Field of the Invention
The present invention relates to a laser ionization therapy assembly. More particularly, the assembly supports a laser module that is used to conduct laser ionization therapy. The assembly includes a support mechanism that is coupled to the laser module and attached to a reservoir, such that the laser module is hands free during a laser ionization therapy session. The support mechanism is configured such that laser light emitted from the laser module is directed to a predetermined location within the reservoir.
Discussion of the Related Art
The benefits of using cold laser therapy in the area of chiropractic, osteopathic, naturopathic, and acupuncture therapy in reducing pain and swelling, promoting healing processes, treating old injuries, etc., are well-known. Cold laser therapy uses a low intensity beam of laser light that is capable of stimulating natural healing processes at a cellular level. This has proven effective in the area of chiropractic therapy in reducing pain and swelling, promoting healing processes, in treating old injuries, etc.
U.S. Pat. No. 6,913,616 and U.S. Pat. No. 7,458,983, which are incorporated by reference herein, discuss electronic systems for laser ionization therapy for detoxification. The systems discussed in those patents use a cold laser unit that requires either a handheld laser probe for directing laser light to a particular area of a user's body, or physically arranging the cold laser unit so that it is positioned to direct laser light to a particular area of the user's body. In the case of the handheld laser probe configuration, an operator other than the user being treated is required to hold the laser probe. In the case of physically positioning the cold laser unit so that the laser light will be directed to a particular area of the user's body, this procedure is time consuming and inexact, and often takes several trials and errors before the cold laser unit is properly positioned.
Accordingly, it is an object of the invention to provide a laser ionization therapy assembly and method capable of improving a user's health, such as by efficiently removing toxins from a user's body, whereby a laser module is attached to a reservoir at a predetermined location of the reservoir and configured to emit light though the reservoir to irradiate a predetermined area of the user's body.
The invention is directed to a laser ionization therapy system and method that substantially obviates one or more problems due to limitations and disadvantages of the related art.
To achieve these advantages, the laser ionization therapy system may include a laser module attached to a reservoir at a predetermined location of the reservoir, wherein the laser module includes laser diodes positioned therein such that laser light is emitted through the reservoir to a predetermined area inside the reservoir or predetermined meridian point of a user's body.
In one aspect of the invention, a laser module may be coupled to a support mechanism and attached to a peripheral wall of the reservoir. The support mechanism is configured such that the laser module can be positioned either substantially parallel with the peripheral wall of the reservoir, or at an angle relative to the peripheral wall so that light can be directed at a particular meridian point of the user's body.
According to another aspect of the invention, a laser module may be coupled to a support mechanism that is attached to a peripheral wall of the reservoir, whereby the laser module is configured such that laser diodes inside the laser module are attached at an angle relative to the base of the reservoir, such as, approximately 15 degrees, and emit laser light inside the reservoir at a height of between ½ to 1 inch above the base floor of the reservoir.
According to another aspect of the invention, the laser module accommodates two laser diodes, wherein a first laser diode has a peak power of about 10 mW and a second laser diode has a peak power of about 5 mW.
According to another aspect of the invention, the laser module accommodates two laser diodes, wherein a first laser diode emits laser light that is directed to a left foot of a user and a second laser diode emits laser light that is directed to a right foot of the user, wherein the laser light emitted from the first and second laser diodes is directed to predetermined locations inside the reservoir at heights of about ½ inch to 1-inch above the base.
According to another aspect of the invention, a base floor of the reservoir is formed with at least one protrusion, wherein the protrusion is positioned to provide a pressure point on the sole of a person's foot so that pressure is applied to the Kidney meridian.
According to another embodiment of the invention, the reservoir is configured such that a disposable liner can line an inside surface of the reservoir and be removably attached from the reservoir, wherein the liner can be disposed and a new liner inserted for each person, thereby reducing the spread of bacteria from one user to the next.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the inventions as claimed.
The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this application, illustrate embodiment(s) of the invention and together with the description serve to explain the principle of the invention. In the drawings:
In the following detailed description, reference is made to the accompanying drawing figures which form a part hereof, and which show by way of illustration specific embodiments of the invention. It is to be understood by those of ordinary skill in this technological field that other embodiments may be utilized, and structural, electrical, as well as procedural changes may be made without departing from the scope of the present invention. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or similar parts.
The ion generating unit 200 comprises a power supply 210 and an electrode array 220 coupled to the power supply 210. The electrode array 220 may be comprised of replaceable electrodes mounted within a housing 224. The electrodes may comprise an anode 226 and a cathode 228. The power supply 210 is capable of delivering a low voltage direct current to the electrode array 220 and may further comprise a display screen 230 capable of displaying the voltage and amperage of a treatment power applied from the power supply 210 to the electrode array 220. The display screen 230 may be capable of displaying other information, such as an amount of time elapsed during treatment of a user. The power supply 210 may be programmed with multiple ionization treatment options, some of which may be pre-programmed and others may be custom designed for each user.
According to an embodiment of the invention, the electrode array 220 may be placed in the reservoir 400 and immersed in water contained therein. The reservoir 400 may be made of a transparent material, electrically insulative, and capable of holding water (e.g., plastic, glass, etc.). The reservoir 400 is not limited to any particular size, shape, or material.
In one aspect of the invention, the water may be provided as normal tap water. In another aspect of the invention, a predetermined amount (e.g., a half cup) mineral salts and/or a predetermined amount (e.g., about 1 psp) of liquid materials may be mixed with the water 412 to enhance the electrical conductivity characteristics of the water 412. In one aspect of the invention, the liquid materials may include magnesium with 50 types of trace materials.
In one aspect of the invention, a first ionization treatment option may result in the generation of only positive ions within a predetermined treatment time (e.g., about 30 minutes). A second ionization treatment option may result in the generation of only negative ions within the predetermined treatment time. A third ionization treatment option may result in the generation of a mix of positive and negative ions (e.g., 70% are positive and 30% are negative). A fourth ionization treatment option may result in the generation of positive ions for about 15 minutes, then negative ions for about 10 minutes, and finally positive ions for about 5 minutes. A fifth ionization treatment option may result in the generation of negative ions for about 15 minutes, then positive ions for about 10 minutes, and finally negative ions for about 5 minutes.
The laser module 300 shown is generally T-shaped. In this manner, the substantially vertical portion 350 of the housing 310 may function as a handle for the laser module 300, and the substantially horizontal portion 360 may house laser diodes 330, 335, and related components.
The housing 310 shown is a two piece structure comprising a front piece 312 and a rear piece 314. The pieces 312 and 314 may be attached together by screws 322(a), 322 (b), 322(c), and 322(d). For example, the rear piece 312 may include through holes 320(a), 320(b), 320(c), and 320(d) formed in a rear surface 316(b) thereof, and the front piece 314 may include corresponding inserts 324(a), 324(b), 324(c), and 324(d) formed at an inner wall 380 thereof. Accordingly, the screws 322(a), 322 (b), 322(c), and 322(d) may be inserted through the holes 320(a), 320(b), 320(c), and 320(d) and into the inserts 324(a), 324(b), 324(c), and 324(d) thereby securing the front piece 312 and rear piece 314 together. It is understood that the pieces 312 and 314 may be affixed to each other by any known attachment method, including, for example, by a snap fit configuration, adhesive, etc.
The housing 310 includes at least one opening 318(a), 318(b), or window, formed on a front surface 316(a) of the laser module 300 through which laser light must emit. The embodiment shown in
The laser module 300 may further include a lens material 319(a), 319(b) provided at each opening 318(a), 318(b), respectively. The lens material 319(a), 319(b) focuses the laser light emitted from laser diodes 330, 335. In particular, the lens material 319(a), 319(b) respectively collimate laser light emitted from laser diodes 330, 335, so that the laser light is aligned in a specific direction.
The laser module 300 may include laser diode support structures 382(a), 382(b) that are attached or formed with an inner wall 380 of the housing 310. The laser diode support structures 382(a), 382(b) are configured to position and receive the laser diodes 330 and 335. The laser diode support structures 382(a), 382(b) may be angled such that laser light from the laser diodes 330 and 335 is directed through the openings 318(a), 318(b) of the laser module to a predetermined location. The laser diodes 330 and 335 may be secured or attached to the laser diode support structures 382(a), 382(b) by an adhesive, such as two way tape, or mechanical means. It is understood that the laser diodes 330 and 335 may be attached to the housing by other means.
In one embodiment of the invention, the laser module 300 generates light at a wavelength of between about 630 and 640 nm and at a power of about 10 mW or less, preferably about 5 mW or less. In another embodiment of the invention, light generated by the laser module 300 has a wavelength of substantially about 635 nm. In one aspect of the invention, the generated light may be directed toward a person's body as a substantially continuous beam of light or a pulsed beam having a predetermined frequency. In one aspect of the invention, pulsing of the light toward the user may alleviate pain and increase circulation within the body, stimulate glands, etc. In another aspect of the invention, the frequency at which light directed toward the user is pulsed may be determined based on results of a second muscle testing procedure and the location of the user's body where the light is to be directed.
The laser module 300 may include an on/off switch 370. The on/off switch 370 is preferably located at the top surface 316(e) of the housing 310, but may be located anywhere on the laser module 300. The on/off switch 370 may be a toggle switch, such as Cherry KRE2ANA1BBD. However, the invention is not limited to any particular type of switch for the actuation of electrical supply to the laser module 300. For example, a rocker type switch, toggle switch, push button switch, or the like may be used.
The laser module 300 may be powered by AC power such that it does not operate on battery power. For example, the laser module 300 may include a power plug electrical connector 340 for removably connecting the laser module 300 to an AC power supply.
As shown, the support mechanism 500 includes a front surface 510(a) and a rear surface 510(b). The front surface 510(a) is the surface that is proximate a peripheral sidewall of the reservoir 400 when the support mechanism is attached to the reservoir. The rear surface 510(b) is the surface of the support mechanism 500 that is proximate to the housing 310 when the laser module is attached to the support mechanism 500. The support mechanism 500 includes a top end 512 and a bottom end 514. The top and bottom ends 512 and 514 are located at opposite ends of the support mechanism 500. The support mechanism 500 may extend along a major axis of the laser module 300 (see, e.g.,
Preferably, the support mechanism 500 is shaped such that planar portion 516 of the support mechanism 500 is substantially parallel with the housing 310 and does not extend outside of the profile of the housing 310. For example, the planar portion 516 has a flare shape and generally follows the shape of the laser module 300.
As shown, the bottom end 514 of the support mechanism 500 may be configured to hold a bottom portion 324 of the laser module 300. In particular, the bottom end 514 may form a receiving portion to receive and secure the bottom portion 324 of the laser module 300. The bottom end 514 may comprise a substantially U-shaped flange having a bottom surface 514(a) and a coupling member 514(b), such as a hook.
The aforementioned top end 512 of the support mechanism 500 may be configured to hold an upper portion 326 of the laser module 300. The upper portion 326 is not limited to any particular area of the laser module, but instead refers to a portion of the laser module 300 that is above the bottom portion 324 with respect to the major axis of the laser module 300. As shown, the upper portion 326 may include a first projection 512(a) and a second projection 512(b). The first projection 512(a) may extend from a left side of the support mechanism 500, and the second projection 512(b) may extend from a right side of the support mechanism 500. The first and second projections 512(a) and 512(b) each include an outwardly extending coupling member 518(a) and 518(b), respectively. The coupling members 518(a) and 518(b) may be flanges.
The support mechanism 500 may include window or opening 520. The opening 520 is dimensioned to receive laser light emitted from the laser module 300. More particularly, the opening 520 is dimensioned and positioned to receive light emitted through openings 318(a), 318(b) of the laser module 300 when the laser module 300 is coupled with the support mechanism 500. For example, the opening 520 may be a single, substantially oval shaped opening that is aligned and dimensioned so that laser light emitted from the laser module 300 can be transmitted there through and directed to a predetermined location, e.g., approximately ½ inch to 1 above an interior base of the reservoir 400 so that the laser light will contact a person's large toe. The opening 520 is not limited to any particular size or shape.
The bottom surface 514(a) of the support mechanism 500 extends below the laser module 300. The coupling member 514(b) of the support mechanism 500 is inserted in and detachably coupled with a coupling groove 325(c) formed at the bottom surface 316(f) of the laser module 300 (see, e.g.,
The reservoir 400 may be made of a material or have a configuration that allows laser light to pass through. The reservoir 400 may be made entirely or partly of a transparent material, such as, for example a clear plastic material. Additionally, the reservoir 400 may include a transparent portion adjacent to the opening 520 in the support mechanism 500 when the support mechanism is attached to the reservoir 400.
The reservoir 400 may further include a top rim 430. The top rim 430 may extend outward from an exterior surface of the peripheral wall 410. The top rim 430 may include a cut out portion 432. The cut out portion 432 may be positioned to receive a portion of the laser module 300. The cut out portion 432 may also function as an alignment means for the bracket structure 500. The on/off switch 370 of the laser module 300 may be positioned at least partially within the cut out portion 420. Additionally, the top rim 430 may extend outward from the peripheral wall 410 at least as far as the front surface 316(a) of the laser module 300.
As shown in
Preferably, the bumps 440 are positioned to press against the Kidney 1 acupuncture point on the bottom of a person's foot. Kidney 1 is the lowest acupuncture point on the entire body and an entry point into the kidney meridian. As shown in
The liner 600 may be placed inside the reservoir 400 and then filled with a liquid material for use by a single person. After such use, the liner and its contents may be discarded and a new liner 600 placed in the reservoir 400 for a subsequent user. Thus, any risk of cross contamination is substantially reduced.
The support mechanism 500 may be attached to the reservoir 400 by any suitable means, e.g., adhesive material, tape, glue, Velcro, mechanical clips, etc. According to one aspect of the invention, a double sided bonding tape is used to attach the back surface 510(b) of the support mechanism 500 to the peripheral wall 410. According to another embodiment of the invention, the support mechanism 500 may be clasped to a top rim 430 of the reservoir 400. The support mechanism 500 may also be permanently attached to the reservoir. Alternatively, the support mechanism 500 may be integrally formed as part of the reservoir 400 such that the reservoir 400 and support mechanism 500 comprise a unitary structure.
Accordingly, when the support mechanism 500 is attached to the reservoir 400 and coupled to the laser module 300, the laser diodes 330 and 335 are positioned so that the laser light can be emitted to a predetermined location within the reservoir 400. For example, the left laser diode 330 may be configured to emit laser light towards a large toe on a person's left foot within the reservoir 400, and the right laser diode 335 may be configured to emit laser light toward a large toe on the person's right foot within the reservoir 400.
For example,
It will be apparent to those skilled in the art that various modifications and variation can be made in the present invention without departing from the spirit or scope of the invention. Thus, it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
20080114418 | Myeong | May 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20170113062 A1 | Apr 2017 | US |