Not Applicable
The various embodiments and aspects described herein relate to components for a firearm.
The firearm has a variety of surfaces that is gripped by a user.
Accordingly, there is a need in the art for an improved method and device for mitigating slippage between the surfaces of the firearm and the user.
The various embodiments and aspects disclosed herein address the needs discussed above, discussed below and those that are known in the art.
A pulley assembly having a body, a shaft mount and a plurality of bolts that attach the body to the shaft mount is disclosed. The shaft mount is mountable to a shaft of a supercharger. The body is attachable to the shaft mount with the bolts. In particular, the shaft mount has a plurality of threaded holes that engage threads of the bolts. The body has a series of counter sunk holes that are aligned to the threaded holes of the shaft mount. The counter sunk holes have a him neck area that is minimally larger than a shoulder area of the bolt. As such, when the bolt is inserted into the counter sunk holes and threaded into the threaded holes of the shaft mount, the tight tolerancing (i.e., within 0.001 inches) between diameters of the necks of the counter sunk holes and the shoulder of the bolts align the body of the pulley assembly to the shaft mount and ultimately to the shaft of the supercharger. In another aspect, the outer surface of the body of the pulley assembly has a pattern of friction lines for increasing the frictional forces between the outer surface of the body of the pulley assembly and the belt driving the pulley. The friction lines may be formed by applying particulate matter to the outer surface of the body of the pulley assembly and fusing the applied particulate matter to the outer surface by heating the outer surface and the particulate matter. The heat may be generated by a laser beam that traces a desired pattern of friction lines. The increased friction mitigates noise by reducing slippage between a belt and the pulley. Alternatively, the laser may be used to remove material and to create a rough surface on the outer surface of the body of the pulley assembly. The heat generated from the laser beam may trace a desired pattern of friction lines.
More particularly, a pulley for transmitting rotational motion between first and second rotating shafts with a belt on an automobile engine is disclosed. The pulley may be fixed to the first rotating shaft. The pulley comprising a body and a laser infused friction material. The body may have a cylindrical central hole for receiving the first rotating shaft and mounting the body onto the first rotating shaft on the automobile engine. The cylindrical central hole may define a central axis about which the body rotates. The body may have at least one groove formed circumferentially about the central axis for receiving the belt. The laser infused friction material may be bonded to an outer surface of the at least one groove.
The laser infused friction material may be configured into a pattern on the outer surface of the at least one groove. The pulley may have at least three grooves. The pulley may have a diameter of about 1-10 inches, and more preferably between about 2-4 inches, and even more preferably about 2.5 inches.
In another aspect, a method of fabricating a pulley for transmitting rotational motion between first and second rotating shafts with a belt on an automobile engine is disclosed. The pulley may be fixed to the first rotating shaft. The method may comprise the steps of forming a body having a cylindrical central hole for receiving the first rotating shaft and mounting the body onto the first rotating shaft on the automobile engine, the cylindrical central hole defining a central axis about which the body rotates, the body having at least one groove formed circumferentially about the central axis for receiving the belt; covering an outer surface of the at least one groove with a powder material; and selectively applying heat from a laser beam to the powder material and the outer surface of the at least one groove to fuse the powder material to the outer surface of the at least one groove. The fused powder material provides a surface texture to increase its coefficient of friction and reduce slip with another material such as a belt.
The powder material used in the method may be a formulation sold under the trademark THERMARK or CERMARK. The powder material used in the method may also be any powdered metallic material or powdered oxide material. By way of example and not limitation, the metallic material may be tungsten, various types of carbides, cobalt, titanium, aluminum, steel or combinations thereof. The average size of the of the powdered material may be up to about 100 microns, and is preferably up to about 35 microns. More preferably, the powdered material is between about 2-25 microns. The texture of the fused material may be increased or decreased by respectively using larger or smaller sized powdered oxide material. Additionally, ceramic and/or diamond particles may be heterogeneously mixed in with the powdered metallic material or powdered oxide material.
The powder material and the outer surface of the at least one groove may reach a temperature of at least 200 degrees Fahrenheit depending on the specific powder material and the outer surface to fuse the powder material to the outer surface of the groove. By way of example and not limitation, the powder material may be configured so that the fusing temperature of the powder material and the outer surface may be as high as about 1,221 degrees Fahrenheit to about 4,566 degrees Fahrenheit for aluminum which are the respective melting and boiling points for aluminum. More broadly speaking, the heat applied to the powder material and the outer surface is regulated so that the temperature of the outer surface may reach between the melting point and the boiling point of the base material.
In the method, the covering step may include the step of covering the entire outer surface of the at least one groove.
In the method, the applying step may comprise the steps of mounting the body to a chuck; mounting the body and the chuck to a laser machine; rotating the body with the chuck while performing the applying heat from the laser beam step, rotational motion of the body defining a rotational axis; and traversing a head of the laser machine along the rotational axis while performing the applying heat from the laser beam step.
In another aspect, a method of removing a pulley from a rotating shaft of an automobile engine is disclosed. The method may comprise the steps of unscrewing a plurality of first bolts from the pulley to disassemble a first outer body of the pulley from an inner mounting fixture of the pulley; removing the first outer body from the inner mounting fixture; positioning a second outer body over the inner mounting fixture wherein an internal configuration of the second outer body is sized to interface with the inner mounting fixture and an external configuration of the second outer body is sized to mate with a puller; screwing the plurality of first bolts or a plurality of second bolts to the pulley to fix the second outer body to the inner mounting fixture wherein the second outer body has a larger flange compared to a flange of the first outer body; engaging the puller to the larger flange of the second outer body; and pulling on the larger flange of the second outer body with the puller to remove the inner mounting fixture from the rotating shaft.
In the method, the larger flange of the second outer body may be located on an inner side of the pulley.
In a different aspect, a method for increasing a coefficient of friction of a surface of a pulley is disclosed. The method may comprise the steps of disposing a laser machine adjacent to the pulley so that a laser beam of the laser machine is applied to an area of the surface of the pulley; adjusting the laser machine to a roughing setting to emit a laser beam that vaporizes the surface of the area to increase a roughness of the pulley surface; applying the laser beam of the laser machine onto the pulley surface with the laser machine set to the roughing setting; adjusting the laser machine to a smoothing setting to emit the laser beam to reduce sharps peaks on the pulley surface caused by the applying the laser beam of the laser machine set to the roughing setting; and applying the laser beam of the laser machine onto the pulley surface with the laser machine set to the smoothing setting.
The step of adjusting the laser machine to the smoothing setting from the roughing setting may comprise the steps of decreasing a kerf width, decreasing a fill distance and decreasing a power of the laser beam.
The step of adjusting the laser machine to the roughing setting may comprise the steps of setting a kerf width and setting a fill distance to be greater than the kerf width. The kerf width may be about between 0.0019 and about 0.004 inches. The step of adjusting the laser machine to the smoothing setting may comprise the steps of setting the fill distance to about double the kerf width but can be more or less depending on the material being worked on. By way of example and not limitation, the fill distance may be less than double the kerf width for aluminum and more than double the kerf width for 17-4 stainless steel.
The method may further comprise the step of adjusting the laser machine to an annealing setting to harden the pulley surface.
The method may further comprise the step of rotating the pulley or the laser machine after performing both applying steps to apply the laser beam of the laser machine about a circumference of the pulley.
These and other features and advantages of the various embodiments disclosed herein will be better understood with respect to the following description and drawings, in which like numbers refer to like parts throughout, and in which:
Referring now to the drawings, a pulley assembly 10 for a supercharger 12 is shown. The pulley assembly 10 is mounted to a shaft 14 of the supercharger 12. The pulley assembly 10 may have three different components, namely, a shaft mount 16, a body 18 and a plurality of bolts 20. The body 18 is mounted to the shaft mount 16 with the plurality of bolts 20. In particular, each of the bolts 20 may have a shoulder 22 having an outer diameter 24 which is smaller than and within 0.001 inches of an inner diameter 26 of a neck 54 of a countersunk hole 28 formed in the body 18. The shaft mount 16 has a plurality of threaded holes 30 which receive the bolts 20. In this manner, the neck 54 of the body 18 aligns the body 18 to the shaft mount 16. Additionally, an outer surface 32 of the body 18 may have a plurality of friction lines 34 which mitigate slip between the outer surface 32 of the body 18 and a belt being driven by the pulley assembly 10 or driving the pulley assembly 10. The increased friction mitigates noise by reducing slippage between the belt and the pulley assembly 10.
More particularly, referring now to
The shaft mount 16 may have a flange 42 that extends outwardly around a periphery of the shaft mount 16. The flange 42 may have a plurality of threaded holes 44 symmetrically disposed about a central axis 46. The flange 42 may have a proximal surface 48 which mates with a distal surface 50 of the body 18. The body 18 is mounted to the shaft mount 16 with the plurality of fasteners 20. The body 18 has a set of corresponding countersunk holes 28 that receive the bolts 20. These countersunk holes 28 are aligned in the same pattern as the threaded holes 44 formed in the flange 42 of the shaft mount 16. The body 18 has an inner cavity 55 which is large enough to receive the shaft mount 16 and a portion 53 of the supercharger 12 that holds the shaft 14. The body 18 is disposed over the shaft mount 16 and the countersunk holes 28 are aligned to the threaded holes 44. Each of the fasteners 20 are then inserted through the countersunk holes 28 and engage to the threaded holes 44 of the shaft mount 16. The fasteners 20 fixedly secure the body 18 the shaft mount 16. Also, the interference fit between the hole 38 of the shaft mount 16 and the shaft 14 of the supercharger 12 fixedly secure the shaft mount 16 to the shaft 14.
To align the body 18 to the shaft mount 16, the bolts 20 have a shoulder 22 that mates to a neck 54 of the countersunk hole 28 formed in the body 18. In particular, referring now to
Optionally, to further secure the shaft mount 16 to the shaft 14, the shaft mount 16 may have one or more socket set screws 68 that engage the shaft 14. In particular, the shaft mount 16 may have an extended length. A threaded hole 70 may be formed in the extended length. Preferably, a plurality of threaded holes 70 are symmetrically formed about the central axis 46 to maintain rotational balance of the pulley assembly 10 during rotation. By way of example and not limitation, threaded holes 70 may be placed on opposed sides of the central axis 46. Alternatively, three holes 70 may be disposed 120° apart from each other about the central axis 46 or four holes may be disposed 90° apart from each other about the central axis 46. After the shaft mount 16 is mounted to the shaft 14, the socket set screws 68 are threaded into the threaded holes 70 and engaged to the shaft 14. Preferably, the socket set screws 68 have a knurled end to further engage the shaft 14.
To mount the pulley assembly 10 to the shaft 14 of the supercharger 12, the shaft mount 16 (see
To further ensure that the shaft mount 16 is retained on the shaft 14, socket set screws 68 may be threaded into the threaded holes 70 formed in the extended length of shaft mount 16. A distal tip of each of the socket set screws 68 may have knurls to further engage the shaft 14 and mitigate inadvertent movement between the shaft mount 16 and the shaft 14.
The body 18 is then disposed over the shaft mount 16 so that the shaft mount 16 is disposed within the cavity 55 of the body 18. The bolts 20 are inserted through the countersunk holes 28 of the body 18 and threadedly engaged to the threaded holes 44 formed in the flange 42 of the shaft mount 16. As the bolts 20 are tightened, the neck 54 of the bolts 20 seat into the neck 54 of the body 18. Due to the tight tolerances between the shoulders 22 of the bolts 20 and the necks 54 of the countersunk holes 28 of the body 18, the body 18 begins to align to the shaft mount 16. The user tightens the bolts 20 to securely attach the body 18 to the shaft mount 16, and in turn, to the shaft 14 of the supercharger 12.
To remove the pulley assembly 10 from the shaft 14 of the supercharger 12, the user loosens the bolts 20 to remove the body 18 from the shaft mount 16. The purpose of removing the body 18 from the shaft mount 16 is to provide the user with access to the socket set screws 68, if used. The user loosens and removes the socket set screws 68 from the shaft mount 16. The user may then reinstall the original body 18 or install a sacrificial body 72 (see
Referring back to
In particular, referring now to
To coat the particulate matter onto the outer surface 32 of the body 18, the particulate matter is applied 82 (see
If Thermark is used, then the user applies the particulate matter shortly before fusing 82 the particulate matter to the outer surface 32 of the body 18. If Cermark is used, then the user may optionally store 84 the coated bodies 18 in storage for an extended period of time. When desired, the user takes the coated bodies 18 out of storage and fuses 82 the particulate matter to the outer surface 32 of the body 18. Regardless of whether Thermark or Cermark is utilized, the particulate matter may be fused 82 to the outer surface 32 (or slide 306 or rail 308 of the firearm 310a, b) of the body 18 with a laser beam 78. The laser beam 78 heats up the particulate matter and the outer surface 32 of the body 18. The heat permanently attaches the particulate matter to the outer surface 32 of the body 18 so that the particulate matter does not rub off as the belt runs over the outer surface 32 of the body 18.
Generally, the particular matter may be provided as a powder. The powder may be delivered by aerosol or a spray gun. The material of the powder may be a metallic material. More particularly, the powder may be any form of a metallic oxide material. By way of example and not limitation, the metallic material may be tungsten, carbides (e.g., tungsten carbide, titanium carbide, silicon carbide, carbide.c++, calcium carbide, boron carbide), cobalt, titanium, aluminum, steel or combinations thereof. The average size of the of the powdered material may be up to about 100 microns, and is preferably up to about 35 microns with a minimum size being 2 microns. The texture of the fused material may be increased or decreased by respectively using larger or smaller sized powdered oxide material. During tests, a powder metallic oxide material having a size of about 35 microns has created a 0.007 inch texture to the outer surface 32.
To form the friction lines or patches 34, the body 18 (or slide 306 or rail 308) may be attached to a chuck 86 after applying the particulate matter to the outer surface 32. The chuck 86 may have a plurality of arms 88 with serrated teeth. The plurality of arms 88 may be inserted within the internal cavity 55 of the body 18 and expanded outward. Upon outward expansion, the arms 88 automatically center the body 18 onto the chuck 86. The chuck 86 and the body 18 are placed on a rotary table or an indexer that controls the rotational movement 90 of the chuck 86 and the body 18 about rotational axis 46. The laser 80 is capable of traversing longitudinally along the central or rotational axis 46 in the direction of arrows 92, 94. Preferably, the laser beam 78 of the laser 80 intersects and is perpendicular to the central or rotational axis 46. Additionally, the laser 80 may be a direct beam laser 80.
The laser beam 78 may be traversed longitudinally along the axis 46 and simultaneously, the body 18 may be rotated about axis 46 so that the laser beam 78 traces the pattern of lines, circles, curves, patches and other shapes to form a mark, word, pattern on the outer surface 32 of the grooves of the body 18. In
After fusing 82, the particulate matter to the outer surface 32 of the body 18, the excess particulate matter which is not fused to the outer surface 32 of the body 18 may be removed 96 and reclaimed 98 for subsequent use. More particularly, the body 18 may be placed in a wash tank such as an ultrasonic tank. Fluid within the ultrasonic tank is heated up to 200° F. and the tank is vibrated. The fluid is run through a filter and the particulate matter that was not fused to the body 18 is reclaimed 98 and reused at a later time.
The direct beam laser 80 produces a laser beam 78 having a focal depth 104. Preferably, the focal depth 104 is greater than a distance 106 between a peek 108 and valley 110 of the grooves 76 formed in the body 18. The laser 80 and laser beam 78 are positioned so that the focal depth 104 covers the entire distance 106. By way of example and not limitation, the focal depth 104 of the laser beam 78 may be about 0.200 inches. In this manner, the laser beam 78 heats up the particulate matter and the surface 32 along the entire height of the grooves 76 to provide optimal friction lines 34.
It is also contemplated that the process of forming the friction lines 34 as discussed above and in relation to
Other types of lasers 80 may also be utilized to fuse 82 the particulate matter to the outer surface 32 of the body 18. By way of example and not limitation, a Galvo laser which utilizes one or more lenses to position the laser beam 78 on the outer surface 32 of the body 18 may be utilized. In this manner, the throughput is higher than a direct laser beam 78 or a CO2 laser beam in that the lenses can create multiple friction lines 34 in one pass.
The process of forming the friction lines 34 is discussed in relation to
In addition to forming the deboss on the outer surface 32 with the laser 80, it is also contemplated that the deboss may be formed with a micro end mill. The same is true if the deboss was formed on the firearm or parts thereof. Regardless of whether the deboss is formed with a laser 80 or a micro end mill, the body 18 (or firearm or parts thereof) is mounted to the chuck 86. The chuck 86 and the body 18 are mounted to an indexer or a rotary table which controls the rotational angle of the body 18 as the micro end mill or the laser 80 removes material from the outer surface 32 of the body 18. In another aspect, it is also contemplated that the body 18 may remain stationary while the micro end mill or the laser 80 both rotate about the body 18 and also traverse longitudinally along the axis 46.
The friction lines or patches 34 were described as being formed on a rotary table or indexer that is coordinated with the laser. However, it is also contemplated that the friction lines or patches 34 may be formed manually. By way of example and not limitation, the part could be mounted to a chuck or a holding mechanism that the user may move by hand.
In another aspect, referring now to
Referring now to
Referring now to
Referring now the
As shown in
Referring now to
Referring now the
Referring now to
Referring now to
The laser 80 may be rated at a particular wattage. By way of example and not limitation, the laser 80 may be a 70 watt laser 80.
Referring now to the chart below, the laser 80 may be adjusted differently for each of the roughing pass, smoothing pass and annealing pass. When the laser 80 makes the roughing pass, the laser 80 is set to the roughing setting shown below. In this regard, the roughing setting may create a plurality of kerfs 150 having a kerf width 170 between about 0.004 inches and about 0.0021 inches. The laser beam 80 may pass over the area 152 two times. During the first pass, the laser beam 78 may have a crosshatching angle 172 of about 45°. During the second pass, the laser beam 78 may have a crosshatching angle 172 of about 180°. The laser beam 78 runs parallel with respect to the central axis 46 of the body 18. The laser 80 may be set at 90% power for a 70 watt laser 80. The pulse width 178 of the laser beam 78 may be set to 420 ns. The laser beam 78 travels on the surface 32 of the body 18 at around 80 inches per second during the roughing pass. The roughing pass creates a plurality of kerfs 150 and projects the recast material 166 upward to form peaks 168. The setting for the roughing pass may be set so as to create an aggressive texture in that the peaks 168 may tear a belt running on the pulley during use of the pulley. As such, the roughing pass may be followed up with a smoothing pass.
The smoothing pass rounds out the peaks 168 of the recast material 166. In order to do so, the kerf width 170 is set to be smaller than the kerf width 170 during the roughing pass. In our example, the kerf width 170 for the smoothing pass is set to be about equal to the kerf width 170 during the roughing pass. The crosshatching angle 172 is set to the crosshatching angle 172 of the roughing pass. In our example, the roughing pass had two different crosshatching angles 172. The crosshatching angle 172 during the smoothing pass may be set to either one of the crosshatching angles 172 used during the roughing pass. The distance 174 of the crosshatching may be smaller than the kerf width 170 of the roughing pass. The reason is that the laser beam 78 during the smoothing pass needs to hit a significant amount of peaks 168 to round out or knock down the peaks 168. In order to account for any misalignment between the laser beam 78 and the kerfs 150 made during the roughing pass, reducing the crosshatching size 174 to be smaller than the kerf width 170 of the roughing pass enables the laser 80 to round out a significant portion (i.e., more than 25%, 50% or 75%) of the peaks 168 of the recast material 166. The smoothing pass is not meant to generate new indentations in the surface 32 of the body 18. Rather, the smoothing pass is designed to round off the peaks 168 of the recast material 166. In this regard, the pulse width is significantly reduced so that less energy is introduced into the surface 32 of the body 18. Also, the speed of the laser is reduced in order to ensure that a significant portion of the peaks 168 generated during the roughing pass are rounded out or knocked down.
After the roughing and smoothing passes, it is also contemplated that the surface 32 may be annealed by adjusting the laser 80 with the annealing setting shown above. The annealing pass may also be used to add color to the exterior surface. In annealing the surface 32 of the body 18, the annealing takes place on the surface 32 of the body 18 to a depth of about a few thousandths of an inch below its exterior. Referring now to
The various settings described herein were for 17-4 stainless steel. However, the general principles of forming the roughing setting, smoothing setting and the annealing settings may be applied to other types of metallic materials such as alloys of iron and carbon, steel, magnesium alloy, sheet metal, aluminum, carbon steel, etc. with different settings per their own material characteristics. The settings are for a model 70W_EP_Z from SPI Lasers, LLC.
The various aspects described herein are in relation to the formation of an emboss and deboss of a textured surface on a surface of a pulley having a plurality of grooves wherein the pulley grooves engage a belt in order to transmit power from a first shaft upon which the pulley is mounted to a second shaft generally parallel to the first shaft. Moreover, the various aspects described herein for the emboss and deboss of a textured surface have also been described in relation to forming the embossed/debossed textured surface on pulleys of a continuously variable transmission or CVT. The embossed/debossed textured surface is formed on first and second parts of a pulley of the CVT, and more particularly on a gripping surface which is where the belt engages for transmitting power between the first and second shafts. More broadly, it is also contemplated that the method and apparatus for forming the emboss or debossed textured surface may be applied to other applications including but not limited to the following applicational uses. The embossed or debossed textured surface may be formed on a pulley having a helical groove or a straight or helical gear, flat cylindrical pulley, etc. By way of example and not limitation, a drum may have a plurality of belts mounted thereto for transmitting power to or from the drum to a second shaft. The embossed or debossed textured surface may be formed on the drum where the drum engages the belt. The embossed or debossed textured surface may also be formed on a spindle of a lathe. Broadly speaking the embossed or debossed textured surface may be formed utilizing the method and apparatus as described herein on a surface that is used to engage a belt or other power transmission means to increase the coefficient of friction of the surface in order to prevent slippage between the power transmission means and the surface.
Referring now to
For both the deboss method and the emboss method, the entire firearm 310a, b or a part (e.g. frame 302, slide 306, grip 300a, b or rail 308) may be manipulated by the machine used by the deboss method and the emboss method in order to apply the friction patch or lines to select areas of the firearm or parts thereof.
Referring now to
The friction patch or lines may be formed on a front side 307 and bottom side 309 of the trigger guard 12, a front side, lateral sides and/or rear side of the grip 300a. It is also contemplated that the friction patch (see
Referring now to
The friction patch or lines may be formed on a front side, lateral sides and/or rear side of the grip 300b. The friction patch or lines may also be formed on exterior sides of the rail 308. These friction patches and lines formed on the grip and rail may be may be sufficiently rough so that the texture formed on the slide 306 does not tear the person's skin when the user grips the grip 300b or rail 308 by hand and also increases the user's ability to retain the firearm 310b when needed. It is also contemplated that the friction patch (see
In forming the friction patches on the firearm 310a, b, the deboss method may comprise both the roughing pass and the smoothing pass but also only the roughing pass. One or more passes for the roughing pass and/or the smoothing pass are contemplated. As shown in the table below there may be 13 roughing passes or 13 roughing passes in combination with one or more and up to 13 smoothing passes. For the polymer parts of the firearm where a friction patch is applied, the laser settings may have the following settings. The setting set forth below represent approximate settings and guidelines for a polymer material. For other materials such as stainless steel, the settings listed in Table 1 may be used as a guideline. The laser may be applied to the polymer and metallic parts of the firearm in a cross hatch pattern or as simple parallel lines. The polymer part may also create a recast with the settings provided below. The recast assists in providing for more grip and better purchase of the firearm.
The above description is given by way of example, and not limitation. Given the above disclosure, one skilled in the art could devise variations that are within the scope and spirit of the invention disclosed herein, including usage of other types of lasers. Further, the various features of the embodiments disclosed herein can be used alone, or in varying combinations with each other and are not intended to be limited to the specific combination described herein. Thus, the scope of the claims is not to be limited by the illustrated embodiments.
This application is a continuation of U.S. patent application Ser. No. 15/976,723, filed on 2018 May 10, the entire contents of which is expressly incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
662046 | Winter | Nov 1900 | A |
902224 | Fouillaron | Oct 1908 | A |
1350670 | Ritter | Aug 1920 | A |
1601662 | Abbott | Sep 1926 | A |
1966831 | Torrence | Jul 1934 | A |
2182774 | Birnbaum | Dec 1939 | A |
2184545 | Collier | Dec 1939 | A |
2187188 | Whitcomb | Jan 1940 | A |
2413817 | Firth | Jan 1947 | A |
2516829 | Reeves | Jul 1950 | A |
2609699 | Rohn | Sep 1952 | A |
2643549 | Whitesell | Jun 1953 | A |
2836982 | Voss | Jun 1958 | A |
2905361 | Noall | Sep 1959 | A |
3078556 | Carroll | Feb 1963 | A |
3599311 | Ellis | Aug 1971 | A |
3604280 | Davis | Sep 1971 | A |
3651557 | Bagley | Mar 1972 | A |
3666613 | Beninga | May 1972 | A |
3776059 | Habermann | Dec 1973 | A |
3958063 | Robson | May 1976 | A |
4034458 | Ford | Jul 1977 | A |
4548592 | Ohhashi | Oct 1985 | A |
4612208 | Reichenecker | Sep 1986 | A |
4692128 | Sadler | Sep 1987 | A |
4781656 | Brackett | Nov 1988 | A |
4781660 | Amataka | Nov 1988 | A |
4790799 | Sadler | Dec 1988 | A |
4826412 | Kubo | May 1989 | A |
4838842 | Ohkata | Jun 1989 | A |
4905361 | Morishita | Mar 1990 | A |
4913689 | Morishita | Apr 1990 | A |
4947533 | Taniguchi | Aug 1990 | A |
5106672 | Rabe | Apr 1992 | A |
5269982 | Brotz | Dec 1993 | A |
5289813 | Adachi | Mar 1994 | A |
5374221 | Casada | Dec 1994 | A |
5454760 | Aranibar | Oct 1995 | A |
5507698 | Kuribayashi | Apr 1996 | A |
D370397 | White | Jun 1996 | S |
5593366 | Puzik | Jan 1997 | A |
5637353 | Kimock | Jun 1997 | A |
5894650 | Barenburg | Apr 1999 | A |
6254503 | Chiba | Jul 2001 | B1 |
6266860 | Kiebler | Jul 2001 | B1 |
6415491 | Klann | Jul 2002 | B1 |
6543113 | Khurana | Apr 2003 | B1 |
6572270 | Hiromichi | Jun 2003 | B2 |
6648781 | Fischer | Nov 2003 | B1 |
6676548 | Fujiwara | Jan 2004 | B2 |
6858262 | Fischer | Feb 2005 | B2 |
6960117 | Mahadev | Nov 2005 | B1 |
7191880 | Liston | Mar 2007 | B2 |
7207111 | Aloise | Apr 2007 | B2 |
7244185 | Kamdem | Jul 2007 | B2 |
7259351 | Lineton | Aug 2007 | B2 |
7297081 | Eck | Nov 2007 | B2 |
7350447 | Smith | Apr 2008 | B1 |
7448972 | Garabello | Nov 2008 | B2 |
7520041 | Aguilar | Apr 2009 | B1 |
7648435 | Ishida | Jan 2010 | B2 |
7653975 | Hu | Feb 2010 | B2 |
7780556 | Sakanaka | Aug 2010 | B2 |
7798927 | Ishida | Sep 2010 | B2 |
7857721 | Ishida | Dec 2010 | B2 |
7958635 | Yoshida | Jun 2011 | B2 |
7996972 | Hu | Aug 2011 | B2 |
D662046 | Unger | Jun 2012 | S |
8308590 | Fiordaliso | Nov 2012 | B2 |
8653409 | Sodhi | Feb 2014 | B1 |
8852698 | Fukumitsu | Oct 2014 | B2 |
8931156 | Zimmer | Jan 2015 | B1 |
9028353 | Zimmer | May 2015 | B1 |
9382995 | Osborne | Jul 2016 | B2 |
9421637 | Zimmer | Aug 2016 | B2 |
9551409 | Zimmer | Jan 2017 | B2 |
9714700 | Briggs | Jul 2017 | B2 |
10655723 | Zimmer | May 2020 | B2 |
10794663 | Zimmer | Oct 2020 | B2 |
20010053727 | Nakashima | Dec 2001 | A1 |
20020144986 | Grow | Oct 2002 | A1 |
20040200108 | Doiron | Oct 2004 | A1 |
20050003633 | Mahle | Jan 2005 | A1 |
20050148417 | Garabello | Jul 2005 | A1 |
20050217111 | Yoshida | Oct 2005 | A1 |
20050221938 | Yoshida | Oct 2005 | A1 |
20060027542 | Mahadev | Feb 2006 | A1 |
20080161141 | Joo | Jul 2008 | A1 |
20090001058 | Lentz | Jan 2009 | A1 |
20090176034 | Ruuttu | Jul 2009 | A1 |
20090313799 | Oguri | Dec 2009 | A1 |
20100099239 | Dunne | Apr 2010 | A1 |
20100120562 | Kadokawa | May 2010 | A1 |
20100251528 | Hu | Oct 2010 | A1 |
20110030440 | Keane | Feb 2011 | A1 |
20110126394 | Heimmer | Jun 2011 | A1 |
20110318497 | Beals | Dec 2011 | A1 |
20120088615 | Briggs | Apr 2012 | A1 |
20130292188 | Bilen | Nov 2013 | A1 |
20150080158 | Van Der Heijde | Mar 2015 | A1 |
20150260271 | Zimmer | Sep 2015 | A1 |
20160129526 | Russ | May 2016 | A1 |
20160334001 | Zimmer | Nov 2016 | A1 |
20170030436 | Duan | Feb 2017 | A1 |
20170089441 | Zimmer | Mar 2017 | A1 |
20180328692 | Zimmer | Nov 2018 | A1 |
20200240507 | Zimmer | Jul 2020 | A1 |
Number | Date | Country |
---|---|---|
2013159910 | Oct 2013 | WO |
Entry |
---|
Steeda Autosports, http://www.steeda.com/steeda-gt500-supercharger-pulley-puller-555-8902/, [Published as early as Mar. 14, 2014]. |
VMP Tuning, http://vmptuning.com/tools/3inclam/, [Published as early as Mar. 14, 2014]. |
VMP Tuning, http://vmptuning.com/pulley-tools/vmpalltool/, [Published as early as Mar. 14, 2014]. |
International Search Report and Written Opinion on related PCT application (PCT/US2015/020611) from International Searching Authority (US) dated Jul. 15, 2015. |
International Preliminary Report on Patentability on related PCT Application (PCT/US2015/020611) from the International Bureau of WIPO dated Sep. 14, 2016. |
Lone Wolf as early as Apr. 24, 2015 (there may be more/earlier) and it's archived here: http://web.archive.org/web/20150424223706/https:/www.lonewolfdist.com/Detail.aspx?PROD=156322 (Year: 2015). |
Behera et al., “Experimental investigations of nanosecond-pulsed Nd:YAG laser beam micromachining on 304 stainless steel”, Journal of Micromanufacturing, 1 (1) 62-75, 2018, Reprints and permissions: in.sagepub.com/journals-permissions-india, DOI: 10.1177/25|65984|8766937, journals.sagepub.com/home/jmf, 14 pages. |
Jagdheesh et al., “One-Step Generation of Ultrahydrophobic Aluminum Surface Patterns by Nanosecond Lasers”, WLT, Lasers in Manufacturing Conference 2015, 9 pages. |
Number | Date | Country | |
---|---|---|---|
20200408486 A1 | Dec 2020 | US |
Number | Date | Country | |
---|---|---|---|
62505010 | May 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15976723 | May 2018 | US |
Child | 17013682 | US |