1. Field of the Invention
This invention is related to a method and apparatus for drilling wells using a drill head assembly employing laser energy assemblies as cutters. More particularly, this invention relates to a method and apparatus for drilling wells which produces a well or borehole liner in situ as the drilling operation progresses, thereby enabling the elimination of drill casing liners employed in conventional drilling operations.
2. Description of Related Art
Traditional well drilling requires the use of drill casing liners when retrieving fluids such as oil to prevent the mixture of grains and particles with the fluid. These liners present an additional financial cost to the well completion operation, in addition to the time required to put them in place. Another problem associated with traditional drilling occurs when water is encountered in the formations being drilled. Keeping this water out of the well and preventing it from mixing with the oil can be a significant problem.
The use of lasers for the purpose of producing boreholes to enable the extraction of liquid and gaseous fuels from underground formations is well-known in the art. U.S. Pat. No. 4,066,138 to Salisbury et al. teaches an earth boring apparatus mounted above ground that directs an annulus of high powered laser energy downwardly for boring a cylindrical hole by fusing successive annular regions of the stratum to be penetrated at a power level that shatters and self-ejects successive cores from the hole.
U.S. Pat. No. 4,282,940 to Salisbury et al. teaches an apparatus for perforating oil and gas wells. Using this method, a high-powered coherent light beam is axially directed along the borehole to a predetermined depth and deflected along a beam axis. The beam is focused to concentrate at each of a plurality of spaced focal points along the deflected beam. This, in turn, is said to provide a significant increase in the distance that calculated oil or gas bearing formations can be perforated, thereby increasing the yield by more conventional means.
The use of lasers for drilling is also taught by U.S. Pat. No. 4,113,036 to Stout in which underground boreholes are drilled through a formation from a plurality of vertical boreholes by use of laser beams to form a subsurface, three-dimensional bore passage pattern for in situ preparation of fossil fuel deposits to be recovered and a laser beam is projected vertically through an angularly adjusted tubular housing inserted into each borehole from which a reflected drilling beam is laterally directed by an angularly adjusted reflector to form a bore passage; U.S. Pat. No. 3,871,485 to Keenan, Jr. in which a laser beam generator positioned in a wellhole is electrically connected to an inhole voltage generator actuated by drilling mud or other liquid passing through a laser beam housing connected to the drill string and a reflecting crystal for the laser beam is positioned within the laser beam housing to reflect the beam in an elliptical pattern across the formation to be penetrated; U.S. Pat. No. 4,090,572 to Welch in which a laser beam for drilling gas, oil or geothermal wells in geological formations and for “fracing” the pay zones of such wells to increase recovery is projected into a wellbore along a beam guide so as to make available laser energy adequate to melt or vaporize the formation under downhole conditions; and U.S. Pat. No. 5,107,936 to Foppe in which a gap defining the outer profile of a borehole is melted down and the drill core surrounded by this gap is extracted at intervals through the melting zone. None of these references describes ways in which the conventional drill casing liner can be eliminated.
Accordingly, it is one object of this invention to provide a method and apparatus for drilling wells which eliminates the requirement of conventional drilling operations of installing drill casing liners.
It is another object of this invention to provide a method and apparatus for drilling wells which addresses problems associated with water encountered in the formations being drilled.
These and other objects of this invention are addressed by drilling lasers which include, in addition to laser cutting drill heads, a plurality of fluid (gas and/or liquid) purging and cooling nozzles in combination with a laser suitable for melting the rock formations encountered during the drilling operation whereby the molten rock is cooled to produce an in situ borehole liner.
More particularly, the invention disclosed herein is a well drilling apparatus comprising a drill head assembly having a front section and a back section and comprising a transparent drill head enclosure. A laser energy assembly is disposed within the transparent drill head enclosure oriented to direct a laser beam ahead of the front section of the drill head assembly. Mirrors or other reflecting surfaces may be disposed within the transparent drill head enclosure to redirect the laser beam at an angle with respect to the borehole wall produced by the drilling operation. Liner means for creating an in situ well liner are disposed proximate the back section of the drill head assembly. The liner means preferably comprises a plurality of cooling fluid nozzles oriented to direct a cooling fluid outwardly from the drill head assembly. Although typically employed laser drilling of the well, the invention disclosed herein may be used in wells drilled by conventional means to address problems, such as water inflow, that may arise during or subsequent to the drilling operation.
These and other objects and features of this invention will be better understood from the following detailed description taken in conjunction with the drawings wherein:
As previously stated, traditional oil well drilling requires the use of a drill casing liner to prevent sand production with the oil as it is retrieved from the ground by way of the well. In addition to the added financial burden on the drilling and production costs encountered when using these liners, there is also the added time required for installation. I have found that the use of drilling lasers in combination with fluid purging and/or cooling nozzles can accomplish the same objectives as a traditional liner, but in a much simpler and more efficient manner. Any combination of gas and/or liquid fluids that can provide control of the phases of the rock at in situ conditions may be employed for purging and/or cooling. Exemplary of such fluids are air, argon and liquid forms of gases, such as liquid nitrogen. In addition, water is kept out of the well and prevented from mixing with the oil as a result of the sealing over of the formations containing the water during the laser drilling operation, thereby eliminating the threats associated with the water.
When a laser is used to penetrate rock formations through melting of the rock material, there exists a period of time during which the rock remains in a molten form. During this period of time, the rock formation is malleable. By attaching a high pressure fluid nozzle to, or otherwise incorporating a high pressure fluid nozzle into, the laser drilling apparatus, the molten rock can be forced against the walls of the borehole. When exposure to the laser energy ceases and cooling jets are quickly applied, the molten rock reforms. The result is a layer of rock having a plurality of holes, which layer of rock functions in much the same manner as a traditional liner. This virtual liner allows fluids to flow through it, in particular oil, while simultaneously preventing mixture with sands and other particles that can interfere with the oil production process.
Due to the properties of the molten rock under the conditions in the borehole, the pressure and intensity of the fluid jets can be adjusted to enable formation of a plurality of holes in the molten rock. In addition, the direction of the fluid jets can be adjusted to optimize production. Hole sizes are controllable by suitable adjustment of the pressure, intensity and/or direction of the fluid jets, the desired size holes being selected on the basis of the desired objective, e.g. promotion of oil flow into the borehole, promotion of gas flow into the borehole and/or prevention of unconsolidated sand from flowing into the borehole.
In those cases where water is encountered in a formation, rather than using high pressure fluids, fluid jets at lower pressure are used to force the molten rock against the walls of the borehole. When the lower pressure fluid is spread over the entire rock surface, the small holes formed when using high pressure fluid streams do not form. As a result, when the rock reforms, the result is a sealed rock layer with substantially lower permeability, which prevents water from entering the borehole. Because the cooling nozzles can be employed in a gradual manner, the molten rock is able to spread more evenly against the borehole wall, providing a degree of smoothness to the sealed layer.
The critical element of the method and apparatus of this invention is the ability of the laser to convert the rock material to a molten state. Only in this state can the rock be reworked such that, upon reformation, it will act in a specific desired manner. The laser employed in the method and apparatus of this invention must be of sufficient power to melt the rock, but not so powerful as to completely vaporize the rock material. It is essential that the rock material enter a molten, workable state. The precise manner in which the laser energy is presented to the rock is not critical; any suitable means may be employed.
During the drilling operation, in addition to the vaporization of rock material, minerals within the rocks may also undergo gas dissociation, decomposition and/or dehydration. In accordance with one embodiment of this invention, an expandable sealing bellows or other suitable means are provided to ensure that any vapors resulting from the vaporization of rock or other materials, such as those produced by gas dissociation, decomposition and/or dehydration of minerals, generated during the drilling operation do not escape from the borehole. Although vaporization is not intended for most applications, it may, however, occur in some cases and, thus, must be controlled.
The nozzles used for reworking the molten rock material must be provided with sufficient power and working fluid, either from a downhole system or a system disposed on the earth's surface. The nozzles may be attached to a pressurized hose supplying fluids, typically air, from the surface, or a downhole compressor could be built into the drill head assembly. In the latter case, the compressor must be of sufficient power to provide a consistent high pressure air stream drawing from the air within the borehole. Likewise, the cooling jets could be fed cool air through hoses or tubes from the earth's surface or a downhole cooling device could be employed. The creation of molten rock will release large amounts of heat and, if the cooling jets are to use downhole air to induce a rapid phase change in the molten rock, air temperature control must also be employed.
Deployment of the expandable sealing means to prevent the escape of vapors and other materials produced during the drilling operation results in substantial pressurization of air within the borehole surrounding the drill head assembly. In accordance with one embodiment of this invention, the fluid nozzles are connected to one or more conduits having a fluid inlet in fluid communication with the borehole space surrounding the drill head assembly and a fluid outlet in fluid communication with the fluid inlet of the fluid nozzles. In this way, the high pressure air within the borehole may be employed to effect the molding and cooling of the molten rock as discussed herein above.
A drill head assembly of a well drilling apparatus suitable for creating an in situ borehole liner and having a front section for melting of the rock formation and a back section in accordance with various embodiments of this invention is shown in
As shown in
Drill head assembly 10 comprises liner means for creating an in situ borehole liner, which liner means are disposed upstream of laser energy assembly 12. Said liner means comprise a plurality of nozzles 13 disposed upstream of laser energy assembly 12, at least a portion of which nozzles may be employed as high pressure fluid nozzles suitable for forming a plurality of holes 17 within the molten rock formed by laser energy assembly 12. In accordance with one embodiment of this invention, at least a portion of nozzles 13 deliver a low pressure coolant against the molten rock whereby a substantially smooth, substantially water impermeable liner is formed.
Although discussed herein in terms of air being used to mold and cool the molten rock within the borehole, it will be apparent to those skilled in the art that other fluids may also be employed and no intent to limit the scope of suitable fluids should be inferred from the descriptions of exemplary embodiments. As previously stated, nozzles 13 must be provided with sufficient power and air to function. Such power and air may be provided from within the borehole, from above ground or a combination thereof. In accordance with one embodiment of this invention, such power and air are provided by a down-hole system comprising a down-hole air compressor 33. Such a compressor must be able to provide a consistent high pressure air stream while drawing air from within the borehole. Similarly, cooling fluid may be provided by a down-hole cooling device. In accordance with an alternate embodiment, said power and air are provided from systems located on the surface of the ground surrounding the borehole. In this case, air and/or cooling fluid are provided from the surface through one or more hoses or tubes 30 connecting the nozzles 13 to the air/cooling fluid supply. In accordance with yet a further embodiment of this invention, when expandable sealing means 15 are in an expanded state, effectively sealing the region of borehole 11 downstream of expandable sealing means 15 and creating a substantial air pressure within said region, air may be provided through conduit 34 to fluid nozzles 13. In accordance with one preferred embodiment of this invention, power is provided to laser energy assembly 12 through cables 14 which extend from laser energy assembly 12 up to a power supply (not shown) disposed at the surface.
As previously indicated, a critical element of the method and apparatus of this invention is the ability of the laser to convert rock into a molten state. Only in this state can the rock be reworked such that, upon reformation, it will act in a specific desired manner. The laser must be of sufficient power to melt the rock, but not so great as to completely vaporize the rock. It is critical that the rock enter a molten, workable state. It will be apparent to those skilled in the art that the vaporization of at least some of the rock under certain circumstances may be unavoidable. To the extent that vaporization does occur, control of the vaporized rock is important. Accordingly, in accordance with one embodiment of this invention, drill head assembly 10 comprises a laterally expandable seal means proximate the back section of drill head assembly 10. In accordance with one embodiment of this invention, said expandable seal means comprises an expandable bellows 15 disposed upstream of nozzles 13, which expandable bellows are expandable in the direction indicated by arrow 16 to form a seal with the borehole wall 11, thereby ensuring that any rock that may be vaporized during the drilling operation does not escape from the hole.
Experimentation has demonstrated that lasers are capable of melting rock and increasing permeability. The high pressure nozzles 13 produce high pressure jets which can be used to manipulate the molten rock into new forms. As shown in
While in the foregoing specification this invention has been described in relation to certain preferred embodiments, and many details are set forth for purpose of illustration, it will be apparent to those skilled in the art that this invention is susceptible to additional embodiments and that certain of the details described in this specification and in the claims can be varied considerably without departing from the basic principles of this invention.
Number | Name | Date | Kind |
---|---|---|---|
2628424 | McMillan et al. | Feb 1953 | A |
3871485 | Keenan, Jr. | Mar 1975 | A |
4066138 | Salisbury et al. | Jan 1978 | A |
4090572 | Welch | May 1978 | A |
4113036 | Stout | Sep 1978 | A |
4282940 | Salisbury et al. | Aug 1981 | A |
4973205 | Spaulding | Nov 1990 | A |
5031158 | Chamuel | Jul 1991 | A |
5107936 | Foppe | Apr 1992 | A |
6454030 | Findley et al. | Sep 2002 | B1 |
Number | Date | Country | |
---|---|---|---|
20040195003 A1 | Oct 2004 | US |