The present disclosure generally relates to antennas, such as antennas suitable for use in ground-penetrating radar systems. More particularly, the present disclosure relates to antennas having a graphene or graphite conductive layer.
A ground-penetrating radar system uses high frequency radio wave pulses to detect various objects (e.g., pipes, utilities, etc.) and/or conditions (e.g., bedrock, groundwater, etc.) within the ground. More specifically, the ground-penetrating radar system emits radio wave pulses into the ground. These radio wave pulses are reflected by the underground objects or conditions. The ground-penetrating radar system then receives the reflected radio wave pulses and is able detect or identify the objects or anomalies based on the characteristics of the reflected radio wave pulses.
To emit and receive the radio wave pulses, the ground-penetrating radar system includes an antenna. In general, the antenna must have a low reflected energy. However, this low reflected energy causes ringing in the antenna after the radio wave pulse is emitted. Specifically, ringing occurs in the antenna when electric currents reverberate between a central feed portion of the antenna and an outer tip of the antenna. In this respect, ringing may mask the reflected radio wave pulses received by the antenna by causing the emission of unwanted radio wave pulses from the antenna. In certain instances, resistors may be added to the antenna at various positions to reduce ringing. However, this uneven resistive loading of the antenna reduces the efficiency of the antenna, thereby increasing its power consumption.
Accordingly, an improved antenna, such as an antenna suitable for use in a ground-penetrating radar system, would be welcomed in the art.
In one aspect, the present disclosure is directed to an antenna extending along a longitudinal direction between a first longitudinal end and a second longitudinal end, along a transverse direction between a first transverse end and a second transverse end, and along a vertical direction from a top end to a bottom end. The antenna includes a substrate and a graphene or graphite layer positioned on at least a portion of the substrate. The graphene or graphite layer includes a first zone having a first thickness along the vertical direction and a second zone having a second thickness along the vertical direction. The second thickness is less than the first thickness such that the second zone has a greater electrical resistance than the first zone.
In another aspect, the present disclosure is directed to a method for forming an antenna. The antenna extends along a longitudinal direction between a first longitudinal end and a second longitudinal end and along a vertical direction between a first vertical end and a second vertical end. The method includes forming a substrate at least partially from a polyimide. The method also includes moving a laser along at least a portion of the substrate to form a graphene or graphite layer on the substrate, with a parameter of the laser being indicative of a thickness of the graphene or graphite layer along the vertical direction. Furthermore, the method includes changing the parameter of the laser as the laser moves relative to the substrate such the graphene or graphite layer includes a first zone having a first thickness along the vertical direction and a second zone having a second thickness along the vertical direction. The second thickness is less than the first thickness such that the second zone has a greater electrical resistance than the first zone.
A full and enabling disclosure of the present invention, including the best mode thereof, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended figure, in which:
It is to be understood by one of ordinary skill in the art that the present discussion is a description of exemplary embodiments only, and is not intended as limiting the broader aspects of the present disclosure. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. For instance, features illustrated or described as part of one embodiment can be used with another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents.
Referring now to the drawings,
As shown, the system 10 includes a controller 18. In general, the controller 18 may correspond to any suitable processor-based device, including one or more computing devices. For example, the controller 18 may include one or more processors 20 and one or more associated memory devices 22 configured to perform a variety of computer-implemented functions (e.g., performing the methods, steps, calculations, and the like disclosed herein). As used herein, the term “processor” refers not only to integrated circuits referred to in the art as being included in a computer, but also refers to a controller, microcontroller, a microcomputer, a programmable logic controller (PLC), an application specific integrated circuit (ASIC), a Field Programmable Gate Array (FPGA), and other programmable circuits. Additionally, the memory device(s) 22 may generally include memory element(s) including, but not limited to, a computer readable medium (e.g., random access memory (RAM)), a computer readable non-volatile medium (e.g., flash memory), a compact disc-read only memory (CD-ROM), a magneto-optical disk (MOD), a digital versatile disc (DVD), and/or other suitable memory elements or combinations thereof. The memory device(s) 22 may store instructions that, when executed by the processor 20, cause the processor 20 to perform various functions.
The system 10 also includes an antenna 100 communicatively coupled, such as electrically coupled, to the controller 18. In this respect, the controller 18 may be configured to transmit electric signals (e.g., as indicated by arrow 24) to the antenna 100. The antenna 100 may then be configured to convert these electric signals 24 into radio waves, which the antenna 100 then emits from the system 10. Similarly, the antenna 100 may also be configured to the receive radio waves from outside of the system 10, such as from the soil 16. The antenna 100 may, in turn, be configured to convert the received radio waves into electric signals (e.g., as indicated by arrow 26), which are then transmitted to the controller 18. In the embodiment shown in
As indicated above, the system 10 uses radio waves to detect objects or conditions under the ground surface 14 or otherwise within the soil 16, such as the illustrated pipe 12. More specifically, upon receipt of the electric signal 24, the antenna 100 emits a radio wave pulse (e.g., as indicated by 28) into the soil 16. The emitted radio wave pulse 28 moves through the soil 16 until it contacts the pipe 12. The radio wave pulse 28 is reflected off of the pipe 12 as a reflected radio wave pulse (e.g., as indicated by arrow 30). The antenna 100 is then configured to receive the reflected radio wave pulse 30 and convert the reflected radio wave pulse 30 into the electric signal 26. After receiving the electric signal 26, the controller 18 is configured to detect or otherwise identify the presence of the pipe 12. For example, in one embodiment, a time period between when the controller 18 transmits the signal 24 and receives the signal 26 may be indicative of the depth of the pipe 12 below the ground surface 14. However, in alternative embodiments, the controller 18 may be configured to detect or otherwise identify the presence of the pipe 12 based on any other suitable characteristic of the signals 24, 26 and/or radio wave pulses 28, 30.
The configuration of the ground-penetrating radar system 10 described above and shown in
In general, the antenna 100 may define a longitudinal direction L, a transverse direction T orthogonal to the longitudinal direction L, and a vertical direction V orthogonal to the longitudinal direction L and the transverse direction T. More specifically, the antenna 100 may extend along the longitudinal direction L between a first longitudinal end 102 and a second longitudinal end 104. The antenna 100 may also extend along the transverse direction T between a first transverse end 106 and a second transverse end 108. Furthermore, the antenna 100 may extend along the vertical direction V from a top end 110 to a bottom end 112.
The antenna 100 includes a substrate 114. As shown, the substrate 114 extends along the longitudinal direction L from a first longitudinal edge 116 positioned proximate to the first longitudinal end 102 to a second longitudinal edge 118 positioned proximate to the second longitudinal end 104. In this respect, the substrate 114 includes a longitudinally central region 120 located centrally along the longitudinal direction L between the first longitudinal edge 116 and a second longitudinal edge 118. The substrate 114 also extends along the transverse direction T from a first transverse edge 122 positioned proximate to the first transverse end 106 to a second transverse edge 124 positioned proximate to the second transverse end 108. Furthermore, the substrate 114 extends along the vertical direction V from a top surface 126 positioned proximate to the top end 110 to a bottom surface 128 positioned proximate to the bottom end 112. As will be described in greater detail below, the substrate 114 may be at least partially formed from polyimide. The particular construction of the substrate 114 will be described in greater detail below.
In the illustrated embodiment, the substrate 114 defines a bow-tie configuration. More specifically, the substrate 114 may include a common feed portion 130 positioned at or proximate to the longitudinally central region 120. The common feed portion 130 is shown as having a generally rectangular shape. Although, the common feed portion 130 may have any suitable shape in alternative embodiments. In one embodiment, the common feed portion 130 may include a conductive pad (not shown), such as a copper pad, to which wires (not shown) may be soldered to electrically couple the antenna 100 and the controller 18 (
The antenna 100 also includes a graphene or graphite layer 136 positioned on at least a portion of the top surface 126 of the substrate 114. As shown, the layer 136 is positioned on the first and second flared portions 132, 134 of the substrate 114. However, in alternative embodiments, the layer 136 may also be positioned on at least a portion of the bottom surface 128 in addition to or in lieu of the top surface 126. Furthermore, in some embodiments, the layer 136 may be positioned on only one of the first and second flared portions 132, 134. In fact, the layer 136 may be positioned on any other suitable portion of the substrate 136. As will be described in greater detail below, the layer 136 may be a laser-induced graphene or graphite layer.
The layer 136 includes various zones. For example, the layer 136 includes a first zone 138 extending along the longitudinal direction L from the common feed portion 130 to dashed line 140. The layer 136 also includes a second zone 142 extending along the longitudinal direction L from the first zone 138 (i.e., dashed line 140) to dashed line 144. The layer 136 further includes a third zone 146 extending along the longitudinal direction L from the second zone 142 (i.e., dashed line 144) to the first longitudinal edge 116. Moreover, the layer 136 includes a fourth zone 148 extending along the longitudinal direction L from the common feed portion 130 to dashed line 150. Furthermore, the layer 136 includes a fifth zone 152 extending along the longitudinal direction L from the fourth zone 148 (i.e., dashed line 150) to dashed line 154. Additionally, the layer 136 includes a sixth zone 156 extending along the longitudinal direction L from the fifth zone 152 (i.e., dashed line 154) to the second longitudinal edge 118. In the embodiment shown, the first, second, and third zones 138, 142, 146 are positioned on the first flared portion 132 of the substrate 114, and the fourth, fifth, and sixth zones 148, 152, 156 are positioned on the second flared portion 134. In alternative embodiments, the layer 136 may include more or fewer zones so long as the layer 136 includes at least two zones. Moreover, the zones may be positioned in any suitable location on the substrate 114.
As shown in
The layer 136 is electrically conductive, thereby permitting the antenna 100 to emit and/or receive radio waves. The electrical conductivity of the layer 136 is based on the thickness of the layer 136 along the vertical direction V. That is, the greater the thickness of the layer 136, the less electrical resistance the layer 136 has. As such, in the illustrated embodiment, the third zone 146 has a greater electrical resistance than the second zone 142, and the second zone 142 has a greater electrical resistance than the first zone 138. Similarly, the sixth zone 156 has a greater electrical resistance than the fifth zone 152, and the fifth zone 152 has a greater electrical resistance than the fourth zone 148. Furthermore, the first and fourth zones 138, 148 may have the same or substantially the same (within five percent) electrical resistances, the second and fifth thicknesses 160, 166 may have the same or substantially the same (within five percent) electrical resistances, and the third and sixth thicknesses 162, 168 may have the same or substantially the same (within five percent) electrical resistances. However, in alternative embodiments, the zones 138, 142, 146, 148, 152, 156 may have any suitable electrical resistances so long as at least two of the zones 138, 142, 146, 148, 152, 156 have different electrical resistances.
Additionally, as shown in
As shown in
Moreover, as shown in
Various parameters of the laser 300 and/or laser beam 302 may be indicative of the thickness of the layer 136 along the vertical direction V. More specifically, a speed with which the laser 300 moves relative to the substrate 114 may be indicative of the thickness of the layer 136. For example, the thickness of the layer 136 may increase as the speed with which the laser 300 moves relative to the substrate 114 decreases. An intensity of the laser beam 302 may also be indicative of the thickness of the layer 136. For example, the thickness of the layer 136 may increase as the intensity of the laser beam 302 increases. Furthermore, a distance 306 between the laser 300 and the substrate 114 may be indicative of the thickness of the layer 136. For example, the thickness of the layer 136 may increase as the distance 306 between the laser 300 and the substrate 114 decreases.
Additionally, as shown in
In one embodiment, the speed with which the laser 300 moves relative to the substrate 114 may be modified or adjusted to form the zones 138, 142, 146, 148, 152, 156. For example, referring now to
In another embodiment, the intensity of the laser beam 302 may be modified or adjusted to form the zones 138, 142, 146, 148, 152, 156. For example, referring now to
In a further embodiment, the distance 306 between the laser 300 and the substrate 114 may be modified or adjusted to form the zones 138, 142, 146, 148, 152, 156. For example, referring now to
Additionally, the method 200 may include laminating the substrate and the graphene or graphite layer with a polymeric material (e.g., polyethylene). For example, as shown in
As described in greater detail above, the disclosed antenna 100, unlike conventional antennas, includes a graphene or graphite layer having various zones, with at least two of these zones having different thicknesses. These differing thicknesses, in turn, provide different electrical conductivities to the antenna 100. As such, the antenna 100 produces less ringing than conventional antennas, while maintaining the efficiency thereof.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
This invention was made with Government support under Contract No. DE-AC09-08SR22470, awarded by the U.S. Department of Energy. The Government has certain rights in the invention.
Number | Name | Date | Kind |
---|---|---|---|
4571592 | Justice | Feb 1986 | A |
5856807 | Davis | Jan 1999 | A |
6061589 | Bridges et al. | May 2000 | A |
6124831 | Rutkowski | Sep 2000 | A |
6417816 | Sadler et al. | Jul 2002 | B2 |
7732002 | Kodas et al. | Jun 2010 | B2 |
8808810 | Veerasamy | Aug 2014 | B2 |
20030090421 | Sajadinia | May 2003 | A1 |
20030164798 | Nevermann | Sep 2003 | A1 |
20150369660 | Yu | Dec 2015 | A1 |
20170062821 | Tour | Mar 2017 | A1 |
Number | Date | Country |
---|---|---|
103811862 | May 2014 | CN |
104916732 | Sep 2015 | CN |
104134870 | Jun 2017 | CN |
Entry |
---|
Zhang, et al. “Investigation on Reconfigurable THz Bowtie Antenna.” 2015 IEEE 4th Asia-Pacific Conference on Antennas and Propagation (APCAP). |
Lovine, et al. “Gmphene Bow-tie Nanoantenna for Wireless Communications in the Terahertz Band.” NANOCOM'14, May 13-14 2014, Atlanta, GA, USA. |
Koroth, et al. “Improving the detectability and imaging capability of ground penetrating radar using novel antenna concepts.” Geophysical Research Abstracts. vol. 19, EGU2017-7562, 2017. |
Ali, et al. “Ultra-Wideband Antenna Design for GPR Applications: A Review.” IJACSA. vol. 8, No. 7, 2017, 392-400. |
Lin, et al. “Laser-induced porous graphene films from commercial polymers.” Nature Communications 5:5714 DOI: 10.1038. |
Perruisseau-Carrier, Julien. “Graphene for Antenna Applications: Opportunities and Challenges from Microwaves to THz.” 2012 Loughborough Antennas & Propagation Conference. 13-13 Nov. 2012. |
Zhou, et al. “Miniaturized Tunable Terahertz Antenna Based on Graphene.” Microwave and Optical Technology Letters. vol. 56, No. 8, Aug. 2014. |
Nayak, et al. “Design and Simulation of Compact UWB Bow-tie Antenna with Reduced End-fire Reflections for GPR Applications.” IEEE WiSPNET 2016 conference. |
Rice University. “Defects are perfect in laser-induced graphene.” https://phys.org/news/2014-12-defects-laser-induced-graphene-html. |
Correas-Serrano, Diego, et al. “Graphene-based Antennas for Terahertz Systems: A Review.” Forum for Electromagnetic Research Methods and Application Technologies. |
Butrym, et al. “Resistive Loading that Does not Reduce Performance of a Pulse Antenna.” Electromagnetic Phenomena, vol. 7, No. 1 (18), 20017, 164-169. |
Number | Date | Country | |
---|---|---|---|
20190214715 A1 | Jul 2019 | US |