill (2nd Edition January 1996). The projection lens collects the image light indicated by 1708 from the flat panel display and focuses light indicated by 1705 to form an image at the screen 5. The laser source 1 comprises at least a single laser emitter die. Typically the laser source comprises separate red, green and blue die. Alternatively, each of the red, green and blue lights may be provided by arrays of die. The invention is not restricted to any particular laser source configuration. The ESBG drive electronics are not illustrated. The flat panel display may be an LCD or any other type of device commonly used in video projection. The apparatus may further comprise relay optics, beam folding mirrors, light integrators, filters, prisms, polarizers and other optical elements commonly used in displays.


In one embodiment of the invention in which the ESBG despeckler device is located after the flat panel display the ESBG despeckler device forms part of the projection lens. Such an embodiment is illustrated in the schematic side elevation view of FIG. 13. In FIG. 13 the projection lens is represent by the elements 75a, 75b. The ESBG despeckler device is disposed between lens elements 75a, 75b. Desirably the ESBG despeckler device is position adjacent to the aperture stop. Light 1703 from the flat panel display 45 forms a beam 1704 inside the lens. The light indicated by 1705 emerging from the projection lens forms an image on a projection screen. Certain types of projection lenses are designed with external aperture stops located in front of the lens that is between the lens and the display panel. In such lens configurations the ESBG despeckler device would likewise be disposed in front of the lens near the external aperture stop. It will be appreciated that the lens shown in FIG. 13 is greatly simplified for the purposes of explaining the invention. In general the projection lens will be a complex multi-element system.



FIGS. 14-17 shows schematic front elevation views of different configurations of the ESBG despeckler device in which the ESBGs are configured as arrays of selectively controllable ESBG pixels.


In the embodiment of FIG. 14 the ESBG comprises an array containing ESBG pixels such as the one indicated by 24. The pixels may be configured as variable subwavelength gratings, diffusers or axicons.


In the embodiment shown in FIG. 15 the ESBG despeckler device comprises a stack of three layers indicated by the symbols R,G,B where the layers have substantially the same specifications but are designed to operate on red, green and blue light respectively. The arrays indicated by R,G,B contains ESBG pixels such as the ones indicated by 25a,25b,25c respectively. The pixels may be configured as variable subwavelength gratings, diffusers or axicons.


In the embodiment of FIG. 16 the ESBG despeckler device comprises a stack of three layers indicated by the symbols X,Y,Z containing ESBG pixels such as 26a,26b,26c respectively. The layer indicated by the symbol X comprises variable diffusers. The layer indicated by the symbol Y comprises variable subwavelength gratings. The layer indicated by the symbol Z comprises variable axicons. It will be clear that many variations of the embodiment of FIG. 16 are possible using different combinations of ESBG types as well as ESBG configured for specific wavelengths. The number of layers is only limited by transmission losses and switching circuitry complexity.


In one embodiment of the invention ESBG arrays may be configured adjacent to each other as shown in the schematic front elevation view of FIG. 17. Desirably the ESBG arrays would be mounted on a common substrate. In the embodiments of FIG. 17 separate ESBG arrays are provided for red green and blue light indicated by the symbols R,G, B respectively with typical cells in each array being indicated by 27a,27b,27c respectively. The embodiments of FIG. 17 will required special light guide schemes for delivering light from red green and blue sources to the ESBG despeckler device and for combining light into a common beam path after the ESBG despeckler device. It will be clear from consideration of FIGS. 15-16 that the principles of stacking ESBG arrays and disposing ESBG arrays on a common substrate as taught above can be combined to provide many different ESBG despeckler device configurations.



FIG. 18 shows a plan schematic view of one operational embodiment of the invention for providing color sequential red green and blue laser illumination. There are provided separated red, green and blue laser modules. The red module comprises at least one laser source 1R, beam expansion and collimation lens system represented by 2R, an ESBG despeckler device further comprising a first ESBG array 3R and a second ESBG array 4R. The lens 2R forms the collimated beam generally indicated by 1010R. The despeckled beam at the output of the red module is generally indicated by 1020R. The green module comprises at least one laser source 1G, beam expansion and collimation lens system represented by 2G, an ESBG despeckler device further comprising a first ESBG array 3G and a second ESBG array 4G. The lens 20 forms the collimated beam generally indicated by 1010G. The despeckled beam at the output of the blue module is generally indicated by 1020B. The blue module comprises at least one laser source 1B, beam expansion and collimation lens system represented by 2B, an ESBG despeckler device further comprising a first ESBG array 3B and a second ESBG array 4B. The lens 2B forms the collimated beam generally indicated by 1010B. The despeckled beam at the output of the blue module is generally indicated by 1020B. A mirror 5R reflects the red beam along an optical axis to provide a beam 1030R. A green reflecting dichroic mirror 5G reflects the green beam along an optical axis to provide a beam 1030G. A blue reflecting dichroic mirror 5B reflects the blue beam along an optical axis to provide a beam 1030G. A lens system generally indicated by 6 directs the beams 1030R,1030G,1030B towards a display panel 7. A projection lens 8 projects an image of the display panel onto a screen, which is not shown.


In one embodiment of the invention based on the embodiment illustrated in FIG. 18 the first red, green and blue ESBG arrays may be provided on a first common substrate and the second red, green and blue ESBG arrays may be provided on a second common substrate.


In one embodiment of the invention based on the embodiment of FIG. 18 the ESBG arrays are each configured to operate as variable diffusers as described above. In other embodiments of the invention based on the embodiment of FIG. 18 one of the ESBG arrays may operate as a variable diffuser and the other as a variable sub wavelength grating. In a yet further embodiment of the invention based on the embodiment of FIG. 18 at least one of the ESBGs may combine the optical functions of a variable diffuser and beam homogenizer.



FIG. 19 shows another operational embodiment of the invention. There is provided a despeckler comprising a first ESBG array 28a and a second ESBG array 28b. There is further provided a Diffractive Optical Element (DOE) 29a. Said DOE may be a holographic element such as a Bragg hologram. Said DOE may be a SBG. The DOE directs off axis incident laser light 1100A into a direction 1101A normal to the surfaces of the ESBG arrays. The light emerging from the ESBG arrays is emitted in the average ray direction 1102A. The direction 1102a may be substantially the same as the ray direction 1101A. Normally, ESBGs require off axis illumination for high diffraction efficiency.



FIG. 20 shows an alternative embodiment of the invention similar to that of FIG. 19 in which incident light 1103A is substantially normal to the surfaces of the ESBG arrays. A DOE 29B is used to deflect the light away from the incident light direction in the direction 1104A. The ESBG arrays then deflect light into an average ray direction 1105A substantially parallel to the incident light direction 110A.


In one embodiment of the invention based on the embodiment of FIGS. 19-20 the ESBG arrays are each configured to operate as variable diffusers as described above. In other embodiments of the invention based on the embodiment of FIGS. 19-20 one of the ESBG arrays may operate as a variable diffuser and the other as a variable sub wavelength grating. In a yet further embodiment of the invention based on the embodiment of FIGS. 19-20 at least one of the ESBGs may combine the optical functions of a variable diffuser and beam homogenizer.


Electrode Structure for ESBG Arrays


A method of fabricating an ESBG array for use within the present invention will now be discussed. The method is very similar to the one described in a co-pending PCT US2006/043938 filed 13 Nov. 2006, claiming priority to US provisional patent application 60/789,595 filed on 6 Apr. 2006, entitled METHOD AND APPARATUS FOR PROVIDING A TRANSPARENT DISPLAY. Although said PCT is directed at the use of ESBGs as transparent elements for displaying symbolic information, the fabrication methods described therein may be applied directly to the present invention.


The process of fabricating an ESBG array according to the basic principles of the invention is shown in FIGS. 21 to 24. The first six steps are shown in FIGS. 21-22. For the purposes of explaining the invention an ESBG array comprising a single rectangular shaped ESBG is considered. It will be clear from consideration of the drawings that the process for fabricated a one or dimensional array will require identical steps.


Step 1 is illustrated by the plan view of FIG. 21A and the side elevation view of FIG. 22A. In Step 1a substrate coated on one side with an antireflection coating 102 and coated on the opposing side with a layer of Indium Tin Oxide (ITO) 103 is provided. The element shown in FIG. 21A and FIG. 22A is referred to as the electrode plate. Only the ITO coated surface is shown in FIG. 21A. The antireflection coating may not be required in certain embodiments of the invention.


Step 2 is illustrated by the plan view of FIG. 21B and the side elevation view of FIG. 22B. In Step 2 portions of the ITO on the electrode plate are removed to provide a patterned ITO region generally indicated by 130 and comprising the ESBG array pixel pad 131, an electrical connection path 132 and a power supply connector pad 133. At this stage in the process the alignment markers 111,112 may be deposited onto the substrate.


Step 3 is illustrated by the plan view of FIG. 21C and the side elevation view of FIG. 22C. In Step 3 a layer of UV absorbing dielectric material 104 is deposited over the electrode layer 130.


Step 4 is illustrated by the plan view of FIG. 21D and the side elevation view of FIG. 22D. In Step 4 a portion of said UV absorbing dielectric material overlaying ESBG array pixel pad 131 is removed. FIG. 21E shows a plan view of the superimposed dielectric layer and ITO layer.


At Step 5, which is not illustrated, a second substrate again coated on one side with an antireflection coating and coated on the opposing side with a layer of ITO is provided. The antireflection coating may not be required in certain embodiments of the invention.


Step 6 is illustrated by the plan view of FIG. 21F and the side elevation view of FIG. 22E. In Step 6 the ITO layer of said second substrate is etched to provide the electrode structure general indicated by 170 comprising a central portion 171 substantially identical to and spatially corresponding with the ESBG array pixel pad 131, the background area 172 and the perimeter regions 173a,173b from which ITO material has been removed. The width of the perimeter regions 173a,173b are required to be large enough to avoid the risk of short circuits occurring. Desirably the width of the perimeter regions should be less than 50 microns.


In a further step, Step 7, which is not illustrated, the two substrates processed according to the above steps are combined to form a cell with the electrode coated surfaces of the two substrates aligned in opposing directions and having a small separation.


In a further step, Step 8, which is not illustrated, the cell is filled with a PDLC mixture.


In the final step, Step 9, of the fabrication process the HPDLC region corresponding to the ESBG array pixel pad is recorded.


A schematic side view of an assembled ESBG array cell according to the basic principles of the invention is shown in FIG. 23. Again, only one pixel pad of the array is shown for simplicity. The ESBG array comprises a first transparent substrate 101, an antireflection coating 102, a first ITO layer 130 covering a portion of the surface of the substrate, a UV absorbing dielectric layer 140 covering a portion of the ITO and of the substrate, a PDLC layer 110, a second substrate 105 having one surface coated with an ITO pattern indicated by 170 and the opposing face coated with an antireflection coating 106. The antireflection coatings 102, 106 may not be required in certain embodiments of the invention.



FIG. 24 shows the HPDLC recording process used. The cell is illuminated from one side by a pair of intersecting beams generally indicated by 1000 from a UV laser. The incidence angles of the beams will be precise beam angle requirements of the illuminator device. The intersecting laser beams interfere only in the region of PDLC under the apertures etched out of the dielectric layer. As described earlier the interference causes a grating 300 comprising alternating LC-rich/polymer-depleted and LC-depleted/polymer-rich regions to be formed. At the same time, the PDLC material is UV cured by illuminating the cell from the opposite side using incoherent UV light generally indicated by 2000. The incoherent UV light gives rise to the PDLC region 300. The PDLC is characterized by large LC droplets having random orientations. However, the HPDLC grating is characterized by tiny droplets having a preferred alignment. The relative intensities of the UV laser and the incoherent UV source are balanced to optimize the switching characteristics of the PDLC and HPDLC regions. When an electric field source is coupled across the ITO electrodes 130 and 170 the grating remains active when no field is applied but is deactivated when a field is applied.


For the purposes of explaining the invention the thicknesses of the coatings in FIGS. 21-24 have been greatly exaggerated. The details of the wiring around the pads and the means of connecting the pad to the power supply have not been shown in FIGS. 21-24. Although FIGS. 21-24 show only one ESBG pixel pad, the process steps may be applied to an array of ESBG pixels arrayed on large area substrates, such as commercially available seven inch substrates. Although the ESBG pixel pad shown in FIGS. 21-24 is of rectangular shape, the process may generally be applied to ESBGs of any required shape and size.


A method of fabricating an ESBG array in accordance with the invention will now be described with reference to FIG. 25.


At step 500, a substrate to which a transparent electrode layer has been applied is provided.


At step 501, portions of said transparent electrode layer are removed to provide a patterned electrode layer including at least one ESBG pixel pad.


At step 502, a layer of UV absorbing dielectric material is deposited over said patterned electrode layer.


At step 503, the portion of said UV absorbing dielectric material overlapping said ESBG pixel pad is removed.


At step 504, a second substrate to which a transparent electrode layer has been applied is provided.


At step 505, the transparent electrode layer of said second substrate layer is etched to provide a patterned electrode layer including an electrode element substantially identical to and spatially corresponding with said ESBG pixel pad.


At step 506, the substrates are combined to form a cell with the coated surfaces of the two electrode coated surfaces aligned in opposing directions and having a small separation.


At step 507, said cell is filled with a PDLC mixture.


At step 508, the cell face formed by the first substrate is illuminated by crossed UV laser beams, and simultaneously illuminating the cell face formed by the second substrate by an incoherent UV source.


In production, the masks will need to be mirror imaged and colored appropriately for the particular process and photo-resist used. The top level ITO mask would typically include a set of alignment features such as the ones shown in FIG. 24 to facilitate the assembly of the ESBG array. Further alignment features may be incorporated if required by the process.


The ITO layer typically has a coating resistance of typically 300-500 Ohm/sq. A typically example of an ITO film used by the inventors is the N00X0325 film manufactured by Applied Films Corporation (Colorado). Typically, the ITO film has a thickness of 100 Angstrom. Typically, the ITO film is applied to 0.7 mm thickness 1737 F glass. The ITO layer 170 should have the same properties as the ITO of Level 1.


The dielectric layer 140 in FIG. 23 should have a thickness sufficient to withstand a peak voltage of 100V between the ITO layers. Desirably, the dielectric should be free from pinholes. The transmission of the dielectric layer at a wavelength of 365 nm and incidence angle in the range 30 to 60 degrees should, ideally, be less than 0.1%. However, in many applications transmissions of up to 5% may be acceptable.


Typically the layer-to-layer registration should be + or −0.25 micron (+ or −0.001 inch).


A first benefit of the process discussed above is that it eliminates the need for a focused mask in the exposure set-up. In mask-based exposure processes the grating area would need to be slightly larger than the actual ESBG pixel in order to improve background clarity. The use of an etched UV absorbing dielectric layer as disclosed in the present application allows more readily achievable production tolerances, simplifying mass production and lowering cost. A second benefit of the disclosed fabrication process is that it provides an extremely clear background, which is highly desirable in illumination applications. An important feature of an ESBG array fabricated using the above process is that the HPDLC is localized to the ESBG array pixels. The ESBG array fabrication method described above results in a more efficient and cost effective mass production process.


The present invention does not assume any particular process for fabricating ESBG despeckler devices. The fabrication steps may be carried out used standard etching and masking processes. The number of steps may be further increased depending on the requirements of the fabrication plant used. For example, further steps may be required for surface preparation, cleaning, monitoring, mask alignment and other process operations that are well known to those skilled in the art but which do not form part of the present invention.


Although ESBG electrode patterning methods for use with the present invention have been discussed in relation to uniformly patterned two-dimensional arrays such as the array illustrated in FIG. 25 where an ESBG array 171 comprises square ESBG pixels such as 172 it will be clear that the invention may be applied using electrodes patterned in more complex geometries. For example, FIG. 26 shows a plan view of an electrode structure 173 that provides a non-uniform ESBG array pattern for use in a dual electrode structure such as the one illustrated in FIG. 23. The electrode elements such as 174 have very fine gaps to eliminate super grating effects. Typically, the gaps are approximately five microns. From consideration of FIG. 23 it will be appreciated that the electrode elements are energized from underneath by electrical connections to second layer electrode drive tracks. The first and second electrodes sandwich ESBG layers of shape defined by the electrode element shapes. Alignment features such as the one indicated by 175 may be provided.


In one embodiment of the invention that uses an electrode structure of the type shown in FIG. 26 the ESBG regions sandwiched between the irregular electrode elements may encode clusters of point sources for use in angular diversity despeckling.


A Preferred Angular Diversity Despeckler Embodiment


The preferred embodiments of the invention will now be discussed with reference to the drawings in FIGS. 28-41. The ESBG elements are designed to function as diffusers providing speckle reduction according to the principle of angular diversity.


One particular embodiment of the invention that uses angular diversity speckle reduction is illustrated in the schematic side elevation view of FIG. 28. The apparatus comprises a laser source 1, a beam expander comprising the lens elements 91,92 a despeckler further comprising the ESBG elements 93,94, a Diffractive Optical Element (DOE) 95, a lens 96 a flat panel display 97 and a projection lens 98.


The first ESBG element 93 is a plane Bragg grating in other words a grating in which the Bragg surface vectors are aligned in a common direction such that a collimated input beam in a first direction is deflected into a collimated beam in a second direction. The second ESBG element 94 comprises an array of ESBG elements. Advantageously, the ESBG elements and the DOE which are shown as separated in FIG. 28 form a single laminated element. As will be explained below, the second ESBG element provides a multiplicity of narrow beams, referred to as beamlets, separated by small angles where each beamlet is associated with a unique ESBG array pixel.


Each ESBG array pixel may be understood to be a plane grating characterized by a unique grating vector or a grating vector selected from a set of predetermined grating vectors. The angles of separation of the beamlets are referred to as Inter Beamlet Angle (IBA). In certain embodiments of the invention said ESBG elements may incorporate optical power to control the IBA and individual beamlet divergence angles. The effect of incorporating optical power into the ESBG array pixels is equivalent to disposing a microlens array in series with the ESBG 94. The ESBG arrays may encode further optical properties for optimizing the optical characteristics of the beamlets. For example, in further embodiments of the invention the ESBG arrays may encode diffusing characteristics. In yet further embodiments of the invention the ESBG arrays may encode keystone correction.



FIG. 29 illustrates the operation of the ESBG element 93, 94 in more detail. For convenience the ESBG elements 93,94 are illustrated as separated single pixel elements. Normally, ESBGs require off axis illumination for high diffraction efficiency. The incident light 1102 is substantially normal to the surfaces of the ESBG elements. The ESBG element 93 deflects the light away from the incident light direction in the direction 1102B. The ESBG element 94 then deflects light 1102B into an average ray direction 1103 substantially parallel to the incident light direction 1102.


The purpose of the DOE element 95 is to modify the intensity profile of the illumination light to generate a flat average intensity profile at the flat panel display. Typically, the output light from the laser will exhibit a Gaussian intensity profile. A further function of the DOE element 95 may be to apply a predetermined amount of diffusion to the illumination light.


However, as indicated above the diffusion may instead be provided by one of the ESBG elements.


As illustrated in FIG. 28 the laser provides a collimated output beam 1100 which is expanded into a diverging beam 1101 by the lens 91 and then re-collimated into the beam 1102 by the lens 92. The beam 1102 is diffracted by the ESBG elements in turn providing a collimated beam 1102. The beam 1102 passes through the DOE 95, which changes the spatial intensity profile of the beam providing an output beam 1104. The lens 96 focuses the beam 1104 into the converging beam 1105, which forms an illumination patch at the surface of the flat panel display. The projection lens 98 then projects an image of the microdisplay onto a remote screen. The invention is not restricted to any type of projection lens. The ray paths after the flat panel display are not illustrated since the invention is not restricted to any particular method of displaying an image. In certain applications of the invention the image displayed on the flat panel display may be viewed by means of an eyepiece as used in, for example, a wearable display.


A method of recording the ESBG array is illustrated in the schematic side elevation view of FIG. 30. The recording apparatus comprise a laser source 201a beam expander lens system comprising the lenses 251,252 a beam splitter 253, a mirror 254, a second lens 255, a computer generated hologram (CGH) 256 and a cell 257 containing the HPDLC mixture into which the SBG is recorded. The mirror 254 is typically a planar element. In certain embodiments of the invention it may be advantageous to use a curved mirror or a diffractive mirror encoding optical power in order to control the geometrical characteristics of the light reflected from the mirror. The beam splitter may be a beam splitter cube or a flat plate to which a beams splitter coating has been applied. The CGH 256 is designed to generate a set of beamlets of the type described above from a single input beam. As illustrated in FIG. 28 the laser provides a collimated output beam 1204 which is expanded into a diverging beam 1201 by the lens element 51 and then re-collimated into the beam 1202 by the lens 252. The invention does not rely on any particular method of expanding and collimating the light from the laser. The arrangement shown in FIG. 30 is suitable for lasers providing collimated output. Solutions for collimating and expanding the laser beam where the laser provides a divergent beam output are well known to those skilled in the art of laser optics. The beam splitter 253 divides the beam 1202 into the reflected beam 1203 and a transmitted beam 1205. The reflected beam 1203 is reflected by the mirror 254 to provide the beam 1024 incident on the ESBG cell 257. The lens 255 converts the transmitted beam 1205 into the beam 1206 incident on the CGH. The CGH is designed to convert the incident beam 1206 into the fanned out beamlets generally indicated by 1207. An ESBG is recorded by exposing a HPDLC mixture contained in the cell to the simultaneously applied beams 1204 and 1207 and patterning the cell with transparent array of electrodes according to the principles discussed above. In holographic recording terms beam 1204 provides the reference beam and beam 1207 provides the object beam. From consideration of FIG. 30 it will be apparent that after reconstruction using the reference beam the resulting ESBG element is equivalent to a N×N array of sub elements or pixels where each pixel encodes one beamlet. Typically the array would have dimension N=20.


Each beamlet contributes a separate speckle pattern. The cumulative effect of combining the full set of speckle patterns provided by the beamlets is to reduce speckle contrast and hence reduce the magnitude of the speckle perceived by a viewer. The physical mechanism by which the speckle is reduced relies on the angular diversity resulting from combining many beamlets characterized by small IBAs. The ESBG array pixels are modulated by selectively applying a voltage waveform to each ESBG pixel. By providing a sufficiently large dimension N and modulating the ESBG pixels using a suitable waveform a large number of speckle patterns may be averaged within the eye integration time. The applied waveform at any given ESBG pixel may have a range of possible characteristics such as rectangular or triangular and may be regular or random. The inventors have found that approximately 27 speckle patterns must be integrated to reduce the intensity variation along line in the speckle pattern to 1%. Assuming a 1/60 second eye integration time this gives 27×60=1620 speckle samples per second.


An exemplary monochromatic despeckler embodiment would have the following specifications: operating wavelength: 550 nm; an inter beam angle of 0.2 degree giving a total angle for a 40×40 width of 39*0.2=7.8 degrees. The size of the ESBG elements is typically 50×50 mm. The DOE element 95 would typically provide isotropic diffusion over a 2.5-degree cone.



FIGS. 31-32 illustrate an alternative method of recording the ESBG array to the one illustrated in the schematic side elevation view of FIG. 30. FIG. 31 is identical to FIG. 30 and is shown again for comparison purposes. FIG. 32A is a schematic side elevation view of an alternative embodiment in which the recording apparatus again comprises a laser source 201a beam expander lens system comprising the lenses 251,252 a beam splitter 253, a mirror 254, a second lens 255, a computer generated hologram (CGH) 256 and a cell 257 containing the BPDLC mixture into which the SBG is recorded. However in the case of FIG. 32A the CGH 56 generates four fan out beams instead of a single beam as used in FIG. 31. FIG. 32B is a front elevation view indicated the effective origins of the beams near to the output surface of the CGH 258 with the origin of one beam being indicated by the symbol 259.


A further embodiment of the invention illustrated in the schematic side elevation view of FIG. 33A is similar to the embodiment of FIG. 32. Again the first ESBG 93 is a plane Bragg grating in other words a grating in which the Bragg surface vectors are aligned in a common direction such that a collimated input beam in a first direction is deflected into a collimated beam in a second direction. The second ESBG 94 comprises an array of ESBG elements. However, in the case of FIG. 33A the DOE diffuser 93 is disposed in front of the ESBG elements.


Advantageously, the ESBGs and the DOE form a single laminated element. As indicated in FIG. 33B the ESBG elements are again configured to operate in the fashion illustrated in FIG. 29


In an alternative embodiment of the invention illustrated in the schematic side elevation view of FIG. 34 the ESBG despeckler device is also based on two ESBG elements. Again the first ESBG element 93 is a plane Bragg grating in other words a grating in which the Bragg surface vectors are aligned in a common direction such that a collimated input beam in a first direction is deflected into a collimated beam in a second direction. The second ESBG element 96 comprises an array of ESBG pixels, which operate according to the principles of the ESBG array 94 discussed above. However, the ESBG element 96 now encodes diffusion characteristics eliminating the need for the DOE diffuser 95. Advantageously, the ESBG elements form a single laminated element. As indicated in FIG. 34B the ESBG elements 93,96 are configured to operation in the same fashion as the ESBG elements 93,94 illustrated in FIG. 29 and are referenced using the same symbols.


Advantageously, in the embodiments of FIGS. 28-34 the ESBG array is fabricated by first designing and fabricating a CGH with the required optical properties and then recording said CGH into the ESBG element. Recording the CGH into the ESBG element essentially means forming a hologram of the CGH using conventional holographic recording techniques well known to those skilled in the art of holography. It should be noted that the resulting ESBG element is not identical in every respect to the CGH since properties of a CGH rely on its surface phase relief features while the optical characteristics of a Bragg grating such as an ESBG rely on a complex three dimensional fringe distribution.


A volume hologram as an ESBG has much a much higher SBWP (Space Band Width Product) than a surface relief CGH since any point in the hologram can take a specific phase value. In the case of a CGH the entire optical functionality burden must be carried by just two phase levels. The CGH is calculated or iteratively optimized via a direct or iterative Fast Fourier Transform (FFT) algorithm where the reconstruction occurs in the far field. Advantageously, there are very many different solutions to a given intensity diffraction pattern problem. Hence the speckle grains in the reconstructed image can be changed, without changing the overall intensity image. There are many ways to implement such a phase change. For example: a) by recalculating the CGH with a different phase on the object; b) by recalculating the CGH with a different algorithm, or differently tuned algorithm; c) by adding a constant or slightly randomized phase carrier on the CGH; or d) by reverting the phase pixels where the CGH operates according to a binary or Babinet principle.


Embodiments Using ESBG Arrays Operating in Anti Phase


In an one embodiment of the invention illustrated in the schematic side elevation view of FIG. 35A there is provided a display device comprising a laser source 1, a beam expander comprising the lens elements 91,92 a despeckler further comprising the HOE 93, the ESBG arrays 99A,99B, a lens 96 a flat panel display 97 and a projection lens 98. The ESBG elements 99A, 99B are each arrays of selectively switchable ESBG elements. Each ESBG array operates according to the principles of the ESBG arrays of FIGS. 28-34. Each ESBG array essentially provides a multiplicity of beamlets separated by small angles. Each ESBG array also provides a predetermined amount of diffusion to each said beamlet.


The HOE 97 is typically recorded in a photopolymer of the type manufacture by DuPont. Desirably, the HOE has a diffraction efficiency of at least 99%. The HOE typically diffracts incident collimated light at normal incident into a direction at 30 degrees to said normal incidence direction. The output angle of the HOE provides the off axis launch angle for the ESBGs. The invention does not rely on any particular value of the launch angle. However the inventors have found that typical launch angles are in the range 30-50 degrees. The apparatus of FIG. 35A may further comprise a DOE for providing illumination control functions of the type discussed above. As indicated above the need for the DOE may be eliminated by providing suitable diffusion and other illumination control optical functions within the ESBGs.


Advantageously the ESBG arrays are offset by a fraction of the ESBG element width in at least one of the vertical or horizontal array axes. In some cases the ESBGs may be offset by an ESBG element width in at least one of the vertical or horizontal axes.


The configuration of the HOE 93 and the ESBG arrays 99A,99B is illustrated in FIG. 35B. In other embodiments of the invention the HOE may be replaced by another diffractive device suitable for performing the required beam steering such that each ESBG elements diffracts light incident at some specified launch angle into a direction normal to the surfaces of the ESBG elements. It will be clear from consideration of FIGS. 35A-35B that and equivalent arrangement of the HOE and the ESBG arrays is provided by disposing the HOE between the first and second ESBG arrays. In other embodiments of the invention the ESBG elements may be tilted at a suitable angle with respect to the illumination eliminating the need for the HOE 97.


In the embodiment of FIG. 35A the ESBG arrays 99A,99B are driven in a random anti-phase fashion by means of an ESBG controller which is not illustrated. To put it another way the ESBGs 99A,99B are operated in tandem with alternating voltages applied across the ESBG layers. The optical effect of each ESBG despeckler device is varied from zero to maximum value at a high frequency by applying an electric field that varies in a corresponding varying fashion. Each incremental change in the applied voltage results in a unique speckle phase cell.


It should be noted that since the ESBG arrays are driven in anti-phase only one ESBG element is active at any time along a give ray path through the ESBG arrays.


Referring to FIG. 35C which is a chart showing voltage versus time applied to the ESBG arrays 99A and 99B it will be seen that there is a phase lag between the voltages 1001,1002 applied across the ESBG arrays. The effect of applying such waveforms is that the average intensity 1003 of the speckle phase cells remains substantially constant, thereby satisfying the statistical requirements for speckle reduction. Other types of waveforms may be applied, for example sinusoidal, triangular, rectangular or other types of regular waveforms. Alternatively, it may be advantageous in statistical terms to use waveforms based on a random stochastic process such as the waveforms 2001,2002 illustrated in the chart of FIG. 35D. Again the effect of applying such waveforms is that the average intensity 2003 of the speckle phase cells remains substantially constant.



FIG. 36 is a schematic side elevation view of a further embodiment of the invention similar to the one shown in FIG. 35. The apparatus of FIG. 36 further comprises an electrically controllable phase modulator cell indicated by 46. The phase modulator is any optical device that can provide a phase retardation in the range from 0 two pi radians. The invention is not limited to any particular phase modulator. Desirably, the phase modulator may be based on an ESBG despeckler devices which encodes a sub wavelength grating. By providing phase diversity and angular diversity the apparatus of FIG. 36 offers an effective solution for reducing both near and far field speckle.


Embodiment Using Combined Phase Diversity and Angular Diversity


In a further embodiment of the invention illustrated in the schematic side elevation view of FIG. 38 there is provided a despeckler apparatus based on the principle of angular and phase diversity. The apparatus comprises a plane ESBG indicated by S1 for deflecting normally incident collimated light 3201 through a specified angle to provide a beam 3204 and a second plane ESBG S2 design to diffract incident light 3204 at said angle into direction 3205 normal to S2 When the ESBGs S1,S2 are not in their diffracting states incident light 3201 is transmitted without substantial deviation through S1 as the light 3202 and the light 3202 is in turn transmitted through S2 without substantial deviation emerging as light 3203. When the ESBG S2 is not in a diffracting state the incident light 3204 is transmitted without deviation in the direction indicated by 3206.


The lateral displacement of the beam when the ESBGs are in a diffracting state results in an optical path difference given by the product of the separation of gratings S1, S2, the average refractive index of the optical path between gratings S1,S2 and the tangent of the diffraction angle. In effect the apparatus of FIG. 38 provides angular diversity and phase diversity simultaneously. ESBG elements illustrated in FIG. 38 may form pixels of two-dimensional ESBG arrays.



FIG. 39 is a schematic side elevation view of a further embodiment of the invention related to the embodiment illustrated in FIG. 37A. The apparatus comprises a plane ESBG indicated by S1 for deflecting normally incident collimated light 3210 and 3220 through a specified angle to provide beams 3211,3221 respectively and a second plane ESBG S2 design to diffract incident light such as 3221 at said angle into direction 3222 normal to S2. A third plane grating ESBG S3 diffracts light incident at said diffraction angle such as 3211 into a direction 3212 normal to S2. When the ESBGs S1,S2,S3 are not in their diffracting states incident light 3210,3220 is transmitted without substantial deviation through S1,S2,S3 in turn emerging as light 3213,3223 respectively. When the ESBG S2,S3 are not in a diffracting state the diffracted light 3211,3221 is transmitted without deviation through S2,S3 emerging as the light 3214,3224 respectively. It will be clear from consideration of FIG. 39 that the lateral displacement of the incident light when the ESBGs are in a diffracting state results in an optical path difference given by the product of the separation of gratings S1,S2 or S2,S3, the average refractive index of the optical path between gratings S1,S2 or S2,S3 and the tangent of the diffraction angle. In effect the apparatus of FIG. 38 provides angular diversity and phase diversity simultaneously. The ESBG elements illustrated in FIG. 38 may form pixels of two-dimensional ESBG arrays. It will be clear from consideration of FIG. 39 that a range of switching schemes may be applied to the ESBG layers to provided combined phase and angular diversity speckle reduction.


Recording of Anti-Phase ESBG Arrays


In preferred embodiments of the invention a multiplicity of different diffuser pattern are recorded in a master diffractive element such as a CGH. Said multiplicity of different diffuser patterns are then recorded into each of two ESBG arrays. Desirably, the ESBGs are operated according in random anti phase according to the principles discussed above.


The recording principles for ESBG arrays designed to operate in random anti phase are illustrated schematically in FIGS. 40-41. In a first step shown in FIG. 40 a quartz binary CGH diffuser indicated by 256 recorded using an optical arrangement similar to the one illustrated in FIG. 32 is provided. In the next step also illustrated in FIG. 40 a CGH diffuser is used in a holographic recording process to form two ESBG cells indicated by 320,330 containing ESBG elements such as the ones indicated by 321,331. A 10×10 pixilated electrode pattern is then deposited on each cell so that 100 individual sub-cells are provided. The second ESBG array is identical to the first ESBG array but is rotated through 180 degrees such that the ESBG elements indicated by 322,323 in the first array become the elements indicated by 332,333 respectively in the second array. The first and second ESBG arrays operate in random anti phase as described earlier. At any time all the cells are diffusing. However, the electrode activation pattern is randomly generated; ensuring a different phase and therefore a different speckle pattern is constantly generated. The electrode pattern would typically be updated at a frequency of around 2.5 kHz.


In FIG. 40 the diffuser 310 is an ESBG characterized by a uniform diffusion prescription modulated using a pixilated structure. In other words each pixel is characterized by the same diffusion characteristics. The number of possible speckle patterns can be greatly increased by recording a master array of CGH elements with pre-computed diffuser prescriptions mapped to the individual pixels in the ESBG arrays. The CGH elements may provide angular and phase diversity. FIG. 41 is a front elevation view of such a CGH array indicated by 340 and comprising CGH elements such 341.


Although a regular 10×10 ESBG is illustrated in FIGS. 40-41 it will be clear that arrays of much higher resolutions may be fabricated based on the principles discussed above. However, small size, cost and complexity requirements in certain despeckler applications may limit the number of elements in the array. It will also be clear that irregular electrode patterning such as that shown in FIG. 27 may be used.


The master array may comprise a wide range of different diffusers whose prescriptions may be designed to provide diffusion patterns characterized by scattering angles, scattering pattern asymmetries, structure diffusion patterns and many others. The invention is not restricted to any particular type of diffusion pattern. Typically, the inventors have found that the far field diffusion patterns required in practical despecklers require a total diffusion angle in the region of 0.5 degrees. The diversity of the available diffusion patterns which may provide angular phase and polarization diversity results in a very large number of speckle samples for integration.


The despeckler relies on combining the effects of many different types of diffuser patterns encoded within a diffractive element. The diffuser patterns may rely on angular diffusion patterns for providing angular diversity with an effect similar to that of a rotating ground glass diffuser.


Embodiments Based on Hadamard Diffusers


Approaches to speckle reduction based on diffusers suffer from the problem that assigning random phases to each speckle cell will require a large number of phase patterns to achieve the maximum theoretical speckle reduction. To overcome this problem in one embodiment of the invention the ESBG may be configured to provide Hadamard diffusers. The principles of Hadamard phase plates are well known in the optical data processing literature. The theory of Hadamard diffusers in relation to speckle reduction is discussed in some detail in a paper by J. I. Trisnadi entitled “Hadamard speckle contrast reduction,” (Optics Letters 29, 11-13 (2004)). Hadamard diffusers offer the advantage of a short phase correlation length allowing the target speckle diversity to be achieved more easily. By providing the permutations of rows and columns according to Hadamard theory a set of N2 Hadamard phase patterns is generated providing considerable economy in terms of the number of phase patterns with a prescribed combination of pi and 0 radian phase shifts. When these phase patterns are presented within the eye integration time with equal weight N2 independent speckles are produced resulting in speckle contrast reduction by a factor of N. The corresponding classical N×N diffuser using random phase would in theory require an infinite number of phase patterns to achieve the same speckle contrast.


Passive Matrix Addressing Schemes for Embodiments Using ESBG Arrays


Several of the embodiments disclosed in the present application require an active matrix switching scheme. The passive matrix addressing schemes to be used in the present invention differs from the ones traditionally used in display panels such as LCD panels. In the latter case all the complexity and requirement for well-defined and steep transition responses is dictated by the way in which the matrix addressing process must be implemented. In normal passive matrix addressing a voltage is defined for all pixels along a first line and a line scan pulse is asserted. When the first line has been scanned the same procedure is applied for the next line and so on. The RMS voltage applied to each pixel is essentially overdriving when scanning a given line, but only by a sufficient margin to ensure that adjacent pixels are not activated, and relying on the slower decay to ‘hold’ state until the next scan comes around. Such a procedure is required in any imaging display where it is necessary to address any specific random pixel in the array without affecting all other pixels.


In the case of the ESBG arrays used in the present invention the row and the columns are driven with arbitrary, random bit patterns as will be explained in the following paragraphs. In other words there is no requirement for a scan drive as in an active matrix display. This offers certain advantages, which may be appreciated by considering the simple example of a 3×3 array. Only six drivers required for a multiplexed drive scheme in a 3×3 array. In this case the column drivers could program any one of 23=8 patterns into the column drive shift register. The row driver could then decide for each row whether to display that row as a positive pattern (i.e. drive a zero, so anything set to 1 in the row is driven) or as a negative pattern (i.e. drive a 1 so anything set to 0 is driven). There are therefore eight distinct options for the row drive also. This gives a total of 64 patterns. Some examples are: Column=010 Row=000, in which case a vertical stripe down the center is driven; Column=010 Row=l 11, in which case two outer vertical stripes are driven; Column=010 Row=O1O, in which case hollow diamond pattern is provided; and Column=010 Row=101, in which case an X shape pattern is provided; and so on


The invention is certainly not limited to arrays of such low resolution. At the time of filing the present application the inventors believe that ESBG array 240×240 switched pixels or higher resolution of area 20×20 mm are feasible.


In the ESBG array each pixel provides a different hologram prescription resulting in a different mix of light for each pixel state and hence a different speckle pattern. Both the row and the columns are driven as if they were columns, with arbitrary, random bit patterns. In other words no scan drive is required as in displays. Therefore there is the simplification that only one type of driver is required. One useful feature in the dual array despeckling scheme is that if just the row drive is inverted, typically by sending a single control bit into the drive chip, then the pattern is inverted. This means that the same data can be shifted into both ESBG arrays. It would be necessary for one array to be set to the invert state and the other array to the normal state.


For example, a 20 bit column driver chip on each sheet of glass can drive a 20×20 array that has 1,099,511,627,776 distinct patterns. Even if the optical system is symmetric resulting in the need to divide the number of patterns by 16 to account for the four axes of symmetry, the number of available speckle patterns is still large. Since all the control lines are driven all the time the need for precise voltage characteristic control is eliminated. Likewise, the problems of maintaining contrast and light efficiency are eased by having the full drive voltage applied at all times. Using this method, the rows and columns are fully charged or discharged. Hence the problem of crosstalk is avoided. The pattern can be held as long as desired for optimizing the response time, power dissipation and visual integration of the diffuser descriptions.



FIG. 42 is a schematic three dimensional illustration showing the apparatus for driving an active matrix despeckler array according to the principles of the invention. The apparatus comprises a first substrate 410 and a second substrate 420, Said first substrate has a first grid of electrodes 411 applied to its second surface. Said second substrate has a second grid of electrodes 421 applied to its first surface which opposes the second surface of the first substrate. The electrode grids are oriented in orthogonal directions providing orthogonal rows and columns as illustrated in FIG. 42. In contrast to display applications in the apparatus of FIG. 43 the rows and columns are driven with arbitrary random bit patterns. There is no scan drive as used in a display device. The rows and columns are either full charged or discharged with the pattern being as long as desired for optimizing the response time, power dissipation and visual integration of the diffuser descriptions. There is no significance to the rows and columns and identical drivers may be used for the two. By this means it is possible to provide very large numbers of random speckle patterns.



FIG. 43 shows the addressing scheme in more detail within which row addressing lines such as X1,X2 and column addressing lines such as Y1,Y2 are used to drive pixels such as the one schematically illustrated by 430.


The array may use a Chip-On-Glass (COG) mounted device such as the 240 channel NT7706 device manufactured by Novatec. Typically a custom controller, 40 v boost switcher and discrete common drive and software including the despeckler switching algorithm would also be provided. The device would typically require a 5 volt input. The link to the cell would be via a standard 10 channel off the shelf flex. Communications and power connectors would be mounted COG.



FIGS. 44-45 represent the sequence of 1 or 0 logic states applied to rows or columns of a 10×10 pixel array. FIG. 44 represents the sequence of logic states generally indicated by 441 provided by the row driver. FIG. 45 represents the sequence of logic states generally indicated by 442 provided by the column driver. Each driver provides 210 random states into each of the column and row shift registers. It will be clear from consideration of FIG. 41 that the number of distinct patterns that can be generated by the above means is given by (220×220)/2=1,099,511,627,776.



FIG. 46 is a schematic view of the 3×3 despeckler ESBG array module. The device generally indicated by 460 comprises ESBG elements such as 461, a column drive 462 a row driver 463, input data interface indicated by 464 and communication link 465. The column driver 463 transfers 23=8 patterns into a column shift register. The row driver 462 transfers 23=8 patterns into a row shift register.



FIG. 47 illustrates the waveform during despeckler ESBG element operation. High Voltage (HV) and Ground (GND) potentials are indicated in each case. The applied voltages are typically between 50 v and 80 v. The solid line plot indicated by 201 results from the ESBG element being driven clear, that is the ESBG is in its non-diffracting state. The dashed line plots indicated by 202, 204 result from the ESBG element remaining in its diffracting state. Note that the polarity of the drive must be alternated to avoid DC ionization of the HPDLC material.



FIG. 48 illustrates the speckle sample generating process used in FIG. 46 in more detail. Column and row data is indicated by the tables 470,480 containing logic 1,0 data as indicated by 471,481. The state of the ESBG array for the illustrated column and row data is indicated by the set of array patterns 490 of which the array 491 is one example comprising ESBG elements such as 492. For the 3×3 array illustrated there are 8*8=64 possible patterns. FIG. 49 provides an illustration of the complete set of patterns indicated by 50. One pattern in the set is indicated by 451 with one element of the patter 451 being indicated by 452. It should be noted that the ESBG element has been shown black whenever the row and column voltage are different and white whenever the row and column voltage are the same. It should also be noted that there are actually only 32 not 64 distinct patterns, since in the case when the cell is driven the transition 0-1 is the same as 1-0 and in the case when the cell is not driven 11 is the same as 00.


It will be clear that the switching schemes illustrated in FIGS. 42-49 may be applied to any of the ESBGs described in the present application including ESBG arrays operating in random anti phase.



FIG. 50 is a schematic side elevation view of an ESBG despeckler device using ESBG arrays operating in random anti phase, which further comprises a polarization switch stage. The apparatus generally indicated by 90 comprises two ESBG arrays 2A,2B operating in anti phase as described above and a polarization switch 46. The two diffusing layers operate in anti-phase triggering an angular/phase diversity due to the anti-phase operation and the 180° recording set-up as described above. The polarization switch provides polarization diversity. The polarization switch, which is not pixilated, is recorded as a sub wavelength grating. The polarization switch operates as a fast polarization rotator providing a phase shift for a given input light polarization. The polarization switch is randomly switched with respect to the pixelated diffuser. Its phase shift is always set to 7C, in order to create the maximum speckle contrast using local destructive interference.


Embodiments Providing Edge Illuminated Despecklers


In the embodiments of the invention discussed above the ESBG despeckler device has been implemented in an illuminator for use in a conventional front or rear projection display. In further embodiments of the invention the ESBG despeckler devices described above may be configured within edge illuminated illuminators and display. Such embodiments of the invention may be used to provide a backlight for illuminating and despeckling laser illuminated flat panel displays.


In certain cases to be discussed below an edge lit ESBG despeckler device may itself provide a complete display device.


In a further embodiment of the invention illustrates in the schematic side elevation view of FIG. 51 there is provided an edge illuminated despeckler. Referring to FIG. 51 we see that the edge-illuminated despeckler comprises first and second transparent substrates 81,82 and ESBG element 84 sandwiched between the substrates, a transparent region 83 adjacent to the ESBG element and a light-coupling element 80. The light coupling element may be a diffractive optical element, a prismatic element or any other type of optical element commonly used for coupling light into a light guide. A diffractive optical element will in most cases provide the most compact solution. Substrates 81,82, the ESBG element 84 and the transparent region 83 together form a total internal reflection light guiding structure. Patterned ITO electrodes are applied to the opposing surfaces of the substrates. The transparent region may be a PDLC region not containing a grating. Desirably the transparent region 83 would have a refractive substantially the same as that of the substrates. The light-coupling optical element provides a means for injecting light from a laser source, which is not illustrated into the device. The light-coupling element may be a DOE. Alternatively the light-coupling device may be a prismatic element or an array of prismatic elements. The outer face of substrates 81, that is the face opposite to the one in contact with the ESBG, provides a light output surface. Light emitted from the output surface may be used to illuminate a flat panel display. A complete illumination system will normally require additional elements such as relay lenses, prisms etc. which are not illustrated.


The ESBG element 84 comprises an array of selectively switchable ESBG pixels designed and fabricated according to the principles discussed above. The ESBG array provides an array of narrow beams or beamlets, separated by small angles. The beamlets have an average angle that is substantially normal to the plane of the ESBG array. Each ESBG array element may be a plane grating characterized by a unique grating vector or a grating vector selected from a set of predetermined grating vectors. The angles of separation of the beamlets are referred to as Inter Beamlet Angles (IBAs). In certain embodiments of the invention said ESBG elements might have optical power to control the IBA and individual beamlet divergence angles. The ESBG elements may encode further optical properties. For example, in further embodiments of the invention the ESBG elements may encode diffusing characteristics for optimizing the angular extent and uniformity of output light. In yet further embodiments of the invention the ESBG elements may encode keystone correction. The ESBG may be recorded using apparatus similar to that illustrated in FIG. 32.


Input collimated laser light is indicated by 1750. The light-coupling element diffracts said input light through a large angle into rays such as those indicated by 1751,1752 that exceed the substrate-to-air critical angle as determined by the refractive index of the substrates. As indicated in FIG. 51 rays such as 1751 are diffracted by the ESBG arrays into the direction 1753 substantially normal to the plane of the ESBG array. On the other hand rays such as 1752 that propagate through the region 83 follow the total internal reflection path generally indicated by 1752,1754,1755 with the ray 1755 being diffracted by the ESBG array into a ray direction indicated by 1756 substantially normal to the plane of the ESBG array. The rays 1752 and 1756 provide despeckled light can be used to illuminate a display panel.


A further embodiment of the invention is shown in the schematic sidle elevation view of the FIG. 52. The embodiment of FIG. 52 differs from the embodiment illustrated in FIG. 51 in that the ESBG element is an ESBG array 85 containing ESBG pixels such as 85A. Desirable the ESBG elements have electrodes designed according to the principles illustrated in FIGS. 21-27. The ray paths indicated by 1760,1761,1763 and 1760,1762,1764, 1765, 1766 are equivalent to the ray paths 1750,1751,1753 and 1750,1752,1754,1755,1756 respectively illustrated in FIG. 51


A further embodiment of the invention is shown in the schematic sidle elevation view of FIG. 53. The embodiment of FIG. 53 differs from the embodiment illustrated in FIG. 51 in that two ESBG layers are sandwiched between the substrates. The ray paths indicated by 1770,1771,1773 and 1770,1772,1774,1775,1776 are equivalent to the ray paths 1750,1751, 1753 and 1750,1752,1754,1755,1756 respectively illustrated in FIG. 51


A further embodiment of the invention is shown in the schematic sidle elevation view of the FIG. 54. The embodiment of FIG. 54 differs from the embodiment illustrated in FIG. 51 in that two ESBG layers are sandwiched between the substrates and the ESBG elements are ESBG arrays 88,89 containing ESBG pixels such as 88a,88b. Desirably the ESBG elements have electrodes designed according to the principles illustrated in FIGS. 21-27. The ray paths indicated by 1770,1771,1773 and 1770,1772,1774, 1775,1776 are equivalent to the ray paths 1750,1751, 1753 and 1750,1752,1754, 1755,1756 respectively illustrated in FIG. 51.


In any of the embodiments illustrate in FIGS. 51-54 a DOE element may be to modify the intensity profile of the illumination light to generate a flat average intensity profile. The DOE element may be disposed at the output surface of the substrate 81. A further function of the DOE element could be to apply a predetermined amount of diffusion to the illumination light or to provide more favorable incident angles to match the input light to the diffraction angles of the ESBG elements.


Embodiments Providing Edge Illuminated Despeckler for Color Illumination


The embodiments of FIGS. 51-54 are directed at monochromatic displays. In a further embodiment of the invention there is provided an edge lit color despeckler device. Essentially the device provides color sequential despeckling by stacking red green and blue-diffracting ESBG elements of the type illustrated in FIG. 52. Referring to the schematic side elevation view of FIG. 55 we see that the apparatus comprises first and second transparent substrates 81,82 three ESBG layers 85A,85B,85C separated by transparent spacers 90A,9B sandwiched between the substrates, a transparent region 83A,83B,83C adjacent to the ESBGs 85A,85B,85C respectively and a light-coupling element 80. The substrates, ESBGs spacers and the transparent regions together form a total internal reflection light guiding structure. The light-coupling optical element 80 provides a means for injecting light from a laser source, which is not illustrated into the device. The light-coupling element may be a DOE. Alternatively, the light-coupling device may be a prismatic element or an array of prismatic elements. The outer face of substrate 81, that is the face opposite to the one in contact with the ESBG provides a light output surface. Light emitted from the output surface may be used to illuminate a flat panel display. A complete illumination system will normally require additional elements such as relay lenses, prisms etc. which are not illustrated. The ray paths for each color through the embodiment of FIG. 55 are substantially the same as those illustrated in FIG. 52 and are not illustrated. It will be clear from consideration of FIG. 55 in relation to FIGS. 51-54 that any of the embodiments of FIG. 51-54 may be converted to color sequential despeckling device by stacking red green and blue diffracting ESBGs using the principles illustrated in FIG. 55.


Edge Lit Scrolling Despeckler Configurations


The edge lit ESBG despeckler devices discussed above may be configured to provide a scrolling display panel by patterning the ESBG electrodes to provide a set of selectively switchable ESBG stripes. The basic principles of patterning ESBG electrodes for scrolling are disclosed in the United States Provisional Patent Application Ser. No. 61/071,230 filed 18 Apr. 2008, entitled SCROLLING ILLUMINATOR and Ser. No. 61/071,229 filed 18 Apr. 2008, entitled SCROLLING FLAT PANEL DISPLAY. It is proposed that the ESBG despeckler device principles discussed in the present application may be with the scrolling displays concepts disclosed in the above patent applications to provide a transparent despeckled laser illuminator. In certain cases the above art may be used to provide a complete integrated display device.


A scrolling illumination scheme for use with the color display embodiment of FIG. 55 will now be discussed with reference to the embodiments of FIGS. 55-58.



FIG. 56 shows a schematic plan view of the transparent electrodes within each of the ESBG layers. The electrodes are divided into a number of parallel sections or stripes that define a corresponding number of regions in the gratings that may be independently controlled. Sixteen stripes are shown in this illustrative example, but a different number of stripes may be used depending on the application. In the example shown in FIG. 56, region 1320 of ESBG 851B diffracts blue light. Similarly, region 1330 of ESBG 851G and region 1340 of ESBG 851R diffract green and red light, respectively,



FIG. 57 illustrates one operational aspect of the transparent electrodes illustrated in FIG. 56. At an initial instant in time, as shown in FIG. 57A, red 1340, green 1330, and blue 1320 bands of light have been diffracted by means of selecting the appropriate regions of the three ESBG despeckler devices. The regions are selected by applying a suitable voltage to the transparent electrodes of regions where light extraction is not desired, and not applying a voltage where light extraction is desired. At a subsequent instant in time, as shown in FIG. 57B, the voltages applied to the ESBGs have been changed such that the three color bands have moved to a lower position. At a third instant in time, as shown in FIG. 58C, the voltages applied to the ESBGs have again been changed such that the extreme top 1320A and bottom 1320B portions are illuminated by blue light.



FIG. 58 illustrates another operational aspect of the transparent electrodes illustrated in FIG. 56. At an initial instant in time, as shown in FIG. 58A, the voltages applied to the ESBGs are selected such that green light 1420 is directed at the lower portion display device and red slight is directed towards the top portion of the display. At a subsequent instant in time, as shown in FIG. 58B, the transition from red 1410 to green 1420 has been moved, in sequential steps down the display. At a third instant in time, as shown in FIG. 58C, the voltages applied to the ESBGs are selected such that that red light 1410 is directed at the lower portion and blue light 1430 is directed towards the top portion of the ESBGs.


With respect to FIG. 57 and FIG. 58, it should be understood that other scanning sequences, including scanning multiple color bands, are possible within the scope of the invention. In all cases, the position of the color bands are moved in sequential steps by means of selecting the voltages applied to the three ESBG layers. It should also be understood that the switching of the bands must be done in synchronism with the writing of data such that the various areas of the display device display the appropriate information for the respective illumination color. Specifically, the information presented on a given row must be changed during the time interval after one color of illumination is removed and before the next illumination color is applied. Preferably, the different color bands are separated by a non-illuminated dark band to allow time to change the display content. It also must be understood that the entire sequence must be repeated at a sufficient rate that the viewer's eye mergers the sequential single-colored images into a composite full-color image.


Embodiments Providing a Combined Edge Lit Despeckler and Spatial Light Modulator


It is known that the diffraction efficiency of an ESBG varies with the applied voltage. This property allows an ESBG to be used as a light modulator. An array of selectively switchable ESBG may therefore provide a spatial light modulator (SLM). The SLM may be used to display information eliminating the need for the separate flat panel display specified in the above described embodiments at the same time as providing the despeckling functions discussed above. Edge Lit color despeckler and spatial light modulator configurations based on the embodiments of FIGS. 51-55 are illustrated in FIGS. 59-63 respectively. Each of the embodiments of FIGS. 59-63 comprises identical optical components to those of FIGS. 51-55 respectively. In each case switching electronics and connecting wires are generally indicated by 31 and image generator electronics are generally indicated by 32.


Light Guide ESBG Despeckler Using Combined Phase and Angular Diversity


In one embodiment of the invention illustrates in the schematic plan view of FIG. 64A and the schematic side elevation view of FIG. 64B there is provided an edge illuminated despeckler. Referring to FIG. 64B we see that the edge-illuminated despeckler comprises first and second transparent substrates 81,82 and an ESBG element 86 sandwiched between the substrates, an input light-coupling element 87, and an output light coupling element 88. The substrates form a total internal reflection light guiding structure. A further trapezoidal light element 82 having inclined surface 83A,83B is disposed adjacent substrate 82. Said trapezoidal element may be air separated from substrate 82. Patterned ITO electrodes are applied to the opposing surfaces of the substrates. The ESBG comprises separated ESBG regions such as 86A,86B,86C,86D surrounded by clear PDLC a portion of which is indicated by regions such as the one indicated by 86.


Desirably, the clear PDLC region has a refractive index substantially the same as that of the substrates. The input light-coupling optical element provides a means for injecting light from a laser source, which is not illustrated into the device. The output light-coupling optical element provides a means for ejecting light from the light guide into an illumination path directed at a flat panel display. At least one of the coupling elements may be a DOE. Alternatively, at least one of the light-coupling elements may be a prismatic element or an array of prismatic elements. A complete illumination system will normally require additional elements such as relay lenses, prisms etc. which are not illustrated.


Input collimated laser light indicated by 1770 passes through the input light-coupling element 87 to provide the light 1771. When the ESBG element 86A is in an active state and the ESBG element 86B is in an inactive state the light 1771 is diffracted into the direction 1772. The diffraction angle is designed to exceed the substrate-to-air critical angle as determined by the refractive index of the substrates. The light 1772 is totally internally reflected into the direction 1773 passing through the ESBG elements 86B,86C,86D in sequence along a predetermined TIR path until said light is ejected from the light guide via the output coupling device 88. For the purposes of understanding the invention the output light-coupling device is assumed to be a diffractive optical element. Note that if the substrate 82 and the trapezoidal element 83 are not air separated the substrate will require a reflection coating to provide reflection of the light 1772. When the ESBG element 86A is not in an active state and the element 86B is in an active state the light 1771 passes through the ESBG element without deviation providing light 1775. The light 1775 is reflected at the surfaces 84A to provide the light 1776. The light 1776 is reflected at the surface 84B to provide the light 1777. The light 1777 is directed at the ESBG element 86B, which is now in an active state whereupon it is diffracted into said predetermined TIR path until said light is ejected from the light guide via the output-coupling device 88. Desirably the grating used to provide the output light coupler has a diffraction efficiency of at least 98%.


In one embodiment of the invention based on FIG. 64 the ESBG elements 86A,86B each comprise an array of selectively switchable ESBG elements. The ESBG array provides an array of narrow beams or beamlets, separated by small angles. The beamlets have an average angle that is substantially normal to the plane of the ESBG array. Each ESBG array element may be a plane grating characterized by a unique grating vector or a grating vector selected from a set of predetermined grating vectors. The angles of separation of the beamlets are referred to as Inter Beamlet Angles (IBAs). In certain embodiments of the invention said ESBG elements might have optical power to control the IBA and individual beamlet divergence angles. The ESBG elements may encode further optical properties. For example, in further embodiments of the invention the ESBG elements may encode diffusing characteristics. In yet further embodiments of the invention the ESBG elements may encode keystone correction. The ESBG may be recorded using apparatus similar to that illustrated in FIG. 30.


In alternative embodiments of the invention based on FIG. 64 the ESBG elements 86A,86B are configured such that each ESBG elements diffracts light incident at some specified launch angle into a direction normal to the surfaces of the ESBG elements as indicated in. Essentially, the ESBG elements 86A,86B operate as Hadamard diffusers. Each ESBG 86A,86B comprises an array of ESBG pixels that can be switched to provide random patterns. However, the second ESBG 86B is switched in such a way that it provides the binary inverse of the pattern provide by the first ESBG 86A. Typically the ESBG are pixelated to provide at least 10×10 arrays. Hence the ESBG elements 86A,86B reduce speckle in the beam according to the principles of angular diversity.


The ESBG elements 86C,86D are configured to operate as variable phase retarders according to the principles discussed above. For example the ESBG elements may be configured as variable sub wavelength gratings. Hence the ESBG elements 86C,86D reduce speckle in the beam according to the principles of phase or polarization diversity. Advantageously the array elements of the ESBG 86A,86B are offset by a fraction of the ESBG element width in at least one of the vertical or horizontal array axes.


The ESBG arrays 86A,86B are driven in a random anti-phase fashion by means of an ESBG controller which is not illustrated. FIG. 48C is a chart showing voltage versus time applied to the ESBG 86A and 99B. To put it another way the ESBGs 86A,86B are operated in tandem with alternating voltages 1001, 1002 applied across the ESBG layers. The optical effect of each ESBG is varied from zero to maximum value at a high frequency by applying an electric field that varies in a corresponding varying fashion. Each incremental change in the applied voltage results in a unique speckle phase cell. Referring to FIG. 48C it will be seen that there is a phase lag between the voltages 1001,1002 applied across the ESBG. The effect of applying such waveforms is that the average intensity of the speckle phase cells remains substantially constant, thereby satisfying the statistical requirements for speckle reduction. Other types of waveforms may be applied, for example sinusoidal, triangular, rectangular or other types of regular waveforms. Alternatively, it may be advantageous in statistical terms to use waveforms based on a random stochastic process such as the waveforms 2001,2002 illustrated in the chart of FIG. 48D.


Typically the length of the light guiding structure illustrated in FIG. 64 is 11 mm. The thickness of the light guiding structure formed by substrate 81,82 as illustrated in FIG. 64B is 2.5 mm. The thickness of the trapezoidal light guiding element 83 as illustrated in FIG. 64B is 1.1 mm. The diameters of the light input and output coupling elements 87,88 as illustrated in FIG. 64A are each typically 1 mm.


An additional DOE element which is not illustrated may be disposed in the illumination path near either the input or output light coupling elements to modify the intensity profile of the illumination light to generate a flat average intensity profile. The DOE element may be disposed at the output surface of the substrate 81. A further function of the DOE element could be to apply a predetermined amount of diffusion to the illumination light.


In further embodiments of the invention based on the embodiment illustrated in FIG. 64 may use any of the methods for providing patterned electrodes discussed above.


In further embodiments of the invention based on the embodiment illustrated in FIG. 64 the ESBG elements may be based on any of the phased diversity and angular diversity speckle reduction methods discussed in the present application.



FIG. 65 is a schematic illustration of an example of an illuminator using two ESBG arrays operating in random anti phase. The apparatus of FIG. 65 is similar to that of FIG. 64. However, in the apparatus of FIG. 65 only one beam reflection takes place within the light guiding structure. Therefore the elements 86D and 86D illustrated in FIG. 64 are not required. The ESBG 86A,86B are pixelated as shown in FIG. 65C, each device comprising an ESBG array generally indicated by 750 containing pixels such as 751. The aperture defined by the input and output ports represented by 87 and 88 is indicated by 752.


It will be clear from the above description of the invention that the ESBG despeckler embodiment disclose here may be applied to the reduction of speckle in a wide range of laser displays including front and rear projection displays, wearable displays, scanned laser beam displays and transparent displays for use in viewfinders and HUDs.


In preferred practical embodiments of the invention the ESBG layers continued in an ESBG despeckler device would be combined in a single planar multilayer device. The multilayer ESBG despeckler devices may be constructed by first fabricating the separate ESBG and then laminating the ESBGs using an optical adhesive. Suitable adhesives are available from a number of sources, and techniques for bonding optical components are well known. The multilayer structures may also comprise additional transparent members, if needed, to control the optical properties of the illuminator.


The advantage of a solid-state approach is the resulting illumination patch can be tailored to provide any required shape. Mechanical devices such as rotating diffusers would normally only provide a circular illumination patch resulting in significant light loss.


The invention is not limited to any particular type of HPDLC or recipe for fabricating HPDLC. The HPDLC material currently used by the inventors typically switches at 170 us and restores at 320 us. The inventors believe that with further optimization the switching times may be reduced to 140 microseconds.


For the sake of simplicity most of the embodiments of the invention has been discussed with reference to monochromatic illumination. It will clear from the above discussion that the invention may be applied to illuminators using red, green and blue laser sources by providing separate ESBG layers for each color.


While the invention has been discussed with reference to single laser die or rectangular arrays of laser die, it should be emphasized that the principles of the invention apply to any configuration of laser die. The invention may be used with any type of laser device. For example the invention may be used with edge-emitting laser diodes, which emit coherent light or infrared energy parallel to the boundaries between the semiconductor layers. More recent technologies such as vertical cavity surface emitting laser (VCSEL) and the Novalux Extended Cavity Surface Emitting Laser (NECSEL) emit coherent energy within a cone perpendicular to the boundaries between the layers. The VCSEL emits a narrow, more nearly circular beam than traditional edge emitters, which makes it easier to extract energy from the device. The NECSEL benefits from an even narrower emission cone angle. Solid-state lasers emit in the infrared. Visible wavelengths are obtained by frequency doubling of the output. Solid-state lasers may be configured in arrays comprising as many as thirty to forty individual dies. The laser die are independently driven and would normally emit light simultaneously.


It should be emphasized that the Figures are exemplary and that the dimensions have been exaggerated. For example thicknesses of the ESBG layers have been greatly exaggerated.


The ESBGs may be based on any crystal material including nematic and chiral types.


In particular embodiments of the invention any of the ESBG arrays discussed above may be implemented using super twisted nematic (STN) liquid crystal materials. STN offers the benefits of pattern diversity and adoption of simpler process technology by eliminating the need for the dual ITO patterning process described earlier.


The invention may also be used in other applications such as optical telecommunications.


Although the invention has been described in relation to what are presently considered to be the most practical and preferred embodiments, it is to be understood that the invention is not limited to the disclosed arrangements, but rather is intended to cover various modifications and equivalent constructions included within the spirit and scope of the invention.

Claims
  • 1. An optical device comprising: a light guiding structure;a source of light optically coupled to said light guiding structure and configured to emit at least first and second wavelength collimated light color sequentially;a first ESBG element comprising a first multiplicity of ESBG pixels for diffracting said first wavelength light out of said light guiding structure into a first set of output paths; anda second ESBG element comprising a second multiplicity ESBG pixels for diffracting said second wavelength light out of said light guiding structure into a second set of output paths substantially overlapping said first set of output paths,wherein said first and second multiplicity of ESBG pixels are formed in at least one layer disposed within said light guiding structure,wherein pixels of said first multiplicity are configured to switch into a diffracting state when said source emits said first wavelength light and pixels of said second multiplicity are configured to switch into a diffracting state when said source emits said second wavelength light.
  • 2. The apparatus of claim 1, wherein said at least one layer is formed between transparent substrates with transparent conductive coatings applied to each said substrate, at least one of said coatings being patterned into independently addressable elements overlapping said first multiplicity and second multiplicity of pixels, wherein an electrical control circuit operative to selectively apply voltages across each said first multiplicity and second multiplicity of pixels is provided.
  • 3. The apparatus of claim 1, wherein said first and second output paths are angularly separated.
  • 4. The apparatus of claim 1, wherein said first and second output paths are substantially normal to a total internal reflection surface of said light guiding structure.
  • 5. The apparatus of claim 1, wherein each said first and second multiplicity of pixels is characterized by one of a predefined set of grating vectors.
  • 6. The apparatus of claim 1, wherein each said first and second multiplicity of pixels comprises at least one selected from the group of a planar grating, a grating with optical power, a grating providing optical retardation and a grating with diffusing properties.
  • 7. The apparatus of claim 1, wherein each said first and second multiplicity of pixels have spatially varying diffraction efficiencies.
  • 8. The apparatus of claim 1, wherein each said first and second multiplicity of pixels have diffraction efficiencies proportional to voltages applied across said electrodes.
  • 9. The apparatus of claim 1, wherein each said first and second multiplicity of pixels have phase retardations proportional to voltages applied across said electrodes.
  • 10. The apparatus of claim 1, wherein light diffracted into said first and second output paths is collimated.
  • 11. The apparatus of claim 1, wherein said first multiplicity of pixels comprises a two-dimensional array.
  • 12. The apparatus of claim 1, wherein said first multiplicity of pixels comprises a one-dimensional array of elongate elements.
  • 13. The apparatus of claim 1, wherein each said first and second ESBG element is recorded in a Holographic Polymer Dispersed Liquid Crystal.
  • 14. The apparatus of claim 1, further comprising a light coupling element, wherein the light coupling element is a grating or prism.
  • 15. The apparatus of claim 2, wherein the addressing of pixels by said electrical control circuit addresses said pixels is characterized by a cyclic process.
  • 16. The apparatus of claim 2, wherein the addressing of pixels by said electrical control circuit is characterized by a random process.
  • 17. The apparatus of claim 1, wherein said light source is laser or LED.
  • 18. The apparatus of claim 1, further comprising a beam deflector, a dichroic filter, a microlens array, beam shaper, light integrator, polarization rotator.
  • 19. The apparatus of claim 1, wherein said source further emits third wavelength collimated light further comprising a third multiplicity of ESBG pixels for diffracting said third wavelength light in a third set of output paths substantially overlapping said first set of output paths, wherein said first, second and third multiplicity of ESBG pixels are formed in at least one layer disposed within said light guiding structure, wherein pixels of said third multiplicity are switched into a diffracting state when said source emits said third wavelength light.
  • 20. The apparatus of claim 19, wherein said first, second and third wavelengths comprises light in red, green and blue spectral bands respectively.
Priority Claims (1)
Number Date Country Kind
0718706.5 Sep 2007 GB national
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a Continuation of U.S. patent application Ser. No. 15/857,783 filed Dec. 29, 2017, which application is a Continuation of U.S. patent application Ser. No. 15/263,488 filed Sep. 13, 2016 and issued on Jan. 2, 2018 as U.S. Pat. No. 9,857,605, which is a Continuation of U.S. patent application Ser. No. 14/986,287 filed Dec. 31, 2015 and issued on Oct. 11, 2016 as U.S. Pat. No. 9,465,227, which is a Continuation of U.S. patent application Ser. No. 14/056,081 filed Oct. 17, 2013 and issued on Aug. 29, 2017 as U.S. Pat. No. 9,746,688, which is a Continuation of U.S. patent application Ser. No. 13/549,868 filed Jul. 16, 2012 and issued on Oct. 22, 2013 as U.S. Pat. No. 8,565,560, which is a Continuation of U.S. patent application Ser. No. 12/670,730, filed Mar. 17, 2010 and issued on Jul. 17, 2012 as U.S. Pat. No. 8,224,133, which is a U.S. National Phase of PCT Application No. PCT/IB2008/001909 filed Jul. 22, 2008, which claims the benefit of U.S. Provisional Application No. 60,935,109 filed Jul. 26, 2007, which claims priority to GB 0718706.5 filed Sep. 25, 2007, the disclosures of which are incorporated herein by reference in their entireties.

US Referenced Citations (1309)
Number Name Date Kind
1043938 Huttenlocher Nov 1912 A
2141884 Sonnefeld Dec 1938 A
3482498 Becker Dec 1969 A
3620601 Leonard et al. Nov 1971 A
3741716 Johne et al. Jun 1973 A
3843231 Borel et al. Oct 1974 A
3851303 Muller Nov 1974 A
3885095 Wolfson et al. May 1975 A
3940204 Withrington Feb 1976 A
3965029 Arora Jun 1976 A
3975711 McMahon Aug 1976 A
4035068 Rawson Jul 1977 A
4066334 Fray et al. Jan 1978 A
4082432 Kirschner Apr 1978 A
4099841 Ellis Jul 1978 A
4178074 Heller Dec 1979 A
4218111 Withrington et al. Aug 1980 A
4232943 Rogers Nov 1980 A
4248093 Andersson et al. Feb 1981 A
4251137 Knop et al. Feb 1981 A
4309070 St. Leger Searle Jan 1982 A
4322163 Schiller Mar 1982 A
4386361 Simmonds May 1983 A
4389612 Simmonds et al. Jun 1983 A
4403189 Simmonds Sep 1983 A
4418993 Lipton Dec 1983 A
4472037 Lipton Sep 1984 A
4523226 Lipton et al. Jun 1985 A
4544267 Schiller Oct 1985 A
4562463 Lipton Dec 1985 A
4566758 Bos Jan 1986 A
4583117 Lipton et al. Apr 1986 A
4643515 Upatnieks Feb 1987 A
4647967 Kirschner et al. Mar 1987 A
4688900 Doane et al. Aug 1987 A
4711512 Upatnieks Dec 1987 A
4714320 Banbury Dec 1987 A
4728547 Vaz et al. Mar 1988 A
4729640 Sakata Mar 1988 A
4743083 Schimpe May 1988 A
4749256 Bell et al. Jun 1988 A
4765703 Suzuki et al. Aug 1988 A
4775218 Wood et al. Oct 1988 A
4791788 Sager et al. Dec 1988 A
4792850 Liptoh et al. Dec 1988 A
4799765 Ferrer Jan 1989 A
4811414 Fishbine et al. Mar 1989 A
4848093 Simmonds et al. Jul 1989 A
4854688 Hayford et al. Aug 1989 A
4884876 Lipton et al. Dec 1989 A
4890902 Doane et al. Jan 1990 A
4928301 Smoot May 1990 A
4933976 Fishbine et al. Jun 1990 A
4938568 Margerum et al. Jul 1990 A
4946245 Chamberlin et al. Aug 1990 A
4960311 Moss et al. Oct 1990 A
4964701 Dorschner et al. Oct 1990 A
4967268 Lipton et al. Oct 1990 A
4970129 Ingwall et al. Nov 1990 A
4971719 Vaz et al. Nov 1990 A
4994204 West Feb 1991 A
5004323 West Apr 1991 A
5007711 Wood et al. Apr 1991 A
5009483 Rockwell et al. Apr 1991 A
5033814 Brown et al. Jul 1991 A
5035734 Honkanen et al. Jul 1991 A
5053834 Simmonds Oct 1991 A
5063441 Lipton et al. Nov 1991 A
5076664 Migozzi Dec 1991 A
5079416 Filipovich Jan 1992 A
5096282 Margerum et al. Mar 1992 A
5099343 Margerum et al. Mar 1992 A
5109465 Klopotek Apr 1992 A
5110034 Simmonds May 1992 A
5117285 Nelson et al. May 1992 A
5117302 Lipton May 1992 A
5119454 McMahon et al. Jun 1992 A
5124821 Antier et al. Jun 1992 A
5139192 Simmonds Aug 1992 A
5142357 Lipton et al. Aug 1992 A
5142644 Vansteenkiste et al. Aug 1992 A
5148302 Nagano et al. Sep 1992 A
5151958 Honkanen Sep 1992 A
5153751 Ishkavva et al. Oct 1992 A
5159445 Gitlin et al. Oct 1992 A
5160523 Honkanen et al. Nov 1992 A
5181133 Lipton Jan 1993 A
5183545 Branca et al. Feb 1993 A
5187597 Kato et al. Feb 1993 A
5193000 Lipton et al. Mar 1993 A
5198912 Ingwall et al. Mar 1993 A
5200861 Moskovich et al. Apr 1993 A
5210624 Matsumoto et al. May 1993 A
5218360 Goetz et al. Jun 1993 A
5218480 Moskovich et al. Jun 1993 A
5224198 Jachimowicz et al. Jun 1993 A
5239372 Lipton Aug 1993 A
5240636 Doane et al. Aug 1993 A
5241337 Betensky et al. Aug 1993 A
5242476 Bartel et al. Sep 1993 A
5243413 Gitlin et al. Sep 1993 A
5251048 Doane et al. Oct 1993 A
5264950 West et al. Nov 1993 A
5268792 Kreitzer et al. Dec 1993 A
5284499 Harvey et al. Feb 1994 A
5289315 Makita et al. Feb 1994 A
5295208 Caulfield et al. Mar 1994 A
5296967 Moskovich et al. Mar 1994 A
5299289 Omae et al. Mar 1994 A
5303085 Rallison Apr 1994 A
5309283 Kreitzer et al. May 1994 A
5313330 Betensky May 1994 A
5315324 Simmonds et al. May 1994 A
5315419 Saupe et al. May 1994 A
5315440 Betensky et al. May 1994 A
5317405 Kuriki et al. May 1994 A
5327269 Tilton et al. Jul 1994 A
5329363 Moskovich Jul 1994 A
5341230 Smith Aug 1994 A
5343147 Sager et al. Aug 1994 A
5351151 Levy Sep 1994 A
5359362 Lewis et al. Oct 1994 A
5363220 Kuwayama et al. Nov 1994 A
5368770 Saupe et al. Nov 1994 A
5369511 Amos Nov 1994 A
5371626 Betensky Dec 1994 A
5400069 Braun et al. Mar 1995 A
5408346 Trissel et al. Apr 1995 A
5410370 Janssen Apr 1995 A
5416510 Lipton et al. May 1995 A
5416514 Janssen et al. May 1995 A
5418584 Larson May 1995 A
5418871 Revelli et al. May 1995 A
5428480 Betensky et al. Jun 1995 A
5437811 Doane et al. Aug 1995 A
5438357 McNelley Aug 1995 A
5452385 Izumi et al. Sep 1995 A
5453863 West et al. Sep 1995 A
5455693 Wreede et al. Oct 1995 A
5455713 Kreitzer et al. Oct 1995 A
5463428 Lipton et al. Oct 1995 A
5465311 Caulfield et al. Nov 1995 A
5471326 Hall et al. Nov 1995 A
5473222 Thoeny et al. Dec 1995 A
5476611 Nolan et al. Dec 1995 A
5481321 Lipton Jan 1996 A
5485313 Betensky Jan 1996 A
5493430 Lu et al. Feb 1996 A
5493448 Betensky et al. Feb 1996 A
5496621 Makita et al. Mar 1996 A
5499140 Betensky Mar 1996 A
5500671 Andersson et al. Mar 1996 A
5500769 Betensky Mar 1996 A
5510913 Hashimoto et al. Apr 1996 A
5515184 Caulfield et al. May 1996 A
5516455 Rakas et al. May 1996 A
5524272 Podowski et al. Jun 1996 A
5530566 Kumar Jun 1996 A
5532736 Kuriki et al. Jul 1996 A
5532875 Betensky Jul 1996 A
5537232 Biles Jul 1996 A
RE35310 Moskovich Aug 1996 E
5543950 Lavrentovich et al. Aug 1996 A
5559637 Moskovich et al. Sep 1996 A
5572248 Allen et al. Nov 1996 A
5572250 Lipton et al. Nov 1996 A
5576888 Betensky Nov 1996 A
5579026 Tabata Nov 1996 A
5583795 Smyth Dec 1996 A
5585035 Vesley et al. Dec 1996 A
5593615 Nerad et al. Jan 1997 A
5604611 Saburi et al. Feb 1997 A
5606433 Yin et al. Feb 1997 A
5612733 Flohr Mar 1997 A
5612734 Nelson et al. Mar 1997 A
5619254 McNelley Apr 1997 A
5619586 Sibbald et al. Apr 1997 A
5621529 Gordon et al. Apr 1997 A
5621552 Coates et al. Apr 1997 A
5625495 Moskovich et al. Apr 1997 A
5629259 Akada et al. May 1997 A
5631107 Tarumi et al. May 1997 A
5633100 Mickish et al. May 1997 A
5646785 Gilboa et al. Jul 1997 A
5648857 Ando et al. Jul 1997 A
5661577 Jenkins et al. Aug 1997 A
5661603 Hanano et al. Aug 1997 A
5665494 Kawabata et al. Sep 1997 A
5668614 Chien et al. Sep 1997 A
5668907 Veligdan Sep 1997 A
5677797 Betensky et al. Oct 1997 A
5680231 Grinberg et al. Oct 1997 A
5682255 Friesem et al. Oct 1997 A
5686931 Funfschilling et al. Nov 1997 A
5686975 Lipton Nov 1997 A
5691795 Doane et al. Nov 1997 A
5694230 Welch Dec 1997 A
5695682 Doane et al. Dec 1997 A
5701132 Kollin et al. Dec 1997 A
5706108 Ando et al. Jan 1998 A
5706136 Okuyama et al. Jan 1998 A
5707925 Akada et al. Jan 1998 A
5710645 Phillips et al. Jan 1998 A
5724189 Ferrante Mar 1998 A
5726782 Kato et al. Mar 1998 A
5727098 Jacobson Mar 1998 A
5729242 Margerum et al. Mar 1998 A
5731060 Hirukawa et al. Mar 1998 A
5731853 Taketomi et al. Mar 1998 A
5742262 Tabata et al. Apr 1998 A
5745266 Smith et al. Apr 1998 A
5745301 Betensky et al. Apr 1998 A
5748272 Tanaka et al. May 1998 A
5748277 Huang et al. May 1998 A
5751452 Tanaka et al. May 1998 A
5757546 Lipton et al. May 1998 A
5760931 Saburi et al. Jun 1998 A
5764414 King et al. Jun 1998 A
5771320 Stone Jun 1998 A
5790288 Jager et al. Aug 1998 A
5790314 Duck et al. Aug 1998 A
5798641 Spagna et al. Aug 1998 A
5808804 Moskovich Sep 1998 A
5812608 Valimaki et al. Sep 1998 A
5822089 Phillips et al. Oct 1998 A
5822127 Chen et al. Oct 1998 A
5825448 Bos et al. Oct 1998 A
5831700 Li et al. Nov 1998 A
5835661 Tai et al. Nov 1998 A
5841507 Barnes Nov 1998 A
5841587 Moskovich et al. Nov 1998 A
5856842 Tedesco Jan 1999 A
5867238 Miller et al. Feb 1999 A
5868951 Schuck, III et al. Feb 1999 A
5870228 Kreitzer et al. Feb 1999 A
5875012 Crawford et al. Feb 1999 A
5877826 Yang et al. Mar 1999 A
5886822 Spitzer Mar 1999 A
5892598 Asakawa et al. Apr 1999 A
5892599 Bahuguna Apr 1999 A
5898511 Mizutani et al. Apr 1999 A
5900987 Kreitzer et al. May 1999 A
5900989 Kreitzer May 1999 A
5903395 Rallison et al. May 1999 A
5907416 Hegg et al. May 1999 A
5907436 Perry et al. May 1999 A
5917459 Son et al. Jun 1999 A
5926147 Sehm et al. Jul 1999 A
5929946 Sharp et al. Jul 1999 A
5929960 West et al. Jul 1999 A
5930433 Williamson et al. Jul 1999 A
5936776 Kreitzer Aug 1999 A
5937115 Domash Aug 1999 A
5942157 Sutherland et al. Aug 1999 A
5945893 Plessky et al. Aug 1999 A
5949302 Sarkka Sep 1999 A
5949508 Kumar et al. Sep 1999 A
5956113 Crawford Sep 1999 A
5963375 Kreitzer Oct 1999 A
5966223 Friesem et al. Oct 1999 A
5969874 Moskovich Oct 1999 A
5969876 Kreitzer et al. Oct 1999 A
5973727 McGrew et al. Oct 1999 A
5974162 Metz et al. Oct 1999 A
5985422 Krauter Nov 1999 A
5986746 Metz et al. Nov 1999 A
5991087 Rallison Nov 1999 A
5999089 Carlson et al. Dec 1999 A
5999282 Suzuki et al. Dec 1999 A
5999314 Asakura et al. Dec 1999 A
6014187 Okuda et al. Jan 2000 A
6023375 Kreitzer Feb 2000 A
6042947 Asakura et al. Mar 2000 A
6043585 Plessky et al. Mar 2000 A
6046585 Simmonds Apr 2000 A
6052540 Koyama Apr 2000 A
6061107 Yang May 2000 A
6061463 Metz et al. May 2000 A
6069728 Huignard et al. May 2000 A
6075626 Mizutani et al. Jun 2000 A
6078427 Fontaine et al. Jun 2000 A
6094311 Moskovich Jul 2000 A
6097551 Kreitzer Aug 2000 A
6104448 Doane et al. Aug 2000 A
6115152 Popovich et al. Sep 2000 A
6127066 Ueda et al. Oct 2000 A
6128058 Walton et al. Oct 2000 A
6133971 Silverstein et al. Oct 2000 A
6133975 Li et al. Oct 2000 A
6137630 Tsou et al. Oct 2000 A
6141074 Bos et al. Oct 2000 A
6141154 Kreitzer Oct 2000 A
6151142 Phillips et al. Nov 2000 A
6154190 Yang et al. Nov 2000 A
6169594 Aye et al. Jan 2001 B1
6169613 Amitai et al. Jan 2001 B1
6169636 Kreitzer et al. Jan 2001 B1
6176837 Foxlin Jan 2001 B1
6188462 Lavrentovich et al. Feb 2001 B1
6191887 Michaloski et al. Feb 2001 B1
6195206 Yona et al. Feb 2001 B1
6195209 Kreitzer et al. Feb 2001 B1
6204835 Yang et al. Mar 2001 B1
6211976 Popovich et al. Apr 2001 B1
6222675 Mall et al. Apr 2001 B1
6222971 Veligdan et al. Apr 2001 B1
6249386 Yona et al. Jun 2001 B1
6259423 Tokito et al. Jul 2001 B1
6259559 Kobayashi et al. Jul 2001 B1
6268839 Yang et al. Jul 2001 B1
6269203 Davies et al. Jul 2001 B1
6275031 Simmonds et al. Aug 2001 B1
6278429 Ruth et al. Aug 2001 B1
6285813 Schultz et al. Sep 2001 B1
6297860 Moskovich et al. Oct 2001 B1
6301056 Kreitzer et al. Oct 2001 B1
6301057 Kreitzer et al. Oct 2001 B1
6317083 Johnson et al. Nov 2001 B1
6317227 Mizutani et al. Nov 2001 B1
6317228 Popovich et al. Nov 2001 B2
6320563 Yang et al. Nov 2001 B1
6321069 Piirainen Nov 2001 B1
6324014 Moskovich et al. Nov 2001 B1
6327089 Hosaki et al. Dec 2001 B1
6330109 Ishii et al. Dec 2001 B1
6333819 Svedenkrans Dec 2001 B1
6340540 Ueda et al. Jan 2002 B1
6351333 Araki et al. Feb 2002 B2
6356172 Koivisto et al. Mar 2002 B1
6359730 Tervonen Mar 2002 B2
6359737 Stringfellow Mar 2002 B1
6366281 Lipton et al. Apr 2002 B1
6366378 Tervonen et al. Apr 2002 B1
6377238 McPheters Apr 2002 B1
6377321 Khan et al. Apr 2002 B1
6388797 Lipton et al. May 2002 B1
6392812 Howard May 2002 B1
6409687 Foxlin Jun 2002 B1
6411444 Moskovich et al. Jun 2002 B1
6414760 Lopez et al. Jul 2002 B1
6417971 Moskovich et al. Jul 2002 B1
6437563 Simmonds et al. Aug 2002 B1
6445512 Moskovich et al. Sep 2002 B1
6470132 Nousiainen et al. Oct 2002 B1
6476974 Kreitzer et al. Nov 2002 B1
6483303 Simmonds et al. Nov 2002 B2
6486997 Bruzzone et al. Nov 2002 B1
6504518 Kuwayama et al. Jan 2003 B1
6504629 Popovich et al. Jan 2003 B1
6509937 Moskovich et al. Jan 2003 B1
6518747 Sager et al. Feb 2003 B2
6519088 Lipton Feb 2003 B1
6524771 Maeda et al. Feb 2003 B2
6529336 Kreitzer et al. Mar 2003 B1
6545778 Ono et al. Apr 2003 B2
6550949 Bauer et al. Apr 2003 B1
6557413 Nieminen et al. May 2003 B2
6559813 DeLuca et al. May 2003 B1
6563648 Gleckman et al. May 2003 B2
6563650 Moskovich et al. May 2003 B2
6567573 Domash May 2003 B1
6577411 David et al. Jun 2003 B1
6577429 Kurtz et al. Jun 2003 B1
6580529 Amitai et al. Jun 2003 B1
6583838 Hoke et al. Jun 2003 B1
6583873 Goncharov et al. Jun 2003 B1
6587619 Kinoshita Jul 2003 B1
6594090 Kruschwitz et al. Jul 2003 B2
6597176 Simmonds et al. Jul 2003 B2
6597475 Shirakura et al. Jul 2003 B1
6598987 Parikka Jul 2003 B1
6600590 Roddy et al. Jul 2003 B2
6608720 Freeman Aug 2003 B1
6611253 Cohen Aug 2003 B1
6618104 Date et al. Sep 2003 B1
6625381 Roddy et al. Sep 2003 B2
6646772 Popovich et al. Nov 2003 B1
6646810 Harter, Jr. et al. Nov 2003 B2
6661578 Hedrick Dec 2003 B2
6667134 Sutherland et al. Dec 2003 B1
6674578 Sugiyama et al. Jan 2004 B2
6677086 Bunning et al. Jan 2004 B1
6686815 Mirshekarl-Syahkal et al. Feb 2004 B1
6690516 Aritake et al. Feb 2004 B2
6692666 Sutherland et al. Feb 2004 B2
6699407 Bunning et al. Mar 2004 B1
6706086 Emig et al. Mar 2004 B2
6706451 Sutherland et al. Mar 2004 B1
6721096 Bruzzone et al. Apr 2004 B2
6730442 Sutherland et al. May 2004 B1
6731434 Hua et al. May 2004 B1
6738105 Hannah et al. May 2004 B1
6741189 Gibbons, II et al. May 2004 B1
6744478 Asakura et al. Jun 2004 B1
6747781 Trisnadi et al. Jun 2004 B2
6748342 Dickhaus Jun 2004 B1
6750941 Satoh et al. Jun 2004 B2
6750995 Dickson Jun 2004 B2
6757105 Niv et al. Jun 2004 B2
6771403 Endo et al. Aug 2004 B1
6776339 Piikivi Aug 2004 B2
6781701 Sweetser et al. Aug 2004 B1
6791629 Moskovich et al. Sep 2004 B2
6791739 Ramanujan et al. Sep 2004 B2
6804066 Ha et al. Oct 2004 B1
6805490 Levola Oct 2004 B2
6821457 Sutherland et al. Nov 2004 B1
6822713 Yaroshchuk et al. Nov 2004 B1
6825987 Repetto et al. Nov 2004 B2
6829095 Amitai Dec 2004 B2
6830789 Doane et al. Dec 2004 B2
6833955 Niv Dec 2004 B2
6836369 Fujikawa et al. Dec 2004 B2
6842563 Zhang et al. Jan 2005 B2
6844212 Bond et al. Jan 2005 B2
6844980 He et al. Jan 2005 B2
6844989 Jo et al. Jan 2005 B1
6847274 Salmela et al. Jan 2005 B2
6847488 Travis Jan 2005 B2
6850210 Lipton et al. Feb 2005 B1
6853491 Ruhle et al. Feb 2005 B1
6853493 Kreitzer et al. Feb 2005 B2
6864861 Schehrer et al. Mar 2005 B2
6864927 Cathey Mar 2005 B1
6864931 Kumar et al. Mar 2005 B1
6867888 Sutherland et al. Mar 2005 B2
6873443 Joubert et al. Mar 2005 B1
6878494 Bunning et al. Apr 2005 B2
6885483 Takada Apr 2005 B2
6903872 Schrader Jun 2005 B2
6909345 Salmela et al. Jun 2005 B1
6917375 Akada et al. Jul 2005 B2
6922267 Endo et al. Jul 2005 B2
6926429 Barlow et al. Aug 2005 B2
6927570 Simmonds et al. Aug 2005 B2
6927694 Smith et al. Aug 2005 B1
6940361 Jokio et al. Sep 2005 B1
6950173 Sutherland et al. Sep 2005 B1
6950227 Schrader Sep 2005 B2
6951393 Koide Oct 2005 B2
6952312 Weber et al. Oct 2005 B2
6952435 Lai et al. Oct 2005 B2
6958662 Salmela et al. Oct 2005 B1
6958868 Pender Oct 2005 B1
6963454 Martins et al. Nov 2005 B1
6975345 Lipton et al. Dec 2005 B1
6980365 Moskovich Dec 2005 B2
6985296 Lipton et al. Jan 2006 B2
6987908 Bond et al. Jan 2006 B2
6999239 Martins et al. Feb 2006 B1
7002618 Lipton et al. Feb 2006 B2
7002753 Moskovich Feb 2006 B2
7003187 Frick et al. Feb 2006 B2
7009773 Chaoulov et al. Mar 2006 B2
7018563 Sutherland et al. Mar 2006 B1
7018686 Bunning et al. Mar 2006 B2
7018744 Otaki et al. Mar 2006 B2
7019793 Moskovich et al. Mar 2006 B2
7021777 Amitai Apr 2006 B2
7026892 Kajiya Apr 2006 B2
7027671 Huck et al. Apr 2006 B2
7034748 Kajiya Apr 2006 B2
7053735 Salmela et al. May 2006 B2
7053991 Sandusky May 2006 B2
7054045 McPheters et al. May 2006 B2
7058434 Wang et al. Jun 2006 B2
7068405 Sutherland et al. Jun 2006 B2
7072020 Sutherland et al. Jul 2006 B1
7075273 O'Gorman et al. Jul 2006 B2
7077984 Natarajan et al. Jul 2006 B1
7081215 Natarajan et al. Jul 2006 B2
7088457 Zou et al. Aug 2006 B1
7088515 Lipton Aug 2006 B2
7095562 Peng et al. Aug 2006 B1
7099080 Lipton et al. Aug 2006 B2
7101048 Travis Sep 2006 B2
7108383 Mitchell et al. Sep 2006 B1
7110184 Yona et al. Sep 2006 B1
7119965 Rolland et al. Oct 2006 B1
7123418 Weber et al. Oct 2006 B2
7123421 Moskovich et al. Oct 2006 B1
7126418 Hunton et al. Oct 2006 B2
7126583 Breed Oct 2006 B1
7132200 Ueda et al. Nov 2006 B1
7133084 Moskovich et al. Nov 2006 B2
7139109 Mukawa Nov 2006 B2
RE39424 Moskovich Dec 2006 E
7145729 Kreitzer et al. Dec 2006 B2
7149385 Parikka et al. Dec 2006 B2
7151246 Fein et al. Dec 2006 B2
7158095 Jenson et al. Jan 2007 B2
7167286 Anderson et al. Jan 2007 B2
7175780 Sutherland et al. Feb 2007 B1
7181105 Teramura et al. Feb 2007 B2
7181108 Levola Feb 2007 B2
7184002 Lipton et al. Feb 2007 B2
7184615 Levola Feb 2007 B2
7186567 Sutherland et al. Mar 2007 B1
7190849 Katase Mar 2007 B2
7198737 Natarajan et al. Apr 2007 B2
7199934 Yamasaki Apr 2007 B2
7205960 David Apr 2007 B2
7205964 Yokoyama et al. Apr 2007 B1
7206107 Levola Apr 2007 B2
7230767 Walck et al. Jun 2007 B2
7230770 Kreitzer et al. Jun 2007 B2
7242527 Spitzer et al. Jul 2007 B2
7248128 Mattila et al. Jul 2007 B2
7256915 Sutherland et al. Aug 2007 B2
7259906 Islam Aug 2007 B1
7265882 Sutherland et al. Sep 2007 B2
7265903 Sutherland et al. Sep 2007 B2
7268946 Wang Sep 2007 B2
7285903 Cull et al. Oct 2007 B2
7286272 Mukawa Oct 2007 B2
7289069 Ranta Oct 2007 B2
RE39911 Moskovich Nov 2007 E
7299983 Piikivi Nov 2007 B2
7301601 Lin et al. Nov 2007 B2
7312906 Sutherland et al. Dec 2007 B2
7313291 Okhotnikov et al. Dec 2007 B2
7319573 Nishiyama Jan 2008 B2
7320534 Sugikawa et al. Jan 2008 B2
7323275 Otaki et al. Jan 2008 B2
7333685 Stone Feb 2008 B2
7336271 Ozeki et al. Feb 2008 B2
7339737 Urey et al. Mar 2008 B2
7339742 Amitai et al. Mar 2008 B2
7356224 Levner et al. Apr 2008 B2
7375870 Schorpp May 2008 B2
7375886 Lipton et al. May 2008 B2
7391573 Amitai Jun 2008 B2
7394865 Borran et al. Jul 2008 B2
7395181 Foxlin Jul 2008 B2
7397606 Peng et al. Jul 2008 B1
7401920 Kranz et al. Jul 2008 B1
7404644 Evans et al. Jul 2008 B2
7410286 Travis Aug 2008 B2
7411637 Weiss Aug 2008 B2
7413678 Natarajan et al. Aug 2008 B1
7413679 Sutherland et al. Aug 2008 B1
7415173 Kassamakov et al. Aug 2008 B2
7416818 Sutherland et al. Aug 2008 B2
7418170 Mukawa et al. Aug 2008 B2
7420733 Natarajan et al. Sep 2008 B1
7433116 Islam Oct 2008 B1
7436568 Kuykendall Oct 2008 B1
7453612 Mukawa Nov 2008 B2
7454103 Parriaux Nov 2008 B2
7457040 Amitai Nov 2008 B2
7466994 Pihlaja et al. Dec 2008 B2
7477206 Cowan et al. Jan 2009 B2
7479354 Ueda et al. Jan 2009 B2
7480215 Makela et al. Jan 2009 B2
7482996 Larson et al. Jan 2009 B2
7483604 Levola Jan 2009 B2
7492512 Niv et al. Feb 2009 B2
7496293 Shamir et al. Feb 2009 B2
7499217 Cakmakci et al. Mar 2009 B2
7500104 Goland Mar 2009 B2
7511891 Messerschmidt et al. Mar 2009 B2
7522344 Curatu et al. Apr 2009 B1
7528385 Volodin et al. May 2009 B2
7545429 Travis Jun 2009 B2
7550234 Otaki et al. Jun 2009 B2
7567372 Schorpp Jul 2009 B2
7570322 Sutherland et al. Aug 2009 B1
7570405 Sutherland et al. Aug 2009 B1
7570429 Maliah et al. Aug 2009 B2
7572555 Takizawa et al. Aug 2009 B2
7573640 Nivon et al. Aug 2009 B2
7576916 Amitai Aug 2009 B2
7577326 Amitai Aug 2009 B2
7579119 Ueda et al. Aug 2009 B2
7583423 Sutherland et al. Sep 2009 B2
7588863 Takizawa et al. Sep 2009 B2
7589900 Powell Sep 2009 B1
7589901 DeJong et al. Sep 2009 B2
7592988 Katase Sep 2009 B2
7593575 Houle et al. Sep 2009 B2
7597447 Larson et al. Oct 2009 B2
7599012 Nakamura et al. Oct 2009 B2
7600893 Laino et al. Oct 2009 B2
7602552 Blumenfeld Oct 2009 B1
7605882 Sutherland et al. Oct 2009 B1
7616270 Hirabayashi et al. Nov 2009 B2
7618750 Ueda et al. Nov 2009 B2
7619739 Sutherland et al. Nov 2009 B1
7629086 Otaki et al. Dec 2009 B2
7639208 Ha et al. Dec 2009 B1
7639911 Lee et al. Dec 2009 B2
7643214 Amitai Jan 2010 B2
7643225 Tsai Jan 2010 B1
7656585 Powell et al. Feb 2010 B1
7660047 Travis et al. Feb 2010 B1
7672055 Amitai Mar 2010 B2
7672549 Schultz et al. Mar 2010 B2
7710622 Takabayashi et al. May 2010 B2
7710654 Ashkenazi et al. May 2010 B2
7724441 Amitai May 2010 B2
7724442 Amitai May 2010 B2
7724443 Amitai May 2010 B2
7733572 Brown et al. Jun 2010 B1
7740387 Schultz et al. Jun 2010 B2
7747113 Mukawa et al. Jun 2010 B2
7751122 Amitai Jul 2010 B2
7751662 Kleemann et al. Jul 2010 B2
7764413 Levola Jul 2010 B2
7777819 Simmonds Aug 2010 B2
7778305 Parriaux et al. Aug 2010 B2
7778508 Hirayama Aug 2010 B2
7843642 Shaoulov et al. Nov 2010 B2
7847235 Krupkin et al. Dec 2010 B2
7864427 Korenaga et al. Jan 2011 B2
7865080 Hecker et al. Jan 2011 B2
7866869 Karakawa Jan 2011 B2
7872707 Sutherland et al. Jan 2011 B1
7872804 Moon et al. Jan 2011 B2
7884593 Simmonds et al. Feb 2011 B2
7884985 Amitai et al. Feb 2011 B2
7887186 Watanabe Feb 2011 B2
7903921 Ostergard Mar 2011 B2
7907342 Simmonds et al. Mar 2011 B2
7920787 Gentner et al. Apr 2011 B2
7936519 Mukawa et al. May 2011 B2
7944428 Travis May 2011 B2
7944616 Mukawa May 2011 B2
7949214 DeJong et al. May 2011 B2
7969644 Tilleman et al. Jun 2011 B2
7969657 Cakmakci et al. Jun 2011 B2
7970246 Travis et al. Jun 2011 B2
7976208 Travis Jul 2011 B2
7984884 Iliev et al. Jul 2011 B1
7999982 Endo et al. Aug 2011 B2
8000020 Amitai et al. Aug 2011 B2
8000491 Brodkin et al. Aug 2011 B2
8004765 Amitai Aug 2011 B2
8014050 McGrew Sep 2011 B2
8016475 Travis Sep 2011 B2
8018579 Krah Sep 2011 B1
8022942 Bathiche et al. Sep 2011 B2
8023783 Mukawa et al. Sep 2011 B2
RE42992 David Dec 2011 E
8073296 Mukawa et al. Dec 2011 B2
8077274 Sutherland et al. Dec 2011 B2
8079713 Ashkenazi Dec 2011 B2
8082222 Rangarajan et al. Dec 2011 B2
8086030 Gordon et al. Dec 2011 B2
8089568 Brown et al. Jan 2012 B1
8093451 Simmonds et al. Jan 2012 B2
8098439 Amitai et al. Jan 2012 B2
8107023 Simmonds et al. Jan 2012 B2
8107780 Simmonds Jan 2012 B2
8132948 Owen et al. Mar 2012 B2
8132976 Odell et al. Mar 2012 B2
8134434 Diederichs et al. Mar 2012 B2
8136690 Fang et al. Mar 2012 B2
8137981 Andrew et al. Mar 2012 B2
8142016 Legerton et al. Mar 2012 B2
8149086 Klein et al. Apr 2012 B2
8152315 Travis et al. Apr 2012 B2
8155489 Saarikko et al. Apr 2012 B2
8159752 Wertheim et al. Apr 2012 B2
8160409 Large Apr 2012 B2
8160411 Levola et al. Apr 2012 B2
8167173 Simmonds et al. May 2012 B1
8186874 Sinbar et al. May 2012 B2
8188925 DeJean May 2012 B2
8189263 Wang et al. May 2012 B1
8189973 Travis et al. May 2012 B2
8194325 Saarikko et al. Jun 2012 B2
8199803 Hauske et al. Jun 2012 B2
8213065 Mukawa Jul 2012 B2
8213755 Mukawa et al. Jul 2012 B2
8220966 Mukawa Jul 2012 B2
8224133 Popovich et al. Jul 2012 B2
8233204 Robbins et al. Jul 2012 B1
8253914 Kajiya et al. Aug 2012 B2
8254031 Levola Aug 2012 B2
8294749 Cable Oct 2012 B2
8295710 Marcus Oct 2012 B2
8301031 Gentner et al. Oct 2012 B2
8305577 Kivioja et al. Nov 2012 B2
8306423 Gottwald et al. Nov 2012 B2
8310327 Willers et al. Nov 2012 B2
8314819 Kimmel et al. Nov 2012 B2
8314993 Levola et al. Nov 2012 B2
8320032 Levola Nov 2012 B2
8321810 Heintze Nov 2012 B2
8325166 Akutsu et al. Dec 2012 B2
8329773 Fäcke et al. Dec 2012 B2
8335040 Mukawa et al. Dec 2012 B2
8351744 Travis et al. Jan 2013 B2
8354640 Hamre et al. Jan 2013 B2
8354806 Travis et al. Jan 2013 B2
8355610 Simnionds Jan 2013 B2
8369019 Baker et al. Feb 2013 B2
8376548 Schultz Feb 2013 B2
8382293 Phillips, III et al. Feb 2013 B2
8384504 Diederichs et al. Feb 2013 B2
8384694 Powell et al. Feb 2013 B2
8396339 Mukawa et al. Mar 2013 B2
8398242 Yamamoto et al. Mar 2013 B2
8403490 Sugiyama et al. Mar 2013 B2
8422840 Large Apr 2013 B2
8427439 Larsen et al. Apr 2013 B2
8432363 Saarikko et al. Apr 2013 B2
8432372 Butler et al. Apr 2013 B2
8432614 Amitai Apr 2013 B2
8441731 Sprague May 2013 B2
8447365 Imanuel May 2013 B1
8466953 Levola et al. Jun 2013 B2
8472119 Kelly Jun 2013 B1
8472120 Border et al. Jun 2013 B2
8477261 Travis et al. Jul 2013 B2
8481130 Doornkamp et al. Jul 2013 B2
8482858 Sprague Jul 2013 B2
8488246 Border et al. Jul 2013 B2
8491121 Tilleman et al. Jul 2013 B2
8491136 Travis et al. Jul 2013 B2
8493366 Bathiche et al. Jul 2013 B2
8493662 Noui Jul 2013 B2
8494229 Järvenpää et al. Jul 2013 B2
8508848 Saarikko Aug 2013 B2
8520309 Sprague Aug 2013 B2
8547638 Levola Oct 2013 B2
8548290 Travers et al. Oct 2013 B2
8565560 Popovich et al. Oct 2013 B2
8578038 Kaikuranta et al. Nov 2013 B2
8581831 Travis Nov 2013 B2
8582206 Travis Nov 2013 B2
8593734 Laakkonen Nov 2013 B2
8611014 Valera et al. Dec 2013 B2
8619062 Powell et al. Dec 2013 B2
8633786 Ermolov et al. Jan 2014 B2
8634120 Popovich et al. Jan 2014 B2
8634139 Brown et al. Jan 2014 B1
8639072 Popovich et al. Jan 2014 B2
8643691 Rosenfeld et al. Feb 2014 B2
8643948 Amitai et al. Feb 2014 B2
8649099 Schultz et al. Feb 2014 B2
8654420 Simmonds Feb 2014 B2
8659826 Brown et al. Feb 2014 B1
D701206 Luckey et al. Mar 2014 S
8670029 McEldowney Mar 2014 B2
8693087 Nowatzyk et al. Apr 2014 B2
8698705 Burke et al. Apr 2014 B2
8731350 Jacobs et al. May 2014 B1
8736802 Kajiya et al. May 2014 B2
8736963 Robbins et al. May 2014 B2
8746008 Simmonds et al. Jun 2014 B1
8749886 Gupta Jun 2014 B2
8749890 Wood et al. Jun 2014 B1
8767294 Chen et al. Jul 2014 B2
8786923 Chuang et al. Jul 2014 B2
8810600 Bohn et al. Aug 2014 B2
8810913 Simmonds et al. Aug 2014 B2
8810914 Amitai Aug 2014 B2
8814691 Haddick et al. Aug 2014 B2
8817350 Robbins et al. Aug 2014 B1
8824836 Sugiyama et al. Sep 2014 B2
8830584 Saarikko et al. Sep 2014 B2
8830588 Brown et al. Sep 2014 B1
8842368 Simmonds et al. Sep 2014 B2
8859412 Jain Oct 2014 B2
8872435 Kreitzer et al. Oct 2014 B2
8873149 Bohn et al. Oct 2014 B2
8873150 Amitai Oct 2014 B2
8885112 Popovich et al. Nov 2014 B2
8885997 Bohn et al. Nov 2014 B2
8903207 Brown et al. Dec 2014 B1
8906088 Flitsch et al. Dec 2014 B2
8913324 Schrader Dec 2014 B2
8913865 Bennett Dec 2014 B1
8917453 Bohn et al. Dec 2014 B2
8937771 Robbins et al. Jan 2015 B2
8937772 Burns et al. Jan 2015 B1
8938141 Magnusson Jan 2015 B2
8950867 Macnamara Feb 2015 B2
8964298 Haddick et al. Feb 2015 B2
8965152 Simmonds Feb 2015 B2
8985803 Bohn et al. Mar 2015 B2
8989535 Robbins Mar 2015 B2
9019595 Jain Apr 2015 B2
9025253 Hadad et al. May 2015 B2
9035344 Jain May 2015 B2
9075184 Popovich et al. Jul 2015 B2
9081178 Simmonds et al. Jul 2015 B2
9097890 Miller et al. Aug 2015 B2
9128226 Fattal et al. Sep 2015 B2
9129295 Border et al. Sep 2015 B2
9164290 Robbins et al. Oct 2015 B2
9201270 Fattal et al. Dec 2015 B2
9215293 Miller Dec 2015 B2
9244280 Tiana et al. Jan 2016 B1
9269854 Jain Feb 2016 B2
9274338 Bohn et al. Mar 2016 B2
9274349 Popovich et al. Mar 2016 B2
9310566 Valera et al. Apr 2016 B2
9329325 Simmonds et al. May 2016 B2
9335604 Popovich et al. May 2016 B2
9341846 Popovich et al. May 2016 B2
9354366 Jain May 2016 B2
9366862 Osterhout et al. Jun 2016 B2
9366864 Brown et al. Jun 2016 B1
9372347 Saarikko et al. Jun 2016 B1
9377623 Robbins et al. Jun 2016 B2
9389415 Fattal et al. Jul 2016 B2
9400395 Travers et al. Jul 2016 B2
9423360 Tervonen et al. Aug 2016 B1
9429692 Saarikko et al. Aug 2016 B1
9431794 Jain Aug 2016 B2
9456744 Popovich et al. Oct 2016 B2
9459451 Saarikko et al. Oct 2016 B2
9465213 Simmonds Oct 2016 B2
9465227 Popovich et al. Oct 2016 B2
9494799 Robbins et al. Nov 2016 B2
9513480 Saarikko et al. Dec 2016 B2
9523852 Brown et al. Dec 2016 B1
9535253 Levola et al. Jan 2017 B2
9541383 Watson et al. Jan 2017 B2
9547174 Gao et al. Jan 2017 B2
9551874 Amitai Jan 2017 B2
9551880 Amitai et al. Jan 2017 B2
9612403 Watson et al. Apr 2017 B2
9632226 Waldern et al. Apr 2017 B2
9651368 Watson et al. May 2017 B2
9664824 Simmonds et al. May 2017 B2
9664910 Mansharof et al. May 2017 B2
9715067 Brown et al. Jul 2017 B1
9726540 Popovich et al. Aug 2017 B2
9727772 Popovich et al. Aug 2017 B2
9746688 Popovich et al. Aug 2017 B2
9823423 Waldern et al. Nov 2017 B2
9857605 Popovich et al. Jan 2018 B2
9933684 Brown et al. Apr 2018 B2
10156681 Waldern et al. Dec 2018 B2
10185154 Popovich et al. Jan 2019 B2
10234696 Popovich et al. Mar 2019 B2
10409144 Popovich et al. Sep 2019 B2
20010043163 Waldern et al. Nov 2001 A1
20010050756 Lipton et al. Dec 2001 A1
20020003509 Lipton et al. Jan 2002 A1
20020009299 Lipton Jan 2002 A1
20020011969 Lipton et al. Jan 2002 A1
20020012064 Yamaguchi Jan 2002 A1
20020021461 Ono et al. Feb 2002 A1
20020036825 Lipton et al. Mar 2002 A1
20020047837 Suyama et al. Apr 2002 A1
20020075240 Lieberman et al. Jun 2002 A1
20020110077 Drobot et al. Aug 2002 A1
20020126332 Popovich Sep 2002 A1
20020131175 Yagi et al. Sep 2002 A1
20020196332 Lipton et al. Dec 2002 A1
20030007070 Lipton et al. Jan 2003 A1
20030025881 Hwang Feb 2003 A1
20030030912 Gleckman et al. Feb 2003 A1
20030038912 Broer et al. Feb 2003 A1
20030039442 Bond et al. Feb 2003 A1
20030063042 Friesem et al. Apr 2003 A1
20030067685 Niv Apr 2003 A1
20030086670 Moridaira et al. May 2003 A1
20030107809 Chen et al. Jun 2003 A1
20030149346 Arnone et al. Aug 2003 A1
20030197157 Sutherland et al. Oct 2003 A1
20030202247 Niv et al. Oct 2003 A1
20030228019 Eichler et al. Dec 2003 A1
20040004767 Song Jan 2004 A1
20040089842 Sutehrland et al. May 2004 A1
20040109234 Levola Jun 2004 A1
20040112862 Willson et al. Jun 2004 A1
20040130797 Leigh Jul 2004 A1
20040141217 Endo et al. Jul 2004 A1
20040174348 David Sep 2004 A1
20040175627 Sutherland et al. Sep 2004 A1
20040179764 Melikechi et al. Sep 2004 A1
20040188617 Devitt et al. Sep 2004 A1
20040208446 Bond et al. Oct 2004 A1
20040208466 Mossberg et al. Oct 2004 A1
20040263969 Lipton et al. Dec 2004 A1
20040263971 Lipton et al. Dec 2004 A1
20050018304 Lipton et al. Jan 2005 A1
20050047705 Domash Mar 2005 A1
20050079663 Masutani et al. Apr 2005 A1
20050105909 Stone May 2005 A1
20050122395 Lipton et al. Jun 2005 A1
20050134404 Kajiya Jun 2005 A1
20050135747 Greiner et al. Jun 2005 A1
20050136260 Garcia Jun 2005 A1
20050141066 Ouchi Jun 2005 A1
20050180687 Amitai Aug 2005 A1
20050195276 Lipton et al. Sep 2005 A1
20050232530 Kekas et al. Oct 2005 A1
20050254752 Domash et al. Nov 2005 A1
20050259302 Metz et al. Nov 2005 A9
20050265585 Rowe Dec 2005 A1
20050269481 David et al. Dec 2005 A1
20050271258 Rowe Dec 2005 A1
20050286133 Lipton Dec 2005 A1
20060012878 Lipton et al. Jan 2006 A1
20060013977 Duke et al. Jan 2006 A1
20060043938 O'Gorman et al. Mar 2006 A1
20060093793 Miyakawa et al. May 2006 A1
20060114564 Sutherland et al. Jun 2006 A1
20060119837 Raguin et al. Jun 2006 A1
20060119916 Sutherland Jun 2006 A1
20060126179 Levola Jun 2006 A1
20060132914 Weiss et al. Jun 2006 A1
20060146422 Koike Jul 2006 A1
20060159864 Natarajan et al. Jul 2006 A1
20060164593 Peyghambarian et al. Jul 2006 A1
20060171647 Ye et al. Aug 2006 A1
20060177180 Tazawa et al. Aug 2006 A1
20060181683 Bhowmik et al. Aug 2006 A1
20060191293 Kuczma Aug 2006 A1
20060215244 Yosha et al. Sep 2006 A1
20060221063 Ishihara Oct 2006 A1
20060221448 Nivon et al. Oct 2006 A1
20060228073 Mukawa et al. Oct 2006 A1
20060268104 Cowan et al. Nov 2006 A1
20060268412 Downing et al. Nov 2006 A1
20060279662 Kapellner et al. Dec 2006 A1
20060284974 Lipton et al. Dec 2006 A1
20060285205 Lipton et al. Dec 2006 A1
20060291021 Mukawa Dec 2006 A1
20060291052 Lipton et al. Dec 2006 A1
20070012777 Tsikos et al. Jan 2007 A1
20070019152 Caputo et al. Jan 2007 A1
20070019297 Stewart et al. Jan 2007 A1
20070041684 Popovich et al. Feb 2007 A1
20070045596 King et al. Mar 2007 A1
20070052929 Allman et al. Mar 2007 A1
20070053032 Popovich Mar 2007 A1
20070070476 Yamada et al. Mar 2007 A1
20070070504 Akutsu et al. Mar 2007 A1
20070089625 Grinberg et al. Apr 2007 A1
20070097502 Lipton et al. May 2007 A1
20070109401 Lipton et al. May 2007 A1
20070116409 Bryan et al. May 2007 A1
20070133089 Lipton et al. Jun 2007 A1
20070133920 Lee et al. Jun 2007 A1
20070133983 Traff Jun 2007 A1
20070146625 Ooi et al. Jun 2007 A1
20070154153 Fomitchov et al. Jul 2007 A1
20070160325 Son et al. Jul 2007 A1
20070177007 Lipton et al. Aug 2007 A1
20070182915 Osawa et al. Aug 2007 A1
20070183650 Lipton et al. Aug 2007 A1
20070188602 Cowan et al. Aug 2007 A1
20070188837 Shimizu et al. Aug 2007 A1
20070206155 Lipton Sep 2007 A1
20070211164 Olsen et al. Sep 2007 A1
20070236560 Lipton et al. Oct 2007 A1
20070237456 Blauvelt et al. Oct 2007 A1
20070247687 Handschy et al. Oct 2007 A1
20070258138 Cowan et al. Nov 2007 A1
20070263169 Lipton Nov 2007 A1
20080001909 Lim Jan 2008 A1
20080018851 Lipton et al. Jan 2008 A1
20080024598 Perlin et al. Jan 2008 A1
20080043334 Itzkovitch et al. Feb 2008 A1
20080049100 Lipton et al. Feb 2008 A1
20080062259 Lipton et al. Mar 2008 A1
20080106775 Amitai et al. May 2008 A1
20080106779 Peterson et al. May 2008 A1
20080117289 Schowengerdt et al. May 2008 A1
20080136916 Wolff Jun 2008 A1
20080136923 Inbar et al. Jun 2008 A1
20080138013 Parriaux Jun 2008 A1
20080143964 Cowan et al. Jun 2008 A1
20080143965 Cowan et al. Jun 2008 A1
20080149517 Lipton et al. Jun 2008 A1
20080151370 Cook et al. Jun 2008 A1
20080151379 Amitai Jun 2008 A1
20080186573 Lipton Aug 2008 A1
20080186574 Robinson et al. Aug 2008 A1
20080186604 Amitai Aug 2008 A1
20080198471 Amitai Aug 2008 A1
20080225187 Yamanaka Sep 2008 A1
20080226281 Lipton Sep 2008 A1
20080239067 Lipton Oct 2008 A1
20080239068 Lipton Oct 2008 A1
20080273081 Lipton Nov 2008 A1
20080278812 Amitai Nov 2008 A1
20080285137 Simmonds et al. Nov 2008 A1
20080285140 Amitai Nov 2008 A1
20080297731 Powell et al. Dec 2008 A1
20080298649 Ennis et al. Dec 2008 A1
20080303895 Akka et al. Dec 2008 A1
20080303896 Lipton et al. Dec 2008 A1
20080304111 Queenan et al. Dec 2008 A1
20080309586 Vitale Dec 2008 A1
20080316303 Chiu et al. Dec 2008 A1
20080316375 Lipton et al. Dec 2008 A1
20090017424 Yoeli et al. Jan 2009 A1
20090019222 Verma et al. Jan 2009 A1
20090052046 Amitai Feb 2009 A1
20090052047 Amitai Feb 2009 A1
20090067774 Magnusson Mar 2009 A1
20090074356 Sanchez et al. Mar 2009 A1
20090097122 Niv Apr 2009 A1
20090097127 Amitai Apr 2009 A1
20090121301 Chang May 2009 A1
20090122413 Hoffman et al. May 2009 A1
20090122414 Amitai May 2009 A1
20090128495 Kong et al. May 2009 A1
20090128902 Niv et al. May 2009 A1
20090128911 Itzkovitch et al. May 2009 A1
20090141324 Mukawa Jun 2009 A1
20090153437 Aharoni Jun 2009 A1
20090190222 Simmonds et al. Jul 2009 A1
20090213208 Glatt Aug 2009 A1
20090237804 Amitai et al. Sep 2009 A1
20090242021 Petkie et al. Oct 2009 A1
20090296218 Ryytty Dec 2009 A1
20090303599 Levola Dec 2009 A1
20090316246 Asai et al. Dec 2009 A1
20100014312 Travis et al. Jan 2010 A1
20100039796 Mukawa Feb 2010 A1
20100053565 Mizushima et al. Mar 2010 A1
20100060551 Sugiyama et al. Mar 2010 A1
20100060990 Wertheim et al. Mar 2010 A1
20100079865 Saarikko et al. Apr 2010 A1
20100086256 Ben Bakir et al. Apr 2010 A1
20100092124 Magnusson et al. Apr 2010 A1
20100096562 Klunder et al. Apr 2010 A1
20100097674 Kasazumi et al. Apr 2010 A1
20100097820 Owen et al. Apr 2010 A1
20100103078 Mukawa et al. Apr 2010 A1
20100134534 Seesselberg et al. Jun 2010 A1
20100136319 Imai et al. Jun 2010 A1
20100141555 Rorberg et al. Jun 2010 A1
20100149073 Chaum et al. Jun 2010 A1
20100165465 Levola Jul 2010 A1
20100171680 Lapidot et al. Jul 2010 A1
20100177388 Cohen et al. Jul 2010 A1
20100202725 Popovich et al. Aug 2010 A1
20100214659 Levola Aug 2010 A1
20100220293 Mizushima et al. Sep 2010 A1
20100231532 Nho et al. Sep 2010 A1
20100231693 Levola Sep 2010 A1
20100231705 Yahav et al. Sep 2010 A1
20100232003 Baldy et al. Sep 2010 A1
20100246003 Simmonds et al. Sep 2010 A1
20100246004 Simmonds Sep 2010 A1
20100246993 Rieger et al. Sep 2010 A1
20100265117 Weiss Oct 2010 A1
20100277803 Pockett et al. Nov 2010 A1
20100284085 Laakkonen Nov 2010 A1
20100284090 Simmonds et al. Nov 2010 A1
20100284180 Popovich et al. Nov 2010 A1
20100296163 Saarikko Nov 2010 A1
20100299814 Celona et al. Dec 2010 A1
20100315719 Saarikko et al. Dec 2010 A1
20100321781 Levola et al. Dec 2010 A1
20110001895 Dahl Jan 2011 A1
20110002143 Saarikko et al. Jan 2011 A1
20110013423 Selbrede et al. Jan 2011 A1
20110019250 Aiki et al. Jan 2011 A1
20110019874 Jarvenpaa et al. Jan 2011 A1
20110026128 Baker et al. Feb 2011 A1
20110026774 Flohr et al. Feb 2011 A1
20110032602 Rothenberg et al. Feb 2011 A1
20110032618 Handerek et al. Feb 2011 A1
20110032706 Mukawa Feb 2011 A1
20110038024 Wang et al. Feb 2011 A1
20110050548 Blumenfeld et al. Mar 2011 A1
20110063604 Hamre et al. Mar 2011 A1
20110096401 Levola Apr 2011 A1
20110102711 Sutherland et al. May 2011 A1
20110109880 Nummela et al. May 2011 A1
20110157707 Tilleman et al. Jun 2011 A1
20110164221 Tilleman et al. Jul 2011 A1
20110187293 Travis Aug 2011 A1
20110211239 Mukawa et al. Sep 2011 A1
20110235179 Simmonds Sep 2011 A1
20110235365 McCollum et al. Sep 2011 A1
20110236803 Weiser et al. Sep 2011 A1
20110238399 Ophir et al. Sep 2011 A1
20110242349 Izuha et al. Oct 2011 A1
20110242661 Simmonds Oct 2011 A1
20110242670 Simmonds Oct 2011 A1
20110249309 McPheters et al. Oct 2011 A1
20110274435 Fini et al. Nov 2011 A1
20110310356 Vallius Dec 2011 A1
20120007979 Schneider et al. Jan 2012 A1
20120027347 Mathal et al. Feb 2012 A1
20120033306 Valera et al. Feb 2012 A1
20120044572 Simmonds et al. Feb 2012 A1
20120044573 Simmonds et al. Feb 2012 A1
20120062850 Travis Mar 2012 A1
20120062998 Schultz et al. Mar 2012 A1
20120075168 Osterhout et al. Mar 2012 A1
20120081789 Mukawa et al. Apr 2012 A1
20120092632 McLeod et al. Apr 2012 A1
20120099203 Boubis et al. Apr 2012 A1
20120105634 Meidan et al. May 2012 A1
20120120493 Simmonds et al. May 2012 A1
20120127577 Desserouer May 2012 A1
20120162549 Gao et al. Jun 2012 A1
20120162764 Shimizu Jun 2012 A1
20120176665 Song et al. Jul 2012 A1
20120183888 Oliveira et al. Jul 2012 A1
20120194420 Osterhout et al. Aug 2012 A1
20120200532 Powell et al. Aug 2012 A1
20120206811 Mukawa et al. Aug 2012 A1
20120206937 Travis et al. Aug 2012 A1
20120207432 Travis et al. Aug 2012 A1
20120207434 Large et al. Aug 2012 A1
20120214089 Hönel et al. Aug 2012 A1
20120214090 Weiser et al. Aug 2012 A1
20120218481 Popovich et al. Aug 2012 A1
20120224062 Lacoste et al. Sep 2012 A1
20120235884 Miller et al. Sep 2012 A1
20120235886 Border et al. Sep 2012 A1
20120235900 Border et al. Sep 2012 A1
20120242661 Takagi et al. Sep 2012 A1
20120280956 Yamamoto et al. Nov 2012 A1
20120281943 Popovich et al. Nov 2012 A1
20120290973 Robertson et al. Nov 2012 A1
20120294037 Holman et al. Nov 2012 A1
20120300311 Simmonds et al. Nov 2012 A1
20120320460 Levola Dec 2012 A1
20130016324 Travis Jan 2013 A1
20130021392 Travis Jan 2013 A1
20130021586 Lippey Jan 2013 A1
20130033485 Kollin et al. Feb 2013 A1
20130039619 Laughlin et al. Feb 2013 A1
20130044376 Valera et al. Feb 2013 A1
20130059233 Askham Mar 2013 A1
20130069850 Mukawa et al. Mar 2013 A1
20130077049 Bohn Mar 2013 A1
20130093893 Schofield et al. Apr 2013 A1
20130101253 Popovich et al. Apr 2013 A1
20130117377 Miller May 2013 A1
20130125027 Abovitz et al. May 2013 A1
20130128230 Macnamara May 2013 A1
20130138275 Nauman et al. May 2013 A1
20130141937 Katsuta et al. Jun 2013 A1
20130143336 Jain Jun 2013 A1
20130163089 Bohn et al. Jun 2013 A1
20130170031 Bohn et al. Jul 2013 A1
20130176704 Lanman et al. Jul 2013 A1
20130184904 Gadzinski Jul 2013 A1
20130200710 Robbins Aug 2013 A1
20130207887 Raffle et al. Aug 2013 A1
20130224634 Berneth et al. Aug 2013 A1
20130229717 Amitai Sep 2013 A1
20130249895 Westerinen et al. Sep 2013 A1
20130250207 Bohn Sep 2013 A1
20130250430 Robbins et al. Sep 2013 A1
20130250431 Robbins et al. Sep 2013 A1
20130257848 Westerinen et al. Oct 2013 A1
20130258701 Westerinen et al. Oct 2013 A1
20130267309 Robbins et al. Oct 2013 A1
20130271731 Popovich et al. Oct 2013 A1
20130277890 Bowman et al. Oct 2013 A1
20130305437 Weller et al. Nov 2013 A1
20130312811 Aspnes et al. Nov 2013 A1
20130314793 Robbins et al. Nov 2013 A1
20130322810 Robbins Dec 2013 A1
20130328948 Kunkel et al. Dec 2013 A1
20130342525 Benko et al. Dec 2013 A1
20140003762 Macnamara Jan 2014 A1
20140022616 Popovich et al. Jan 2014 A1
20140024159 Jain Jan 2014 A1
20140027006 Foley et al. Jan 2014 A1
20140037242 Popovich et al. Feb 2014 A1
20140043689 Mason Feb 2014 A1
20140055845 Jain Feb 2014 A1
20140063055 Osterhout et al. Mar 2014 A1
20140064655 Bohn et al. Mar 2014 A1
20140071538 Muller Mar 2014 A1
20140098010 Travis Apr 2014 A1
20140104665 Popovich et al. Apr 2014 A1
20140104685 Bohn et al. Apr 2014 A1
20140118647 Momonoi et al. May 2014 A1
20140130132 Cahill et al. May 2014 A1
20140140653 Brown et al. May 2014 A1
20140140654 Brown et al. May 2014 A1
20140146394 Tout et al. May 2014 A1
20140152778 Ihlenburg et al. Jun 2014 A1
20140160576 Robbins et al. Jun 2014 A1
20140168055 Smith Jun 2014 A1
20140168260 O'Brien et al. Jun 2014 A1
20140168735 Yuan et al. Jun 2014 A1
20140168783 Luebke et al. Jun 2014 A1
20140172296 Shtukater Jun 2014 A1
20140176528 Robbins Jun 2014 A1
20140177023 Gao et al. Jun 2014 A1
20140185286 Popovich et al. Jul 2014 A1
20140198128 Hong et al. Jul 2014 A1
20140204455 Popovich et al. Jul 2014 A1
20140211322 Bohn et al. Jul 2014 A1
20140218468 Gao et al. Aug 2014 A1
20140218801 Simmonds et al. Aug 2014 A1
20140232759 Simmonds et al. Aug 2014 A1
20140240834 Mason et al. Aug 2014 A1
20140240842 Nguyen et al. Aug 2014 A1
20140267420 Schowengerdt et al. Sep 2014 A1
20140300947 Fattal et al. Oct 2014 A1
20140300960 Santori et al. Oct 2014 A1
20140300966 Travers et al. Oct 2014 A1
20140327970 Bohn et al. Nov 2014 A1
20140330159 Costa et al. Nov 2014 A1
20140367719 Jain Dec 2014 A1
20140375542 Robbins et al. Dec 2014 A1
20140375789 Lou et al. Dec 2014 A1
20140375790 Robbins et al. Dec 2014 A1
20150001677 Venturato et al. Jan 2015 A1
20150003796 Bennett Jan 2015 A1
20150010265 Popovich et al. Jan 2015 A1
20150015946 Muller Jan 2015 A1
20150016777 Abovitz et al. Jan 2015 A1
20150035744 Robbins et al. Feb 2015 A1
20150036068 Fattal et al. Feb 2015 A1
20150058791 Robertson et al. Feb 2015 A1
20150062675 Ayres et al. Mar 2015 A1
20150062707 Simmonds et al. Mar 2015 A1
20150086163 Valera et al. Mar 2015 A1
20150107671 Bodan et al. Apr 2015 A1
20150125109 Robbins et al. May 2015 A1
20150148728 Sallum et al. May 2015 A1
20150160529 Popovich et al. Jun 2015 A1
20150167868 Boncha Jun 2015 A1
20150177443 Faecke et al. Jun 2015 A1
20150177688 Popovich et al. Jun 2015 A1
20150185475 Saarikko et al. Jul 2015 A1
20150235447 Abovitz et al. Aug 2015 A1
20150235448 Schowengerdt et al. Aug 2015 A1
20150243068 Solomon Aug 2015 A1
20150247975 Abovitz et al. Sep 2015 A1
20150260994 Akutsu et al. Sep 2015 A1
20150268415 Schowengerdt et al. Sep 2015 A1
20150277375 Large et al. Oct 2015 A1
20150285682 Popovich et al. Oct 2015 A1
20150288129 Jain Oct 2015 A1
20150289762 Popovich et al. Oct 2015 A1
20150316768 Simmonds Nov 2015 A1
20150346490 Klug et al. Dec 2015 A1
20150346495 Chang et al. Dec 2015 A1
20150355394 Leighton et al. Dec 2015 A1
20160003847 Ryan et al. Jan 2016 A1
20160004090 Waldern et al. Jan 2016 A1
20160026253 Bradski et al. Jan 2016 A1
20160033705 Fattal Feb 2016 A1
20160033706 Fattal et al. Feb 2016 A1
20160038992 Arthur et al. Feb 2016 A1
20160041387 Valera et al. Feb 2016 A1
20160077338 Nguyen et al. Mar 2016 A1
20160085300 Robbins et al. Mar 2016 A1
20160116739 Schowengerdt et al. Apr 2016 A1
20160124223 Shinbo et al. May 2016 A1
20160124241 Popovich et al. May 2016 A1
20160132025 Taff et al. May 2016 A1
20160170226 Popovich et al. Jun 2016 A1
20160195664 Fattal et al. Jul 2016 A1
20160209648 Haddick et al. Jul 2016 A1
20160209657 Popovich et al. Jul 2016 A1
20160231568 Saarikko et al. Aug 2016 A1
20160231570 Levola et al. Aug 2016 A1
20160238772 Waldern et al. Aug 2016 A1
20160266398 Poon et al. Sep 2016 A1
20160274362 Tinch et al. Sep 2016 A1
20160299344 Dobschal et al. Oct 2016 A1
20160320536 Ferns et al. Nov 2016 A1
20160327705 Ferns et al. Nov 2016 A1
20160341964 Amitai et al. Nov 2016 A1
20160377879 Popovich et al. Dec 2016 A1
20170003505 Vallius et al. Jan 2017 A1
20170010488 Schowengerdt et al. Jan 2017 A1
20170030550 Popovich et al. Feb 2017 A1
20170031160 Popovich et al. Feb 2017 A1
20170031171 Vallius et al. Feb 2017 A1
20170034435 Vallius et al. Feb 2017 A1
20170038579 Schuelke et al. Feb 2017 A1
20170052374 Waldern et al. Feb 2017 A1
20170052376 Amitai et al. Feb 2017 A1
20170059759 Ayres et al. Mar 2017 A1
20170102543 Vallius et al. Apr 2017 A1
20170115487 Travis et al. Apr 2017 A1
20170123208 Vallius et al. May 2017 A1
20170131460 Lin et al. May 2017 A1
20170131546 Woltman et al. May 2017 A1
20170131551 Woltman et al. May 2017 A1
20170180404 Bersch et al. Jun 2017 A1
20170180408 Yu et al. Jun 2017 A1
20170192246 Popovich et al. Jul 2017 A9
20170199333 Waldern et al. Jul 2017 A1
20170219841 Popovich et al. Aug 2017 A1
20170276940 Popovich et al. Sep 2017 A1
20170299860 Juhola et al. Oct 2017 A1
20170356801 Popovich et al. Dec 2017 A1
20180011324 Popovich et al. Jan 2018 A1
20180059305 Popovich et al. Mar 2018 A1
20180074265 Waldern et al. Mar 2018 A1
20180113303 Popovich et al. Apr 2018 A1
20180120669 Popovich et al. May 2018 A1
20180143449 Popovich et al. May 2018 A1
20180246354 Popovich et al. Aug 2018 A1
20180275402 Popovich et al. Sep 2018 A1
20180284440 Popovich et al. Oct 2018 A1
20180373115 Brown et al. Dec 2018 A1
20190072723 Waldern et al. Mar 2019 A1
20190113829 Waldern et al. Apr 2019 A1
20190129085 Waldern et al. May 2019 A1
20190171031 Popovich et al. Jun 2019 A1
20190212195 Popovich et al. Jul 2019 A9
20190265486 Hansotte et al. Aug 2019 A1
Foreign Referenced Citations (217)
Number Date Country
2015200386 Feb 2015 AU
PI0720469 Jan 2014 BR
2889727 Jun 2014 CA
200944140 Sep 2007 CN
101103297 Jan 2008 CN
100492099 May 2009 CN
101881936 Nov 2010 CN
104204901 Dec 2014 CN
104956252 Sep 2015 CN
105074537 Nov 2015 CN
105074539 Nov 2015 CN
105190407 Dec 2015 CN
105229514 Jan 2016 CN
105393159 Mar 2016 CN
105408801 Mar 2016 CN
105408802 Mar 2016 CN
105408803 Mar 2016 CN
105531716 Apr 2016 CN
105705981 Jun 2016 CN
107466372 Dec 2017 CN
19751190 May 1999 DE
10221837 Dec 2003 DE
102006003785 Jul 2007 DE
102012108424 Mar 2014 DE
0795775 Sep 1997 EP
0822441 Feb 1998 EP
1347641 Sep 2003 EP
1413972 Apr 2004 EP
1526709 Apr 2005 EP
1748305 Jan 2007 EP
1413972 Oct 2008 EP
2110701 Oct 2009 EP
2225592 Sep 2010 EP
2244114 Oct 2010 EP
2326983 Jun 2011 EP
2381290 Oct 2011 EP
1828832 May 2013 EP
2733517 May 2014 EP
1573369 Jul 2014 EP
2748670 Jul 2014 EP
2929378 Oct 2015 EP
2748670 Nov 2015 EP
2995986 Mar 2016 EP
2995986 Apr 2017 EP
3256888 Dec 2017 EP
2677463 Dec 1992 FR
2115178 Sep 1983 GB
2140935 Dec 1984 GB
2508661 Jun 2014 GB
2509536 Jul 2014 GB
2512077 Sep 2014 GB
2514658 Dec 2014 GB
1204684 Nov 2015 HK
1205563 Dec 2015 HK
1205793 Dec 2015 HK
1206101 Dec 2015 HK
02186319 Jul 1990 JP
03239384 Oct 1991 JP
06294952 Oct 1994 JP
07098439 Apr 1995 JP
0990312 Apr 1997 JP
11109320 Apr 1999 JP
11142806 May 1999 JP
2953444 Sep 1999 JP
200056259 Feb 2000 JP
2000267042 Sep 2000 JP
2001027739 Jan 2001 JP
2001296503 Oct 2001 JP
2002090858 Mar 2002 JP
2002122906 Apr 2002 JP
2002162598 Jun 2002 JP
2002523802 Jul 2002 JP
2002529790 Sep 2002 JP
2003066428 Mar 2003 JP
2003270419 Sep 2003 JP
2004157245 Jun 2004 JP
2006350129 Dec 2006 JP
2007011057 Jan 2007 JP
2007219106 Aug 2007 JP
2008112187 May 2008 JP
2009036955 Feb 2009 JP
2009211091 Sep 2009 JP
4367775 Nov 2009 JP
2012137616 Jul 2012 JP
5303928 Oct 2013 JP
20100092059 Aug 2010 KR
20140140063 Dec 2014 KR
20140142337 Dec 2014 KR
200535633 Nov 2005 TW
200801583 Jan 2008 TW
201314263 Apr 2013 TW
201600943 Jan 2016 TW
201604601 Feb 2016 TW
199701133 Jan 1997 WO
199727519 Jul 1997 WO
199804650 Feb 1998 WO
199909440 Feb 1999 WO
1999052002 Oct 1999 WO
2000016136 Mar 2000 WO
2000023830 Apr 2000 WO
2000023832 Apr 2000 WO
2000023847 Apr 2000 WO
2000028369 May 2000 WO
2000028369 Oct 2000 WO
2001050200 Jul 2001 WO
2001090822 Nov 2001 WO
2002082168 Oct 2002 WO
2003081320 Oct 2003 WO
2004102226 Nov 2004 WO
2005001753 Jan 2005 WO
2005006065 Jan 2005 WO
2005006065 Feb 2005 WO
2005073798 Aug 2005 WO
2006002870 Jan 2006 WO
2006064301 Jun 2006 WO
2006064325 Jun 2006 WO
2006064334 Jun 2006 WO
2006102073 Sep 2006 WO
2006132614 Dec 2006 WO
2006102073 Jan 2007 WO
2007015141 Feb 2007 WO
2007029032 Mar 2007 WO
2007085682 Aug 2007 WO
2007130130 Nov 2007 WO
2007141587 Dec 2007 WO
2007141589 Dec 2007 WO
2008011066 Jan 2008 WO
2008011066 May 2008 WO
2008100545 Aug 2008 WO
2008011066 Dec 2008 WO
2009013597 Jan 2009 WO
2009013597 Jan 2009 WO
2009077802 Jun 2009 WO
2009077803 Jun 2009 WO
2009101238 Aug 2009 WO
2007130130 Sep 2009 WO
2009155437 Dec 2009 WO
2009155437 Mar 2010 WO
2010023444 Mar 2010 WO
2010057219 May 2010 WO
2010067114 Jun 2010 WO
2010067117 Jun 2010 WO
2010078856 Jul 2010 WO
2010104692 Sep 2010 WO
2010122330 Oct 2010 WO
2010125337 Nov 2010 WO
2010125337 Nov 2010 WO
2011012825 Feb 2011 WO
2011032005 Mar 2011 WO
2011042711 Apr 2011 WO
2011042711 Apr 2011 WO
2011051660 May 2011 WO
2011055109 May 2011 WO
2011073673 Jun 2011 WO
2011107831 Sep 2011 WO
2011110821 Sep 2011 WO
2011131978 Oct 2011 WO
2012052352 Apr 2012 WO
2012062658 May 2012 WO
2012136970 Oct 2012 WO
2012158950 Nov 2012 WO
2012172295 Dec 2012 WO
2013027004 Feb 2013 WO
2013027006 Feb 2013 WO
2013033274 Mar 2013 WO
2013034879 Mar 2013 WO
2013049012 Apr 2013 WO
2013102759 Jul 2013 WO
2013163347 Oct 2013 WO
2013167864 Nov 2013 WO
2014064427 May 2014 WO
2014080155 May 2014 WO
2014085734 Jun 2014 WO
2014090379 Jun 2014 WO
2014091200 Jun 2014 WO
2014093601 Jun 2014 WO
2014100182 Jun 2014 WO
2014113506 Jul 2014 WO
2014116615 Jul 2014 WO
201430383 Aug 2014 WO
2014144526 Sep 2014 WO
2014159621 Oct 2014 WO
2014164901 Oct 2014 WO
2014176695 Nov 2014 WO
2014179632 Nov 2014 WO
2014188149 Nov 2014 WO
2014209733 Dec 2014 WO
2014209819 Dec 2014 WO
2014209820 Dec 2014 WO
2014209821 Dec 2014 WO
2014210349 Dec 2014 WO
2015006784 Jan 2015 WO
2015017291 Feb 2015 WO
2015069553 May 2015 WO
2015081313 Jun 2015 WO
2015117039 Aug 2015 WO
2015145119 Oct 2015 WO
2016010289 Jan 2016 WO
2016020630 Feb 2016 WO
2016020643 Feb 2016 WO
2016025350 Feb 2016 WO
2016020630 Mar 2016 WO
2016046514 Mar 2016 WO
2016103263 Jun 2016 WO
2016111706 Jul 2016 WO
2016111707 Jul 2016 WO
2016111708 Jul 2016 WO
2016111709 Jul 2016 WO
2016113534 Jul 2016 WO
2016118107 Jul 2016 WO
2016122679 Aug 2016 WO
2016135434 Sep 2016 WO
2017060665 Apr 2017 WO
2017162999 Sep 2017 WO
2017180403 Oct 2017 WO
2019079350 Apr 2019 WO
2019079350 Apr 2019 WO
Non-Patent Literature Citations (362)
Entry
US 9,488,474 B2, 11/2016, Abovitz et al. (withdrawn)
International Preliminary Report on Patentability for International Application PCT/GB2009/051676, dated Jun. 14, 2011, dated Jun. 23, 2011, 6 pgs.
International Preliminary Report on Patentability for International Application PCT/GB2011/000349, dated Sep. 18, 2012, dated Sep. 27, 2012, 10 pgs.
International Preliminary Report on Patentability for International Application PCT/GB2012/000677, dated Feb. 25, 2014, dated Mar. 6, 2014, 5 pgs.
International Preliminary Report on Patentability for International Application PCT/GB2013/000005, dated Jul. 8, 2014, dated Jul. 17, 2014, 12 pgs.
International Preliminary Report on Patentability for International Application PCT/GB2014/000295, dated Feb. 2, 2016, dated Feb. 11, 2016, 4 pgs.
International Preliminary Report on Patentability for International Application PCT/GB2015/000225, dated Feb. 14, 2017, dated Feb. 23, 2017, 8 pgs.
International Preliminary Report on Patentability for International Application PCT/GB2016/000014, dated Jul. 25, 2017, dated Aug. 3, 2017, 7 pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/011736, dated Jul. 21, 2015, dated Jul. 30, 2015, 9 pgs.
International Preliminary Report on Patentability for International Application PCT/US2016/017091, dated Aug. 15, 2017, dated Aug. 24, 2017, 5 pgs.
Written Opinion for International Application No. PCT/GB2011/000349, completed Aug. 17, 2011, dated Aug. 25, 2011, 9 pgs.
Written Opinion for International Application No. PCT/GB2012/000331, completed Aug. 29, 2012, dated Sep. 6, 2012, 7 pgs.
Written Opinion for International Application No. PCT/GB2012/000677, completed Dec. 10, 2012, dated Dec. 17, 2012, 4 pgs.
Written Opinion for International Application No. PCT/GB2013/000005, search completed Jul. 16, 2013, dated Jul. 24, 2013, 11 pgs.
Written Opinion for International Application No. PCT/GB2014/000295, search completed Nov. 18, 2014, dated Jan. 5, 2015, 3 pgs.
Written Opinion for International Application No. PCT/GB2015/000225, search completed Nov. 10, 2015, dated Feb. 4, 2016, 7 pgs.
Written Opinion for International Application No. PCT/GB2015/000274, search completed Jan. 7, 2016, dated Jan. 19, 2016, 3 pgs.
Written Opinion for International Application No. PCT/GB2016/000014, search completed Jun. 27, 2016, dated Jul. 7, 2016, 6 pgs.
Written Opinion for International Application No. PCT/GB2017/000040, search completed Jul. 10, 2017, dated Jul. 18, 2017, 6 pgs.
Giancola, “Holographic Diffuser, Makes Light Work of Screen Tests”, Photonics Spectra, 1996, vol. 30, No. 8, p. 121-122.
Kim et al., “Effect of Polyymer Structure on the Morphology and Electro optic Properties of UV Curable PNLCs”, Polymer, Feb. 2000, vol. 41, pp. 1325-1335.
Kim et al., “Optimization of Holographic PDLC for Green”, Mol. Cryst. Liq. Cryst., 2001, vol. 368, pp. 3855-3864.
Magarinos et al., “Wide Angle Color Holographic infinity optics display”, Air Force Systems Command, Brooks Air Force Base, Texas, AFHRL-TR-80-53, Mar. 1981, 100 pgs.
International Preliminary Report on Patentability for International Application No. PCT/IB2008/001909, dated Jan. 26, 2010, 5 Pgs.
International Preliminary Report on Patentability for International Application No. PCT/GB2012/000331, dated Oct. 8, 2013, 8 pgs.
International Preliminary Report on Patentability for International Application No. PCT/GB2015/000274, dated Mar. 28, 2017, 8 pgs.
International Search Report and Written Opinion for International Application No. PCT/GB2009/051678, completed May 10, 2010, dated May 18, 2010, 7 Pgs.
International Search Report and Written Opinion for International Application No. PCT/IB2008/001909, completed Feb. 4, 2009, dated Feb. 17, 2009, 6 Pgs.
International Search Report and Written Opinion for International Application No. PCT/US2014/011736, completed Apr. 18, 2014, dated May 8, 2014, 10 Pgs.
International Search Report for PCT/GB2012/000331, Completed by the European Patent Office on Aug. 29, 2012, 4 Pages.
International Search Report and Written Opinion for International Appiicalion PCT/US2016/017091, Completed by the European Patent Office on Apr. 20, 2016, 7 pgs.
International Search Report for International Application No. PCT/GB2014/000295, completed Nov. 18, 2014, dated Jan. 5, 2015, 4 pgs.
International Search Report for International Application PCT/GB2017/000040, dated Jul. 18, 2017, completed Jul. 10, 2017, 3 pgs.
International Search Report for PCT/GB2011/000349, Completed by the European Patent Office on Aug. 17, 2011, 4 pgs.
International Search Report for PCT/GB2012/000677, Completed by the European Patent Office on Dec. 10, 2012, 4 pgs.
International Search Report for PCT/GB2013/000005, Completed by the European Patent Office on Jul. 16, 2013, 3 pgs.
International Search Report for PCT/GB2015/000203, Completed by the European Patent Office on Oct. 9, 2015, 4 pgs.
International Search Report for PCT/GB2015/000225, Completed by the European Patent Office on Nov. 10, 2015, dated Dec. 2, 2016, 5 pgs.
International Search Report for PCT/GB2015/000274, Completed by the European Patent Office on Jan. 7, 2016, 4 pgs.
International Search Report for PCT/GB2016/000014, Completed by the European Patent Office on Jun. 27, 2010, 4 pgs.
“Agilent ADNS-2051 Optical Mouse Sensor: Data sheet”, Agilent Technologies, Jan. 9, 2002, 40 pgs.
“Application Note—MOXTEK ProFlux Polarizer use with LCOS displays”, CRL Opto Limited, http://www.crlopto.com, 2003, 6 pgs.
“Application Note AN16: Optical Considerations for Bridgelux LED Arrays”, BridgeLux, Jul. 31, 2010, 23 pgs.
“Application Note: Variable Attenuator for Lasers”, Technoiogy and Applications Center, Newport Corporation, www.newport.com, 2006, DS-08067, 6 pgs.
“Bae Systems to Unveil Q-Sight Family of Helmet-Mounted Display at AUSA Symposium”, Released on Tuesday, Oct. 9, 2007, 1 pg.
“Beam Steering Using Liquid Crystals”, Boulder Nonlinear Systems, Inc., info@bnonlinear.com, May 8, 2001, 4 pgs.
“BragGrate—Deflector: Transmitting Volume Bragg Grating for angular selection and magnification”, 2015, www.OptiGrate.com.
“Cree XLamp XP-E LEDs”, Cree, Inc., Retrieved from www.cree.com/Xlamp, CLS-DS18 Rev 17, 2013, 17 pgs.
“Desmodur N 3900”, Bayer MaterialScience AG, Mar. 18, 2013, www.bayercoatings.com, 4 pgs.
“Digilens—Innovative Augmented Reality Display and Sensor Solutions for OEMs”, Jun. 6. 2017, 31 pgs.
“Exotic Optical Components”, BuildingElectro-Optical Systems, Making It All Work Chapter 7, John Wiley & Sons, Inc., pp. 233-261.
“FHS Lenses Series”, Fraen Corporation, www.fraen.com, Jun. 16, 2003, 10 pgs.
“FLP Lens Series for LUXEON™ Rebel and Rebel ES LEDs”, Fraen Corporation, www.fraensri.com, Aug. 7, 2015, 8 pgs.
“Head-up Displays, See-through display for military aviation”, BAE Systems, 2016, 3 pgs.
“Holder for LUXEON Rebel—Part No. 180”, Polymer Optics Ltd., 2008, 12 pgs.
“LED 7-Segment Displays”, Lumex, uk.digikey.com, 2003, UK031, 36 pgs.
“LED325W UVTOP UV LED with Window”, Thorlabs, Specifications and Documentation, 21978-S01 Rev. A, Apr. 8, 2011, 5 pgs.
“Liquid Crystal Phases”, Phases of Liquid Crystals, http://plc.cwru.edu/tutorial/enhanced/files/lc/phase, Retrieved on Sep. 21, 2004, 6 pgs.
“LiteHUD Head-up display”, BAE Systems, 2016, 2 pgs.
“LiteHUD Head-up display infographic”, BAE Systems, 2017, 2 pgs.
“Luxeon C: Power Light Source”, Philips Lumileds, www.philipslumileds.com, 2012, 18 pgs.
“Luxeon Rebel ES: Leading efficacy and light output, maximum design flexibility”, LUXEON Rebel ES Datasheet DS61 20130221, www.philipslumileds.com, 2013, 33 pgs.
“Mobile Display Report”, Insight Media, LLC, Apr. 2012, vol. 7, No. 4, 72 pgs.
“Molecular Imprints IMPRIO 55”, Engineering at Illinois, Micro + Nanotechnology Lab, Retrieved from https://mntl.illinois.edu/facilities/cleanrooms/equipment/Nano-Imprint.asp, Dec. 28, 2015, 2 pgs.
“Optical measurements of retinal flow”, Industrial Research Limited, Feb. 2012, 18 pgs.
“Osterhout Design Group Develops Next-Generation, Fully-integrated Smart Glasses Using Qualcomm Technologies”, ODG, www.osterhoutgroup.com, Sep. 18, 2014, 2 pgs.
“Range Finding Using Pulse Lasers”, OSRAM, Opto Semiconductors, Sep. 10, 2004, 7 pgs.
“Response time in Liquid-Crystal Variable Retarders”, Meadowlark Optics, Inc., 2005, 4 pgs.
“Secondary Optics Design Considerations for SuperFlux LEDs”, Lumileds, application brief AB20-5, Sep. 2002, 23 pgs.
“Solid-State Optica Mouse Sensor with Quadrature Outputs”, IC Datasheet, UniqueICs, Jul. 15, 2004, 11 pgs.
“SVGA TransparentVLSITM Microdisplay Evaluation Kit”, Radiant Images, Inc., Product Data Sheet, 2003, 3 pgs.
“Technical Data Sheet LPR1”, Luminus Devices, Inc., Luminus Projection Chipset, Release 1, Preliminary, Revision B, Sep. 21, 2004, 9 pgs.
“The Next Generation of TV”, SID Information Display, Nov./Dec. 2014, vol. 30, No. 6, 56 pgs.
“Thermal Management Considerations for SuperFlux LEDs”, Lumileds, application brief AB20-4, Sep. 2002, 14 pgs.
“UVTOP240”, Roithner LaserTechnik GmbH, v 2.0, Jun. 24, 2013, 6 pgs.
“UVTOP310”, Roithner LaserTechnik GmbH, v 2.0, Jun. 24, 2012, 6 pgs.
“Velodyne's HDL-64E: A High Definition Lidar Sensor for 3-D Applications”, High Definition Lidar, white paper, Oct. 2007, 7 pgs.
“VerLASE Gets Patent for Breakthrough Color Conversion Technology That Enables Full Color MicroLED Arrays for Near Eye Displays”, Cision PRweb Apr. 29, 2015, Retrieved from the Internet http://www.prweb.com/releases/2015/04/prweb12681038.htm, 3 pgs.
“X-Cubes—Revisited for LCOS”, BASID, RAF Electronics Corp. Rawson Optics, Inc., Oct. 24, 2002, 16 pgs.
Aachen, “Design of plastic optics for LED applications”, Optics Colloquium 2009, Mar. 19, 2009, 30 pgs.
Abbate et al., “Characterization of LC-polymer composites for opto-electronic application”, Proceedings of OPTOEL'03, Leganes-Madrid, Spain, Jul. 14-16, 2003, 4 pgs.
Al-Kalbani et al., “Ocular Microtremor laser speckle metrology”, Proc. of SPIE, 2009, vol. 7176 717606-1, 12 pgs.
Almanza-Workman et al., “Planarization coating for polyimide substrates used in roll-to-roll fabrication of active matrix backplanes for flexible displays”, HP Laboratories, HPL-2012-23, Feb. 6, 2012, 12 pgs.
Amundson et al., “Morphology and electro-optic properties of polymer-dispersed liquid-crystal films”, Physical Review E, Feb. 1997, vol. 55, No. 2, pp. 1646-1654.
An et al., “Speckle suppression in laser display using several partially coherent beams”, Optics Express, Jan. 5, 2009, vol. 17, No. 1, pp. 92-103.
Apter et al., “Electrooptical Wide-Angle Beam Deflector Based on Fringing-Field-Induced Refractive Inhomogeneity in a Liquid Crystal Layer”, 23rd IEEE Convention of Electrical and Electronics Engineers in Israel, Sep. 6-7, 2004, pp 240-243.
Arnold et al., “52.3: An Improved Polarizing Beamsplitter LCOS Projection Display Based on Wire-Grid Polarizers”, Society for Information Display, Jun. 2001, pp. 1282-1285.
Ayras et al., “Exit pupil expander with a large field of view based on diffractive optics”, Journal of the SID, May 18, 2009, 17/8, pp. 659-664.
Baets et al., “Resonant-Cavity Light-Emitting Diodes: a review”, Proceedings of SPIE, 2003, vol. 4996, pp. 74-86.
Bayer et al., “Introduction to Helmet-Mounted Displays”, 2016, pp. 47-108.
Beckel et al., “Electro-optic properties of thiol-ene polymer stablized ferroelectric liquid crystals”, Liquid Crystals, vol. 30, No. 11, Nov. 2003, pp. 1343-1350.
Bergkvist, “Biospeckle-based Study of the Line Profile of Light Scattered in Strawberries”, Master Thesis, Lund Reports on Atomic Physics, LRAP-220, Lund 1997, pp. 1-62.
Bernards et al., “Nanoscale porosity in polymer films: fabrication and therapeutic applications”, Soft Matter, Jan. 1, 2010, vol. 6, No. 8, pp. 1621-1631.
Bleha, W P. et al., “D-ILA Technology for High Resolution Projection Displays”, Sep. 10, 2003, Proceedings, vol. 5080, doi:10.1117/12.497532, 11 pgs.
Bleha et al., “Binocular Holographic Waveguide Visor Display”, SID Symposium Digest of Technical Papers, Holoeye Systems Inc., Jun. 2014, San Diego, CA, 4 pgs.
Bone, “Design Obstacles for LCOS Displays in Projection Applications “Optics architectures for LCOS are still evolving””, Aurora Systems Inc., Bay Area SID Seminar, Mar. 27, 2001, 22 pgs.
Born et al., “Optics of Crystals”, Principles of Optics 5th Edition 1975, pp. 705-707.
Bourzac, “Magic Leap Needs to Engineer a Miracle”, Intelligent Machines, Jun. 11, 2015, 7 pgs.
Bowen et al., “Optimisation of interdigitated electrodes for piezoelectric actuators and active fibre composites”, J Electroceram, Jul. 2006, vol. 16, pp. 263-269, DOI 10.1007/s10832-006-9862-8.
Bowley et al., “Variable-wavelength switchable Bragg gratings formed in polymer-dispersed liquid crystals”, Applied Physics Letters, Jul. 2, 2001, vol. 79, No. 1, pp. 9-11.
Bronnikov et al., “Polymer-Dispersed Liquid Crystals: Progress in Preparation, Investigation and Application”, Journal of Macromolecular Science Part B, pubished online Sep. 30, 2013, vol. 52, pp. 1718-1738.
Brown, “Waveguide Displays”, Rockwell Collins, 2015, 11 pgs.
Bruzzone et al., “Compact, high-brightness LED illumination for projection systems”, Journal of the SID 17/12, Dec. 2009, pp. 1043-1049.
Buckley, “Colour holographic laser projection technology for heads-up and instrument cluster displays”, Conference: Proc. SID Conference 14th Annual Symposium on Vehicle Displays, Jan. 2007, 5 pgs.
Buckley, “Pixtronix DMS technology for head-up displays”, Pixtronix, Inc., Jan. 2011, 4 pgs.
Buckley et al., “Full colour holographic laser projector HUD”, Light Blue Optics Ltd., Aug. 10, 2015, 5 pgs.
Buckley et al., “Rear-view virtual image displays”, in Proc. SID Conference 16th Annual Symposium on Vehicle Displays, Jan. 2009, 5 pgs.
Bunning et al., “Electro-optical photonic crystals formed in H-PDLCs by thiol-ene photopolymerization”, American Physical Society, Annual APS, Mar. 3-7, 2003, abstract #R1.135.
Bunning et al., “Effect of gel-point versus conversion on the real-time dynamics of holographic polymer-dispersed liquid crystal (HPDLC) formation”, Proceedings of SPIE—vol. 5213, Liquid Crystals VII; Iam-Choon Khoo, Editor, Dec. 2003, pp. 123-129.
Bunning et al., “Holographic Polymer-Dispersed Liguid Crystals, (H-PDLCs)1”, Annu. Rev. Mater. Sci., 2000, vol. 30, pp. 83-115.
Bunning et al., “Morphology of Anisotropic Polymer Dispersed Liquid Crystals and the Effect of Monomer Functionality”, Polymer Science: Part B: Polymer Physics, Jul. 30, 1997, vol. 35, pp. 2825-2833.
Busbee et al., “SiO2 Nanoparticle Sequestration via Reactive Functionalization in Holographic Polymer-Dispersed Liquid Crystals”, Advanced Materials, Sep. 2009, vol. 21 p. 3659-3662.
Butler et al., “Diffractive Properties of Highly Birefringent Volume Gratings: Investigation”, Journal of Optical Society of America, Feb. 2002, vol. 19, No. 2, pp. 183-189.
Cai et al., “Recent advances in antireflective surfaces based on nanostructure arrays”, Mater. Horiz., 2015, vol. 2, pp. 37-53.
Cameron, “Optical Waveguide Technology & Its Application in Head Mounted Displays”, Proc. of SPIE, May 22, 2012, vol. 8383, pp. 83830E-1-83830E-11.
Caputo et al., “POLICRYPS Composite Materiais: Features and Appilcations”, Advances in Composite Materials—Analysis of Natural and Man-Made Materials, www.intechopen.com, Sep. 2011, pp. 93-118.
Caputo et al., “POLICRYPS Switchable Holographic Grating: A Promising Grating Electro-Optlcal Pixel for High Resolution Display Application”, Journal of Display Technology, Mar. 2006, vol. 2, No. 1, pp. 38-51.
Carclo Optics, “Guide to choosing secondary optics”, Carclo Optics, Dec. 15, 2014, www.carclo-optics.com, 48 pgs.
Chen et al., “Polarization rotators fabricated by thermally-switched liquid crystal alignments based on rubbed poly(N-vinyl carbazole) films”, Optics Express, Apr. 11, 2011, vol. 19, No. 8, pp. 7553-7558.
Cheng et al., “Design of an ultra-thin near-eye display with geometrical waveguide and freeform optics”, Optics Express, Aug. 2014, 16 pgs.
Chi et al., “Ultralow-refractive-index optical thin films through nanoscale etchig of ordered mesoporous silica films”, Optic Letters, May 1, 2012, vol. 37, No. 9, pp. 1406-1408.
Chigrinov et al., “Photo-aligning by azo-dyes: Physics and applications”, Liquid Crystals Today, Sep. 6, 2006, http://www.tandfonline.com/action/journalInformation?journalCode=tlcy20, 16 pgs.
Cho et al., “Electro-optic Properties of CO2 Fixed Polymer/Nematic LC Composite Films”, Journal of Applied Polymer Science, Nov. 5, 2000, vol. 81, Issue 11, pp. 2744-2753.
Cho et al., “Fabrication of Reflective Holographic PDLC for Blue”, Molecular Crystals and Liquid Ciystals Science, 2001, vol. 368, pp. 3845-3853.
Cho et al., “Optimization of Holographic Polymer Dispersed Liquid Crystals for Ternary Monomers”, Polymer International, Nov. 1999, vol. 48, pp. 1085-1090.
Colegrove et al., “P-59: Technology of Stacking HPDLC for Higher Reflectance”, SID 00 Digest, May 2000, pp. 770-773.
Cruz-Arreola et al., “Diffraction of beams by infinite or finite amplitude-phase gratings”, Investigacio' n Revista Mexicana De Fi'Sica, Feb. 2011, vol. 57, pp. 6-16.
Dainty, “Some statistical properties of random speckle patterns in coherent and partially coheent illumination”, Optica Acta, Mar. 12, 1970, vol. 17, No. 10, pp. 761-772.
Datr, “Alignment Control in Holographic Polymer Dispersed Liquid Crystal”, Journal of Photopolymer Science and Technology, Nov. 2, 2000, vol. 13, pp. 289-284.
Date et al., “52.3: Direct-viewing Display Using Alignment-controlled PDLC and Holographic PDLC”, Society for Information Display Digest, May 2000, pp. 1184-1187, DOI: 10.1889/1.1832877.
Date et al., “Full-color reflective display device using holographically fabricated polymer-dispersed liquid crystals (HPDLC)”, Journal of the SID, 1999, vol.7, No. 1, pp. 17-22.
De Bitetto, “White light viewing of surface holograms by simple dispersion compensation”, Applied Physics Letters, Dec. 15, 1966, vol. 9, No. 12, pp. 417-418.
Developer World, “Create customized augmented reality solutions”, printed Oct. 19, 2017, LMX-001 holographic waveguide display, Sony Developer World, 3 pgs.
Dhar et al., “Recording media that exhibit high dynamic range for digital holographic data storage”, Optics Letters, Apr. 1, 1990, vol. 24, No. 7, pp. 487-489.
Domash et al., “Applications of switchable Polaroid holograms”, SPIE Proceedings, vol. 2152, Diffractive and Holographic Optics Technology, Jan. 23-29, 1994, Los Angeles, CA, pp. 127-138, ISBN: 0-8194-1447-6.
Drake et al., “Waveguide Hologram Fingerprint Entry Device”, Optical Engineering, Sep. 1996, vol. 35, No. 9, p. 2499-2505.
Drevensek-Olenik et al., “In-Plane Switching of Holographic Polymer-Dispersed Liquid Crystal Transmission Gratings”, Mol. Cryst. Liq. Cryst., 2008, vol. 495, pp. 177/[529]-185/[537].
Drevensek-Olenik et al., “Optical diffraction gratings from polymer-dispersed liquid crystals switched by interdigitated electrodes”, Journal of Applied Physics, Dec. 1, 2004, vol. 96, No. 11, pp. 6207-6212.
Ducharme, “Microlens diffusers for efficient laser speckle generation”, Optics Express, Oct. 29, 2007, vol. 15, No. 22, pp. 14573-14579.
Duong et al., “Centrifugal Deposition of Iron Oxide Magnetic Nanorods for Hyperthermia Application”, Journal of Thermal Engineering, Yildiz Technical University Press, Istanbul, Turkey, Apr. 2015, vol. 1, No. 2, pp. 99-103.
Fattal et al., “A multi directional backlight for a wide-angle glasses-free three-dimensional display”, Nature, Mar. 21, 2012, vol. 495, 348-351.
Fontecchio et al., “Spatially Pixelated Reflective Arrays from Holographic Polymer Dispersed Liquid Crystals”, SID 00 Digest, May 2000, pp. 774-776.
Forman et al., “Materials development for PhotoINhibited SuperResolution (PINSR) lithography”, Proc. of SPIE, 2012, vol. 8249, 824904, doi: 10.1117/12.908512, pp. 824904-1-924904-9.
Forman et al., “Radical diffusion limits to photoinhibited superresolution lithography”, Phys.Chem. Chem. Phys., May 31, 2013, vol. 15, 14862-14867.
Friedrich-Schiller, “Spatial Noise and Speckle”, Version 1.12.2011, Dec. 2011, Abbe School of Photonics, Jena, Germany, 27 pgs.
Fujii et al., “Nanoparticle-polymer-composite volume gratings incorporating chain-transfer agents for holography and slow-neutron optics”, Optics Letters, Apr. 25, 2014, vol. 39, Issue 12, 5 pgs.
Funayama et al., “Proposal of a new type thin film light-waveguide display device using”, The International Conference on Electrical Engineering, 2006, No. P-044, 5 pgs.
Gabor, “Laser Speckle and its Elimination”, Eliminating Speckle Noise, Sep. 1970 pp. 509-514.
Gardiner et al., “Bistable liquid-crystals reduce power consumption for high-efficiency smart glazing”, SPIE, 2009, 10.1117/2.1200904.1596, 2 pgs.
Goodman, Introduction to Fourier Optics, Second Editon, Jan. 1996.
Goodman, “Some fundamental properties of speckle”, J. Opt. Soc. Am., Nov. 1976, vol. 66, No. 11, pp. 1145-1150.
Goodman et al., “Speckle Reduction by a Moving Diffuser in Laser Projection Displays”, The Optical Society of America, 2000, 15 pgs.
Goodman, “Statistical Properties of Laser Speckle Patterns”, Applied Physics, 1975, vol. 9, Chapter 2, Laser Speckle and Related Phenomena, pp. 9-75.
Guldin et al., “Self-Cleaning Antireflective Optical Coating”, Nano Letters, Oct. 14, 2013, vol. 13, pp. 5329-5335.
Guo et al., “Review Article: A Review of the Optimisation of Photopolymer Materials for Holographic Data Storage”, Physics Research International, vol. 2012 (2012), Article ID 803439, Academic Editor: Sergi Gallego. 16 pages, http://dx.doi.org/10.1155/2012/803439, May 4, 2012.
Ha et al., “Optical Security Film Based on Photo-alignment Technology”, Department of Electronic & Computer Engineering, May 9, 2016, 1 pg.
Han et al., “Study of Holographic Waveguide Display System”, Advanced Photonics for Communictions, 2014, 4 pgs.
Harbers et al., “Performance of High Power LED Illuminators in Color Sequential Projection Displays”, Lumileds Lighting, 2007, 4 pgs.
Harbers et al., “Performance of High Power LED Illuminators in Color Sequential Projection Displays”, Lumileds, Aug. 7, 2001, 11 pgs.
Harbers et al., “I-15.3: LED Backlighting for LCD-HDTV”, Journal of the Society for Information Display, 2002, vol. 10, No. 4, pp. 347-350.
Smith et al., “RM-PLUS—Overview”, Licrivue, Nov. 5, 2013, 16 pgs.
Sony Global, “Sony Releases the Transparent Lens Eyewear SmartEyeglass Developer Edition”, printed Oct. 19, 2017, Sony Global—News Releases, 5 pgs.
Steranka et al., “High-Power LEDs—Technology Status and Market Applications”, Lumileds, Jul. 2002, 23 pgs.
Stumpe et al., “Active and Passive LC Based Polarization Elements”, Mol. Cryst. Liq. Cryst., 2014, vol. 594: pp. 140-149.
Stumpe et al., “New type of polymer-LC electrically switchable diffractive devices—POLIPHEM”, May 19, 2015, p. 97.
Subbarayappa et al., “Bistable Nematic Liquid Crystal Device”, Jul. 30, 2009, 14 pgs.
Sun et al., “Effects of multiwalled carbon nanotube on holographic polymer dispersed liquid crystal”, Polymers Advanced Technologies, Feb. 19, 2010, DOI: 10.1002/pat. 1708, 8 pgs.
Sun et al., “Transflective multiplexing of holographic polymer dispersed liquid crystal using Si additives”, eXPRESS Polymer Letters, 2011, vol. 5, No. 1, pp. 73-81.
Sun et al., “Low-birefringence lens design for polarization sensitive optical systems”, Proceedings of SPIE, 2006, vol. 6289, doi: 10.1117/12.679416, pp. 6289DH-1-6289DH-10.
Sutherland et al., “Liquid crystal bragg gratings: dynamic optical elements for spatial light modulators”, Hardened Materials Branch, Hardened Materials Branch, AFRL-ML-WP-TP-2007-514, Jan. 2007, Wright-Patterson Air Force Base, OH, 18 pgs.
Sutherland et al., “Bragg Gratings in an Acrylate Polymer Consisting of Periodic Polymer-Disersed Liquid-Crystal Planes”, Chem. Mater. 1993, 5, 1533-1538.
Sutherland et al., “Electrically switchable volume gratings in polymer-dispersed liquid crystals”, Applied Physics Letters, Feb. 28, 1994, vol. 64, No. 9, pp. 1071-1076.
Sutherland et al., “Enhancing the electro-optical properties of liquid crystal nanodroplets for switchable Bragg gratings”, Proc. of SPIE, 2008, vol. 7050, pp. 705003-1-705003-9, doi: 10.1117/12.792629.
Sutherland et al., “The physics of photopolymer liquid crystal composite holographic gratings”, presented at SPIE: Diffractive and Holographic Optics Technology San Jose, CA, 1996, SPIE, vol. 2689, pp. 158-169.
Sweatt, “Achromatic triplet using holographic optical elements”, Applied Optics, May 1977, vol. 16, No. 5, pp. 1390-1391.
Talukdar, “Technology Forecast: Augmented reality”, Changing the economics of Smartglasses, Issue 2, 2016, 5 pgs.
Tao et al., “TiO2 nanocomposites with high refractive index and transparency”, J. Mater. Chem., Oct. 4, 2011, vol. 21, pp. 18623-18629.
Titus et al., “Efficient, Accurate Liquid Crystal Digital Light Deflector”, Proc. SPIE 3633, Diffractive and Holographic Technologies, Systems, and Spatial Light Modulators VI, 1 Jun. 1, 1999, doi: 10.1117/12.349334, 10 pgs.
Tiziani, “Physical Properties of Speckles”, Speckle Metrology, Chapter 2, Academic Press, Inc., 1978, pp. 5-9.
Tominaga et al., “Fabrication of holographic polymer dispersed liquid crystals doped with gold nanoparticles”, 2010 Japanese Liquid Crystal Society Annual Meating, 2 pgs.
Tomita, “Holographic assembly of nanopartiales in photopolymers for photonic applications”, The International Society for Optical Engineering, SPIE Newsroom, 2006, 10.1117/2.1200612.0475, 3 pgs.
Trisnadi, “Hadamard Speckle Contrast Reduction”, Optics Letters, Jan. 1, 2004, vol. 29, No. 1, pp. 11-13.
Trisnadi, “Speckle contrast reduction in laser projection displays”, Proc. SPIE 4657, 2002, 7 pgs.
Tzeng et al., “Axially symmetric polarization converters based on photo-aligned liquid crystal films”, Optics Express, Mar. 17, 2008, vol. 16, No. 6, pp. 3768-3775.
Upatnieks et al., “Color Holograms for white light reconstruction”, Applied Physics Letters, Jun. 1, 1996, vol. 8, No. 11, pp. 286-287.
Ushenko, “The Vector Structure of Laser Biospeckle Fields and Polarization Diagnostics of Collagen Skin Structures”, Laser Physics, 2003, vol. 10, No. 5, pp. 1143-1149.
Valoriani, “Mixed Reality: Dalle demo a un prodotto”, Disruptive Technologies Conference, Sep. 23, 2016, 67 pgs.
Van Gerwen et al., “Nanoscaled interdigitated electrode arrays for biochemical sensors”, Sensors and Actuators, Mar. 3, 1998, vol. B 49, pp. 73-80.
Vecchi, “Studi ESR Di Sistemi Complessi Basati Su Cristalli Liquidi”, Thesis, University of Bologna, Department of Physical and Inorganic Chemistry, 204-2006, 110 pgs.
Veltri et al., “Model for the photoinduced formation of diffraction gratings in liquid-crystalline composite materials”, Applied Physics Leiters, May 3, 2004, vol. 84, No. 18, pp. 3492-3494.
Vita, “Switchable Bragg Gratings”, Thesis, Universita degli Studi di Napoli Federico Il, Nov. 2005, 103 pgs.
Vuzix, “M3000 Smart Glasses, Adanced Waveguid Optics”, brochure, Jan. 1, 2017, 2 pgs.
Wang et al., “Liquid-crystal blazed-grating beam deflector”, Applied Optics, Dec. 10, 2000, vol. 39, No. 35, pp. 6545-6555.
Wang et al., “Speckle reduction in laser projection systems by diffractive optical elements”, Applied Optics, Apr. 1, 1998, vol. 37, No. 10, pp. 1770-1775.
Wang et al., “Optical Design of Waveguide Holographic Binocular Display for Machine Vision”, Applied Mechanics and Materials, Sep. 27, 2013, vols. 427-429 pp. 763-759.
Weber et al., “Giant Birefringent Optics in Muitilayer Polymer Mirrors”, Science, Mar. 31, 2000, vol. 287, pp. 2451-2456.
Wei, “Industrial Applications of Speckle Techniques”, Doctoral Thesis., Royal Institute of Technology, Department of Production Engineering, Chair of Industrial Metrology & Optics, Stockholm, Sweden 2002, 76 pgs.
Welde et al., “Investigation of methods for speckle contrast reduction”, Master of Science in Electronics, Jul. 2010, Norwegian University of Science and Technology, Department of Electronics and Telecommunications, 127 pgs.
White, “Influence of thiol-ene polymer evolution on the formation and performance of holographic polymer dispersed liquid crystals”, The 232nd ACS National Meeting, San Francisco, CA, Sep. 10-14, 2006, 1 pg.
Wicht et al., “Nanoporous Films with Low Refractive Index for Large-Surface Broad-Band Anti-Refiection Coatings”, Macromol. Mater. Eng., 2010, 295, DOI: 10.1002/mame.201000045, 9 pgs.
Wilderbeek et al., “Photoinitiated Bulk Polymerization of Liquid Crystalline Thiolene Monomers”, Macromolecules, 2002, vol. 35, pp. 8962-8969.
Wilderbeek et al., “Photo-Initiated Polymerization of Liquid Crystalline Thiol-Ene Monomers in isotropic and Anisotropic Solvents”, J. Phys. Chem. B, 2002, vol. 106, No. 50, pp. 12874-12883.
Wofford et al., “Liquid crystal bragg gratings: dynamic optical elements for spatial light modulators”, Hardened Materials Branch, Survivability and Sensor Materials Division, AFRL-ML-WP-TP-2007-551, Air Force Research Laboratory, Jan. 2007, Wright-Patterson Air Force Base, OH, 17 pgs.
Yaqoob et al., “High-speed two-dimensional laser scanner based on Bragg grating stored in photothermorefractive glass”, Applied Optics, Sep. 10, 2003, vol. 42, No. 26, pp. 5251-5262.
Yaroshchuk et al., “Stabilization of liquid crystal photoaligning layers by reactive mesogens”, Applied Physics Letters, Jul. 14, 2009, vol. 95, 021902, 3 pgs.
Ye, “Three-dimensional Gradient index Optics Fabricated in Diffusive Photopolymers”, Thesis, Department of Electrical, Computer and Energy Engineering, University of Colorado, 2012, 224 pgs.
Yemtsova et al., “Determination of liquid crystal orientation in holographic polymer dispersed liquid crystals by linear and nonlinear optics”, Journal of Applied Physics, Oct. 13, 2008, vol. 104, pp. 073115-1 073115-4.
Yeralan et al., “Switchable Bragg grating devices for telecommunications applications”, Opt. Eng., Aug. 2012, vol. 41, No. 8, pp. 1774-1779.
Yoshida et al., “Nanoparticle-Dispereed Liquid Cryatals Fabricated by Sputter Doping”, Adv. Mater. 2010, vol. 22, pp. 622-626.
Zhang et al., “Dynamic Holographic Gratings Recorded by Photopolymerisation of Liquid Crystalline Monomers”, J. Am. Chem. Soc., 1994, vol. 116, pp. 7055-7063.
Zhang et al., “Switchable Liquid Crystalline Photopoiymer Media for Holgraphy”, J. Am. Chem. Soc., 1992, vol. 114, pp. 1506-1507.
Zhao et al., “Designing Nanostructures by Glancing Angle Deposition”, Proc. of SPIE, Oct. 27, 2003, vol. 5219, pp. 59-73.
Ziȩbacz, “Dynamics of nano and micro objects in complex liquids”, Ph.D. dissertation, Institute of Physical Chemistry of the Polish Academy of Sciences, Warsaw 2011, 133 pgs.
Zou et al., “Functionalized nano interdigitated electrodes arrays on polymer with integrated microfluidics for direct bio-affinity sensing using impedimetric measurement”, Sensors and Actuators A, Jan. 16, 2007, vol. 136, pp. 518-526.
Zyga, “Liquid crystals controlled by magnetic fields may lead to new optical applications”, Nanotechnology, Nanophysics, Retrieved from http://phys.org/news/2014-07-liquid-crystal-magnetic-fields-optical.html, Jul. 9, 2014, 3 pgs.
Liu et al., “Holographic Polymer-Dispersed Liquid Crystals: Materials, Formation, and Applications”, Advances in OptoElectronics, Nov. 30, 2008, vol. 2008, Article ID 684349, 52 pgs.
Lorek, “Experts Say Mass Adoption of augmented and Virtual Reality is Many Years Away”, Siliconhills, Sep. 9, 2017, 4 pgs.
Lowenthal et al., “Speckle Removal by a Slowly Moving Diffuser Associated with a Motionless Diffuser”, Journal of the Optical Society of America, Jul. 1971, vol. 61, No. 7, pp. 847-851.
Lu et al., “Polarization switch using thick holographic polymer-dispersed liquid crystal grating”, Journal of Applied Physics, Feb. 1, 2004, vol. 95, No. 3, pp. 810-815.
Lu et al., “Mechanism of electric-field-induced segregation of additives in a liquid-crystal host”, Phys Rev E Stat Nonlin Soft Matter Phys, Nov. 27, 2012, 14 pgs.
Ma et al., “Holographic Reversed-Mode Polymer-Stabilized Liquid Crystal Grating”, Chinese Phys. Lett., 2005, vol. 22, No. 1, pp. 103-106.
Mach et al., “Switchable Bragg diffraction from liquid crystal in colloid-templated structures”, Europhysics Letters, Jun. 1, 2002, vol. 58, No. 5, pp. 679-685.
Marino et al., “Dynamical Behaviour of Policryps Gratings”, Electronic-Liould Crystal Communications, Feb. 5, 2004, 10 pgs.
Massenot et al., “Multiplexed holographic transmission gratings recorded in holographic polymer-dispersed liquid crystals: static and dynamic studies”, Applied Optics, 2005, vol. 44, Issue 25, pp. 5273-5280.
Matay et al., “Planarization of Microelectronic Structures by Using Polyimides”, Journal of Electrical Engineering, 2002,vol. 53, No. 3-4, pp. 86-90.
Mathews, “The LED FAQ Pages”, Jan. 31, 2002, 23 pgs.
Matic, “Blazed phase liquid crystal beam steering”, Proc. of the SPIE, 1994, vol. 2120, pp. 194-205.
McLeod, “Axicons and Their Uses”, Journal of the Optical Society of America, Feb. 1960, vol. 50, No. 2, pp. 166-169.
McManamon et al., “A Review of Phased Array Steering for Narrovv-Band Electrooptical Systems”, Proceedings of the IEEE, Jun. 2009, vol. 97, No. 6, pp. 1078-1096.
McManamon et al., “Optical Phased Array Technology”, Proceedings of the IEEE, Feb. 1996, vol. 84, Issue 2, pp. 268-298.
Miller, “Coupled Wave Theory and Waveguide Applications”, The Bell System Technical Journal, Short Hills, NJ, Feb. 2, 1954, 166 pgs.
Nair et al., “Enhanced Two-Stage Reactive Polymer Network Forming Systems”, Polymer (Guildf), May 25, 2012, vol. 53, No. 12, pp. 2429-2434, doi:10.1016/j.polymer.2012.04.007.
Nair et al., “Two-Stage Reactive Polymer Network Forming Systems”, Advanced Functional Materials, 2012, pp. 1-9, DOI: 10.1002/adfm.201102742.
Naqvi et al., “Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress”, International Journal of Nanomedicine, Dovepress, Nov. 13, 2010, vol. 5, pp. 983-989.
Natarajan et al., “Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene photopolymerization”, Polymer 47, May 8, 2006, 4411-4420.
Natarajan et al., “Electro Optical Switching Characteristics of Volume Holograms in Polymer Dispersed Liquid Crystals”, Journal of Nonlinear Optics Physics and Materials, 1997, vol. 5, No. 1, pp. 666-668.
Naydenova et al., “Low-scattering Volume Holographic Material”, DIT PhD Project, http://www.dit.ie/ieo/, Oct. 2017, 2 pgs.
Neipp et al., “Non-local polymerization driven diffusion based model: general dependence of the polymerization rate to the exposure intensity”, Optics Express, Aug. 11, 2003, vol. 11, No. 18, pp. 1876-1886.
Nishikawa et al., “Mechanically and Light Induced Anchoring of Liquid Crystal on Polyimide Film”, Mol. Cryst. Liq. Cryst., Aug. 1999, vol. 329, 8 pgs.
Nishikawa et al., “Mechanism of Unidirectional Liquid-Crystal Alignment on Polyimides with Linearly Polarized Ultraviolet Light Exposurw”, Applied Physics Letters, May 11, 1998, vol. 72, No. 19, 4 pgs.
Oh et al., “Achromatic diffraction from polarization gratings with high efficiency”, Optic Letters, Oct. 15, 2008, vol. 33, No. 20, pp. 2287-2289.
Olson et al., “Templating Nanoporous Polymers with Ordered Block Copolymers”, Chemistry of Materials, Web publication Nov. 27, 2007, vol. 20, pp. 869-890.
Ondax, Inc. “Volume Holographic Gratings (VHG)”, 2005, 7 pgs.
Orcutt, “Coming Soon: Smart Gasses That Look Like Regular Spectacles”, Intelligent Machines, Jan. 9, 2014, 42 pgs.
Osredkar, “A study of the limits of spin-on-glass planarization process”, Informacije MIDEM, 2001, vol. 31, 2, ISSN0352-9045, pp. 102-105.
Osredkar et al., “Planarization methods in IC fabrication technologies”, Informacije MIDEM, 2002, vol. 32, 3 ISSN0352-9045, 5 pgs.
Ou et al., “A Simple LCOS Optical System (Late News)”, Industrial Technolcigy Research Institute/OES Lab. Q100/Q200, SID 2002, Boston, USA, 2 pgs., 2002.
Paolini et al., “High-Power LED Illuminators in Projection Displays”, Lumileds, Aug. 7, 2001, 19 pgs.
Park et al., “Aligned Single-Wall Carbon Nanotube Polymer Composites Uslng an Electric Field”, Journal of Polymer Science: Part B: Polymer Physics, Mar. 24, 2006, DOI 10.1002/polb.20823, pp. 1751-1762.
Park et al., “Fabrication of Reflective Holographic Gratings with Polyurethane Acrylates (PUA)”, Current Applied Physics, Jun. 2002, vol. 2, pp. 249-252.
Plawsky et al., “Engineered nanoporous and nanostructured films”, MaterialsToday, Jun. 2009, vol. 12, No. 6, pp. 36-45.
Potenza, “These smart glasses automically focus on what you're looking at”, The Verge, Voc Media, Inc., Jan. 29, 2017, https://www.theverge.com/2017/1/29/14403924/smart-glasses-automatic-focus-presbyopia-ces-2017, 6 pgs.
Presnyakov et al., “Electrically tunable polymer stabilized liquid-crystal lens”, Journal of Applied Physics, Apr. 29, 2005, vol. 97, pp. 103101-1-103101-6.
Qi et al., “P-111: Reflective Display Based on Total Internal Reflection and Grating-Grating Coupling”, Society for Information Display Digest, May 2003, pp. 648-651, DOI: 10.1889/1.1832359.
Ramón, “Formation of 3D micro- and nanostructures using liquid crystals as a template”, Technische Universiteit Eindhoven, Apr. 17, 2008, Thesis, DOI:http://dx.dot.org/10.6100/IR634422, 117 pgs.
Ramsey, “Holographic Patterning of Polymer Dispersed Liquid Crystal Materials for Diffractive Optical Elements”, Thesis, The University of Texas at Arlington, Dec. 2006, 166 pgs.
Ramsey et al., “Holographically recorded reverse-mode transmission gratings in polymer-dispersed liquid crystal cells”, Applied Physics B: Laser and Optics, Sep. 10, 2008, vol. 93, Nos. 2-3, pp. 481-489.
Reid, “Thin film silica nanocomposites for anti-reflection coatings”, Oxford Advance Surfaces, www.oxfordsurfaces.com, Oct. 18, 2012, 23 pgs.
Riechert, “Speckle Reduction in Projection Systems”, Dissertation, University Karlsruhe, 2009, 178 pgs.
Rossi et al., “Diffractive Optical Elements for Passive Infrared Detectors”, Submitted to OSA Topical Meeting “Diffractive Optics and Micro-Optics”, Quebec, Jun. 18-22, 2000, 3 pgs.
Saleh et al., “Fourier Optics : 4.1 Propagation of light in free space, 4.2 Optical Fourier Transform, 4.3 Diffraction of Light, 4.4 Image Formation, 4.5 Holography”, Fundamentals of Photonics 1991, Chapter 4, pp. 108-143.
Saraswat, “Deposition & Planarization”, EE 311 Notes, Aug. 29, 2017, 28 pgs.
Schreiber et al., “Laser display with single-mirror MEMS scanner”, Journal of the SID 17/7, 2009, pp. 591-595.
Seiberle et al., “Photo-aligned anisotropic optical thin films”, Journal of the SID 12/1, 2004, 6 pgs.
Serebriakov et al., “Correction of the phase retardation caused by intrinsic birefringence in deep UV lithography”, Proc. of SPIE, May 21, 2010, vol. 5754, pp. 1780-1791.
Shi et al., “Design considerations for high efficiency liquid crystal decentered microlens arrays for steering light”, Applied Optics, vol. 49, No. 3, Jan. 20, 2010, pp. 409-421.
Shriyan et al., “Analysis of effects of oxidized multiwalled carbon nanotubes on electro-optic polymer/liquid crystal thin film gratings”, Optics Express, Nov. 12, 2010, vol. 18, No. 24, pp. 24842-24852.
Simonite, “How Magic Leap's Augmented Reality Works”, Intelligent Machines, Oct. 23, 2014, 7 pgs.
Harbers et al., “Performance of High Power LED illuminators in Projection Displays”, Proc. Int. Disp. Workshops, Japan, vol. 10, pp. 1585-1588, 2003.
Harding et al., “Reactive Liquid Crystal Materiais for Optically Anisotropic Patterned Retarder”, Merck, licrivue, 2008, ME-GR-RH-08-010, 20 pgs.
Harding et al., “Reactive Liquid Crystal Materials for Optically Anisotropic Pattern Retarders”, SPIE Lithography Asia—Taiwan, 2008, Proceedings vol. 7140, Lithography Asia 2008; 71402J, doi: 10.1117/12.805378, 8 pgs.
Hariharan, “Optical Holography: Principles, techniques and applications”, Cambridge University Press, 1996, pp. 231, 233.
Harris, “Photonic Devices”, EE 216 Principals and Models Semiconductor Devices, Autumn 2002, 20 pgs.
Harrold et al., “3D Display Systems Hardware Research at Sharp Laboratories of Europe : an update”, Sharp Laboratories of Europe, Ltd., 7 pgs.
Harthong et al., “Speckle phase averaging in high-resolution color holography”, J. Opt. Soc. Am. A, Feb. 1997, vol. 14, No. 2, pp. 405-409.
Hasan et al., “Tunable-focus lens for adaptive eyeglasse”, Optics Express, Jan. 23, 2017, vol. 25, No. 2, 1221, 13 pgs.
Hasman et al., “Diffractive Optics: Design, Realization, and Applications”, Fiber and Integrated Optics, 16:1-25, 1997.
Hata et al., “Holographic nanoparticle-polymer composites based on step-growth thiol-ene photopolymerization”, Optics Materials Express, Jun. 1, 2011, vol. 1, No. 2, pp. 207-222.
He et al., “Properties of Volume Holograms Recording in Photopolymer Films with Various Pulse Exposures Repetition Frequeneies”, Proceedings of SPIE vol. 5636, Bellingham, WA, 2005, doi: 10.1117/12.580978, pp. 842-848.
He et al., “Dynamics of peristrophic multiplexing in holographic polymer-dispersed liquid crystal”, Liquid Crystals, Mar. 26, 2014, vol. 41, No. 5, 673-684.
He et al., “Holographic 3D display based on polymer-dispersed liquid-crystal thin films”, Proceedings of China Display/Asia Display 2011, pp. 158-160.
Herman et al., “Production and Uses of Diffractionless Beams”, J. Opt. Soc. Am. A., Jun. 1991, vol. 8, No. 6, pp. 932-942.
Hisano, “Alignment layer-free molecular ordering induced by masked photopolymerization with nonpolarized light”, Appl. Phys. Express 9, Jun. 6, 2016, pp. 072601-1-072601-4.
Hoepfner et al., “LED Front Projection Goes Mainstream”, Luminus Devices, Inc., Projection Summit, 2008, 18 pgs.
Holmes et al., “Controlling the anisotropy of holographic polymer-dispersed liquid-crystal gratings”, Physial Review E, Jun. 11, 2002, vol. 65, 066603-1-066603-4.
Hoyle et al., “Advances in the Polymerization of Thiol-Ene Formulations”, Heraeus Noblelight Fusion UV Inc, 2003 Conference, 6 pgs.
Hua et al., “A Closed Form Solution to Natural Image Matting”, Illumination & Displays 3D Visualization and Imaging Systems Laboratory (3DVIS) College of Optical Sciences University of Arizona Tucson, 2014, 8 pgs.
Hua, “Sunglass-like displays become a reality with free-form optical technology”, Illumination & Displays 3D Visualization and Imaging Systems Laboratory (3DVIS) College of Optical Sciences University of Arizona Tucson, AZ. 2014, 3 pgs.
Huang et al., “Theory and characteristics of holographic polymer dispersed liquid crystal transmission grating with scaffolding morphology”, Applied Optics, Jun. 20, 2012, vol. 51, No. 18, pp. 4013-4020.
Huang et al., “Diffraction properties of substrate guided-wave holograms”, Optical Engineering, Oct. 1995, vol. 34, No. 10, pp. 2891-2899.
Iannacchione et al., “Deuterium NMR and morphology study of copolymer-dispersed liquid-crystal Bragg gratings”, Europhysics Letters, 1996, vol. 36, No. 6, pp. 425-430.
Jeng et al., “Aligning liquid crystal molecules”, SPIE, 2012, 10.1117/2.1201203.004148, 2 pgs.
Jo et al., “Control of Liquid Cristal Pretilt Angle using Polymerization of Reactive Mesogen”, IMID 2009 Digest, P1-25, 2009, pp. 604-606.
Juhl et al., “Holographically Directed Assembly of Polymer Nanocomposites”, ACS Nano, Oct. 7, 2010, vol. 4, No. 10. pp. 5953-5961.
Juhl, “Interference Lithography for Optical Devices and Coatings”, Dissertation, University of Illinois at Urbana-Champaign, 2010.
Jurbergs et al., “New recording materials for the holographic industry”, Proc. of SPIE, 2009 vol. 7233, pp. 72330K-1-72330K-10, doi: 10.1117/12.809579.
Kahn et al., “Private Line Report on Large Area Display”, Kahn International, Jan. 7, 2003, vol. 8, No. 10, 9 pgs.
Karasawa et al., “Effects of Material Systems on the Polarization Behavior of Holographic Polymer Dispersed Liquid Crystal Gratings”, Japanese Journal of Applied Physics, vol. 36, 6388-6392, 1997.
Karp et al., “Planar micro-optic solar concentration using multiple imaging lenses into a common slab waveguide”, Proc. of SPIE vol. 7407, 2009 SPIE, CCC code: 0277-786X/09, dol: 10.1117/12.826531, pp. 74070D-1-74070D-11.
Karp et al., “Planar micro-optic solar concentrator”, Optics Express, Jan. 18, 2010, vol. 18, No. 2, pp. 1122-1133.
Kato et al., “Alignment-Controlled Holographic Polymer Dispersed Liquid Crystal (HPDLC) for Reflective Display Devices”, SPIE, 1998, vol. 3297, pp. 52-57.
Kessler, “Optics of Near to Eye Displays (NEDs)”, Oasis 2013, Tel Aviv, Feb. 19, 2013, 37 pgs.
Keuper et al., “26.1: RGB LED Illuminator for Pocket-Sized Projectors”, SID 04 Digest, 2004, ISSN/0004-0966X/04/3502, pp. 943-945.
Keuper et al., “P-126: Ultra-Compact LED based Image Projector for Portable Applications”, SID 03 Digest, 2003, ISSN/0003-0966X/03/3401-0713, pp. 713-715.
Kim et al., “Enhancement of electro-optical properties in holographic polymer-dispersed liquid crystal films by incorporation of multiwalled carbon nanotubes into a polyurethane acrylate matrix”, Polym Int, Jun. 16, 2010, vol. 59, pp. 1289-1295.
Klein, “Optical Efficiency for Diffe rentLiquid Crystal Colour Displays”, Digital Media Department, HPL-2000-83, Jun. 29, 2000, 18 pgs.
Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings”, The Bell System Technical Journal, vol. 48, No. 9, pp. 2909-2945, Nov. 1969.
Kotakonda et al., “Electro-optical Switching of the Holographic Polymer-dispersed Liquid Crystal Diffraction Gratings”, Journal of Optics A: Pure and Applied Optics, Jan. 1, 2009, vol. 11, No. 2, 11 pgs.
Kress et al., “Diffractive and Holographic Optics as Optical Combiners in Head Mounted Displays”, UbiComp '13, Sep. 9-12, 2013, Session: Wearable Systems for Industrial Augmented Reality Applications, pp. 1479-1482.
Lauret et al., “Solving the Optics Equation for Effective LED Applications”, Gaggione North America, LLFY System Design Workshop 2010, Oct. 28, 2010, 26 pgs.
Lee, “Patents Shows Widespread Augmented Reality Innovation”, PatentVue, May 25, 2015, 5 pgs.
Levola, “Diffractive optics for virtual reality displays”, Journal of the SID, 2006, 14/5, pp. 467-475.
Levola et al., “Near-to-eye display with diffractive exit pupil expander having chevron design”, Journal of the SID, 2008, 16/8, pp. 857-862.
Li et al., “Design and Optimization of Tapered Light Pipes”, Proceedings vol. 5529, Nonimaging Optics and Efficient Illumination Systems, Sep. 29, 2004, doi: 10.1117/12.559844, 10 pgs.
Li et al., “Dual Paraboloid Reflector and Polarization Recycling Systems for Projection Display”, Proceedings vol. 5002, Projection Displays IX, Mar. 28, 2003, 10.1117/12.479585, 12 pgs.
Li et al., “Light Pipe Based Optical Train and its Applications”, Proceedings vol. 5524, Novel Optical Systems Design and Optimization VII, Oct. 24, 2004, doi: 10.1117/12.559833, 10 pgs.
Li et al., “Novel Projection Engine with Dual Paraboloid Reflector and Polarization Recovery Systems”, Wavien Inc., SPIE EI 5289-38, Jan. 21, 2004, 49 pgs.
Li et al., “Polymer crystallization/melting induced thermal switching in a series of holographically patterned Bragg reflectors”, Soft Matter, Jul. 11, 2005, 1, 238-242.
Lin et al., “Ionic Liquids in Photopolymerizable Holographic Materials”, in book: Holograms—Recording Materials and Applications, Nov. 9, 2011, 21 pgs.
Extended European Search Report for EP Application No. 13192383, dated Apr. 2, 2014, 7 pgs.
Extended European Search Report for European Application No. 13765610.4 dated Feb. 16, 2016, 6 pages.
Extended European Search Report for European Application No. 15187491.4, search completed Jan. 15, 2016, dated Jan. 28, 2016, 5 pgs.
International Preliminary Report on Patentability for International Application No. PCT/GB2010/000835, dated Nov. 1, 2011, dated Nov. 10, 2011, 9 pgs.
International Preliminary Report on Patentability for International Application No. PCT/GB2010/001920, dated Apr. 11, 2012, dated Apr. 19, 2012, 10 pgs.
International Preliminary Report on Patentability for International Application No. PCT/GB2010/001982, report dated May 1, 2012, dated May 10, 2012, 7 pgs.
International Preliminary Report on Patentability for International Application No. PCT/GB2015/000203, dated Mar. 21, 2017, dated Mar. 30, 2017, 8 pgs.
International Preliminary Report on Patentability for International Application No. PCT/GB2016/000036, dated Aug. 29, 2017, dated Sep. 8, 2017, 8 pgs.
International Preliminary Report on Patentability for PCT Application No. PCT/US2013/038070, dated Oct. 28, 2014, 6 pgs.
International Search Report and Written Opinion for International Application No. PCT/GB2010/000835, completed Oct. 26, 2010, dated Nov. 8, 2010, 12 pgs.
International Search Report and Written Opinion for International Application No. PCT/GB2010/001920, completed Mar. 29, 2011, dated Apr. 6, 2011, 15 pgs.
International Search Report and Written Opinion for International Application No. PCT/GB2016/000036, completed Jul. 4, 2016, dated Jul. 13, 2016, 10 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2013/038070, completed Aug. 12, 2013, dated Aug. 14, 2013, 12 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2018/012691, completed Mar. 10, 2018, dated Mar. 28, 2018, 16 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2018/056150, Search completed Dec. 4, 2018, dated Dec. 26, 2018, 10 pgs.
International Search Report and Written Opinion for International Application PCT/GB2016/000181, completed Dec. 21, 2016, dated Feb. 27, 2017, 21 pgs.
International Search Report for PCT/GB2010/001982, completed by the European Patent Office dated Feb. 24, 2011, 4 pgs.
Written Opinion for International Application No. PCT/GB2015/000203, completed Oct. 29, 2015, dated Nov. 16, 2015, 7 pgs.
Written Opinion for International Application No. PCT/GB2016/000051, Search completed Aug. 11, 2016 , dated Aug. 22, 2016, 6 Pgs.
“Navy awards SGB Labs a contract for HMDs for simulation and training”, Press releases, DigiLens, Oct. 2012, pp. 1-2.
“Plastic has replaced glass in photochromic lens”, 2003, 1 page.
“USAF Awards SBG Labs an SBIR Contract for Wde Field of View HUD”, Press Release ,SBG Labs DigiLens, Apr. 2014, 2 pgs.
“Webster's Third New International Dictionary 433”, (1986), 3 pages.
Amitai et al., “Visor-display design based on planar holographic optics”, Applied Optics, vol. 34, No. 8, Mar. 10, 1995, pp. 1352-1356.
Cameron, “The Application of Holographic Optical Waveguide Technology to Q-Sight™ Family of Helmet Mounted Displays”, Proc. of SPIE, 2009, 11 pages, vol. 7326.
Crawford, “Electrically Switchable Bragg Gratings”, Optics & Photonics News, pp. 54-59, Apr. 2003.
Irie, “Photochromic diarylethenes for photonic devices”, Pure and Applied Chemistry, 1996, pp. 1367-1371, vol. 68, No. 7, IUPAC.
Levola et al., “Replicated slanted gratings with a high refractive index material for in and outcoupling of light”, Optics Express, vol. 15, Issue 5, pp. 2067-2074 (2007).
Moffitt, “Head-Mounted Display Image Configurations”, retrieved from the internet on Dec. 19, 2014, dated May 2008, 25 pgs.
Natarajan et al., “Electro-Optical Switching Characteristics of Volume Holograms in Polymer Dispersed Liquid Crystals”, J. of Nonlinear Optical Physics Materials, Jan. 1996, vol. 5, No. 1, pp. 89-98.
Nordin G et al., “Diffraction Properties of Stratified Volume Holographic Optical Elements”, Journal of the Optical Society of America A., vol. 9, No. 12, Dec. 1992, pp. 2206-2217.
Sagan et al., “Electrically Switchable Bragg Grating Technology for Projection Displays”, Proc. SPIE. vol. 4294, Jan. 24, 2001, pp. 75-83.
Schechter et al., “Compact beam expander with linear gratings”, Applied Optics, vol. 41, No. 7, Mar. 1, 2002, pp. 1236-1240.
Urey, “Diffractive exit pupil expander for display applications”, Applied Optics, vol. 40, Issue 32, pp. 5840-5851 (2001).
Wisely, “Head up and head mounted display performance improvements through advanced techniques in the manipulation of light”, Proc. of SPIE, 2009, 10 pages, vol. 7327.
International Search Report and Written Opinion for International Application PCT/US2015/047097, completed Nov. 22, 2015, dated Dec. 16, 2019, 10 pgs.
Fries et al., “Real-time beam shaping without additional optical elements”, Light Science & Applications, Jun. 20, 2018, vol. 7, No. 18, doi: 10.1038/s41377-018-0014-0.
Gerritsen et al., “Application of Kogelnik's two-wave theory to deep, slanted, highly efficient, relief transmission gratings”, Applied Optics, Mar. 1, 1991, vol. 30; No. 7, pp. 807-814.
Golub et al., “Bragg properties of efficient surface relief gratings in the resonance domain”, Optics Communications, Feb. 24, 2004, vol. 235, pp. 261-267, doi: 10.1016/j.optcom.2004.02.069.
Moharam et al., “Diffraction characteristics of photoresist surface-relief gratings”, Applied Optics, Sep. 15, 1984, vol. 23, pp. 3214-3220.
Sabel et al., “Simultaneous formation of holographic surface relief gratings and volume phase gratings in photosensitive polymer”, Materials Research Letters, May 30, 2019, vol. 7, No. 10, pp. 405-411, doi: 10.1080/21663831.2019.1621956.
Sakhno et al., “Deep surface relief grating in azobenzene-containing materials using a lowintensity 532 nm laser”, Optical Materials: X, Jan. 23, 2019, 100006, pp. 3-7, doi: 10.1016/j.omx.2019.100006.
Yokomori, “Dielectric surface-relief gratings with high diffraction efficiency”, Applied Optics, Jul. 15, 1984, vol. 23; No. 14, pp. 2303-2310.
Related Publications (1)
Number Date Country
20190212573 A1 Jul 2019 US
Provisional Applications (1)
Number Date Country
60935109 Jul 2007 US
Continuations (6)
Number Date Country
Parent 15857783 Dec 2017 US
Child 16352696 US
Parent 15263488 Sep 2016 US
Child 15857783 US
Parent 14986287 Dec 2015 US
Child 15263488 US
Parent 14056081 Oct 2013 US
Child 14986287 US
Parent 13549868 Jul 2012 US
Child 14056081 US
Parent 12670730 US
Child 13549868 US