LASER IRRADIATION OF METAL NANOPARTICLE/POLYMER COMPOSITE MATERIALS FOR CHEMICAL AND PHYSICAL TRANSFORMATIONS

Information

  • Patent Application
  • 20080004364
  • Publication Number
    20080004364
  • Date Filed
    June 28, 2007
    17 years ago
  • Date Published
    January 03, 2008
    17 years ago
Abstract
A metal nanoparticle supported on or dispersed in a polymer is irradiated with photons from a laser source to address the nanoparticles. The polymer is transmissive to the photons and addressed nanoparticles transform the energy of the photon to heat which is transferred to a material in the vicinity of the nanoparticle. The locally heated material undergoes a physical or chemical transformation upon heating. The transformed material can be a material in the proximity of the metal nanoparticle supported polymer or metal nanoparticle/polymer composite. In this manner thermally induced physical or chemical transformations can be carried out in very small volumes of material without significant heating to the bulk of the material.
Description

BRIEF DESCRIPTION OF THE DRAWINGS

A fuller understanding of the present invention and the features and benefits thereof will be obtained upon review of the following detailed description together with the accompanying drawing, in which:



FIG. 1 shows where the components of a system according to one exemplary embodiment of the invention for the convert of energy of the photons provided by a laser beam from a laser source is absorbed by a metal nanoparticle supported on a polymeric bead and converted into heat.





DETAILED DESCRIPTION

A method of laser processing comprises the steps of immobilizing a plurality of metal nanoparticles on a polymer support to form a nanoparticle coated support or physically dispersed metal nanoparticles in a polymer to form a nanoparticle/polymer composite. The polymer is optically transmissive at a given operating wavelength range. At least one material is placed in proximity to the coated support or the composite. The coated support or composite is irradiated with photons in the operating wavelength range by a laser source. The metal nanoparticles preferentially absorb the photons from the laser and transfer heat to the material in the vicinity of the nanoparticle. The localized heat is absorbed by the material promoting a chemical or physical transformation of that material. The coated support or composite can then be removed from the chemically or physically transformed material. Accordingly, the transformed material can be separated from the metal nanoparticles or the polymer support. The heat generated by laser irradiation of the nanoparticles is transferred to the surrounding material, causing physical (such as deformation, melting, crystallizing) or chemical (such as decomposition, isomerization, unimolecular or bimolecular reactions) transformations. These transformations can result in an optical property changes (such as refractive index change) of a contacting material to create useful micropatterns or microstructures on or within the material.



FIG. 1 shows an exemplary system 100 for the conversion of laser light energy to heat in a localized volume according to one embodiment of the invention. A laser source 104 provides energy in the form of photons in a laser beam 103 that is directed to metal nanoparticles 102 that are supported on a polymeric resin 101. The resin of system 100 can be placed in a reaction vessel with a material for a chemical transformation. In one embodiment, upon exposure of the material to the heat that is generated when metal nanoparticles absorb photons from the laser beam, the material undergoes a thermally promoted reaction. For example a vinyl monomer with a thermal initiator dispersed or dissolved in a solvent can undergo initiation in the vicinity of the laser beam addressed metal nanoparticle. The support can have any geometry. For example, in one embodiment, the support can be a polymeric membrane, or other polymeric material having a flat surface, where the material to be heated can be a flat material in contact with the flat metal nanoparticle supported on the membrane.


The polymer support can be selected from a variety of generally thermoplastic or thermoset polymers depending on the applications. For accelerating chemical reactions, nanoparticles are generally immobilized on thermoset polymers having high decomposition temperatures, generally in excess of 180° C. For other applications, such as direct laser writing of optical devices and microelectronics, the temperature increase of the polymer upon laser irradiation should be high enough to introduce the necessary optical or electrical property change, but low enough to prevent decomposition of the polymer.


A variety of metal nanoparticles may be used with the invention. Although described relative to Au nanoparticles, the invention may be practiced with other metal nanoparticles, including, for example, Ag, Pt, or Cu nanoparticles. Nanoparticles are preferably 1 to 100 nm is size and can be various shapes. The metal nanoparticle/polymer composite can be from 0.01 to 10 weight percent nanoparticles. For the purpose of the invention a metal nanoparticle is any nanoparticle with a surface that is essentially metallic. A thin oxide or nitride surface layer can exist on the metal surface. As such, a metal inorganic composite, such as a gold coated silica particle, is a metal nanoparticle of the invention.


The laser source is selected to provide irradiation at a wavelength in which the metal nanoparticles provide efficient absorption and scattering. For Au nanoparticles, 532 nm radiation provided by a Nd:YAG laser has been found to be efficiently coupled.


The invention can catalyze or accelerate a broadly defined group of chemical reactions. Chemical reactions can include any decomposition, isomerization, or other unimolecular or bimolecular reaction. Multiple reactions and repetitive reactions, such as polymerizations, can be carried out using systems according to the invention. The nanoparticle coated supports in the format of beads or films are generally suspended in the chemical reaction medium. Laser irradiation of the nanoparticle coated supports will generate heat around the addressed nanoparticle of the coated supports. When the heat is transferred to the reaction medium, the chemical reaction initiates. The region of heating is confined to a localized volume. Using the inventive system, chemical reactions that generally require significant heat to trigger the reaction (e.g. 200 to 400° C.) can be conducted where the bulk of the transforming material remains at a low temperature, for example room temperature, using a hand-held low power laser beam. The invention thus eliminates the need for hot plates, heating mantles or other conventional heating methods or equipment used for thermal energy-promoted chemical reactions. It also eliminates the need of water condensers or other cooling devices used in a typical chemical reaction apparatus to prevent the volatilization of the reaction solvents. This technique allows many chemical reactions to be conducted more conveniently and safely.


As noted in the Background, regarding chemical reactions, one cannot generally run a chemical reaction aided by a light source and metal nanoparticles in solution because of at least one of two unsolved issues. One unsolved issue is how to protect the nanoparticles from degradation during chemical reaction initiation. Another unsolved issue is how to separate the nanoparticles from the reaction mixture or product after the chemical reaction is completed. The present invention solves both of these previously unsolved issues.


As noted above, in one embodiment of the invention, the nanoparticles are immobilized on a thermally stable polymer support, such as polymer beads or polymer membranes. The nanoparticles can be non-covalently or covalently immobilized on to the polymer support. The nanoparticles can also be physically dispersed in a polymer to form a nanoparticle composite. The polymer is substantially transparent to the laser light and is selected to be stable throughout the temperature range required for the promoted reaction where the heat generated by the laser at the nanoparticles is transferred to the reaction medium in its proximity. By dissipating the heat from the nanoparticle into the surrounding environment, the nanoparticles and their support resist decomposition.


In a coated support embodiment, using, for example polymer beads or membranes to immobilize the nanoparticles, the supported nanoparticles can be easily removed from the reaction mixture by filtration. For soluble products the simple filtration is sufficient to separate the supported nanoparticles, for example the nanoparticle/polymer beads or polymer membrane, from the reaction product. For products that solidify during the reaction, a solvent that dissolves the product, but not the polymer of the support or composite, can be added before filtration. In some cases the product can be distilled from the polymer supported nanoparticles.


EXAMPLES

It should be understood that the Examples described below are provided for illustrative purposes only and do not in any way define the scope of the invention.


Laser Irradiation of Metal Nano Articles for Chemical Reactions


In one example, gold nanoparticles with diameter of 10 nm were immobilized on a cross-linked anionic exchange resin, AMBERLITE IRA-67™, by non-covalent bonds. The anionic exchange resin beads were a few hundred microns in diameter. The nanoparticle-loaded resin beads were suspended in a toluene solution of styrene monomer premixed with the thermal initiator 2,2′-azobis(2-methylpropionitrile (AIBN). The beads were irradiated with a 532 nm continuous wave Nd:YAG laser. The styrene polymerized into polystyrene after a few minutes of laser irradiation. The reaction was conducted in open air and no condenser was used in the reaction apparatus. The overall temperature of the reaction mixture remained at around room temperature. After the reaction, the anionic exchange resin beads were filtered from the polymer solution. Repeating the experiment without the nanoparticle-loaded resin did not result in polymerization. Neat styrene monomer also polymerized in the presence of the irradiated nanoparticle supported resin, but did not polymerize in the absence of the resin.


Laser-Assisted Controlled Heating of Solder Material


In a third example, a prophetic example, the photon-thermal energy conversion of nanoparticles is also used for controlled heating of solder materials. A nanoparticle/polymer composite film, having nanoparticles blended with the polymer, is applied on the surface of commercial solder wires or pastes that is lead-contained or lead-free. The polymer is a thermoset polymer that does not decompose at temperatures where the solder melts. The composite in contact with the solder can be irradiated by a laser beam. The heat generated from the laser excited nanoparticle/polymer composite transfers to the solder, causing localized heating and melting of the solder. Because the spot size of the laser beam is around a few hundreds of microns or smaller, very small amounts of solder can be applied to an electronic device in a controlled fashion. In other embodiments, nanoparticles can be immobilized by other transparent matrix materials such as a thermal conductive glass and used for the exemplary purposes as disclosed herein.


This invention can be embodied in other forms without departing from the spirit or essential attributes thereof and, accordingly, reference should be had to the following claims rather than the foregoing specification as indicating the scope of the invention.

Claims
  • 1. A method of laser addressed localized heating to promote chemical or physical transformations of a material, comprising the steps of: immobilizing a plurality of metal nanoparticles on a polymer support to form a nanoparticle coated support or physically blending said metal nanoparticles with a polymer to form a nanoparticle/polymer composite, said polymer being optically transmissive in a given operating wavelength range;placing said material in proximity to said coated support or said composite; andirradiating said coated support or said composite with photons in said operating range from a laser source, wherein said metal nanoparticles addressed by said laser preferentially absorb said photons and transfer heat to said material in proximity to said metal nanoparticles, wherein a thermally induced physical or chemical transformation occurs to said material.
  • 2. The method of claim 1, wherein said metal nanoparticle comprises gold.
  • 3. The method of claim 1, wherein said polymer support comprises polymer beads or a polymer membrane.
  • 4. The method of claim 1, wherein said polymer comprises a thermoplastic or a thermoset polymer.
  • 5. The method of claim 1, further comprising the step of separating said support or said composite from said transformed material.
  • 6. The method of claim 5, wherein said separating step comprises filtering said support or said composite from said chemically transformed material existing as or dissolved within a liquid.
  • 7. The method of claim 6, wherein said material comprises at least one soluble chemical reagent and said chemically transformed material comprises one or more soluble products.
  • 8. The method of claim 1, wherein said material comprises a solder and said physical transformation comprises melting of said solder.
  • 9. A photon energy to heat conversion based system for localized heating, comprising: at least one laser;a plurality of metal nanoparticles; anda polymer wherein said metal nanoparticles are supported upon or dispersed within said polymer and said polymer being optically transmissive to said photon energy, wherein said laser is aligned to address metal nanoparticles to generate heat in the vicinity of said metal nanoparticles.
  • 10. The system of claim 9, wherein said nanoparticles are gold nanoparticles.
  • 12. The system of claim 9, wherein said polymer comprises a resin in the form of a bead or a membrane.
  • 13. The system of claim 9, wherein said polymer comprises a thermoplastic or a thermoset polymer wherein said nanoparticles are dispersed within said polymer.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application incorporates by reference and claims priority to U.S. Provisional Patent Application Ser. No. 60/817,519 filed Jun. 29, 2006, entitled “Laser Irradiation of Metal Nonoparticle/Polymer Composite Materials for Chemical Reactions and Microprocessing Applications Therefrom.”

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

The U.S. Government may have certain rights to the invention based on National Science Foundation Career Award DMR 0239424 and 0552295, and NIRT award DMI 0506531.

Provisional Applications (1)
Number Date Country
60817519 Jun 2006 US