This application relates to materials technology in general and more specifically to laser processing of metals such as copper, aluminum and silver, which are light reflective and therefore not readily melted by certain laser frequencies.
The use of energy beams as a heat source for welding is well known. However, the effectiveness of lasers as a heat source can sometimes be limited by the optical properties of the material. Whereas ferrous metals readily absorb light within a wide range of wavelengths amenable to current laser welding technologies, more reflective metals such as copper, aluminum and silver often require the use of special lasers to enable laser processing.
This problem is illustrated in
As shown in the plot for silver 2, this metal only absorbs a small fraction of light emitted by a “green” Nd:YAG laser 12 (503 nm). This is a very serious limitation on the use of laser heating to process silver, because “green” Nd:YAG lasers can only deliver a fraction of the power available using higher-frequency lasers such as CO lasers 16 and CO2 lasers 18. The plot for copper 4 shows that this metal readily absorbs light emitted by a “green” Nd:YAG laser 12 (503 nm), but only poorly absorbs 1.06 μm Nd:YAG lasers 14 and almost totally reflects light from the more powerful CO and CO2 lasers 16,18. The plot for aluminum 6 shows that this metal only absorbs modest amounts of light from 503 nm “green” Nd:YAG and 1.06 μm Nd:YAG lasers.
Copper is an especially challenging metal to process using laser heating for a number of reasons. First, as explained above copper only absorbs photons from “green” Nd:YAG lasers 12, which are much weaker than higher-frequency sources such as the CO and CO2 lasers 16,18. This severely limits the surface area and thickness of copper materials that can be processed using laser heating. A second related problem with copper is that this metal exhibits a high thermal conductivity such that laser processing requires high power levels that are difficult (and sometimes impossible) to attain using “green” Nd:YAG lasers 12. Another problem is that copper in a melted state has a very low viscosity as compared to other metals. Consequently, copper materials processed using laser melting and solidification often contain mechanical imperfections due to turbulence and irregularities within the intermediate weld pool.
Meanwhile, the industrial demand for complex components made of reflective metals such a copper, aluminum and silver continues to rise as these materials are often integral components within electrical and mechanical devices of increasingly smaller size.
The invention is explained in the following description in view of the drawings that show:
The present Inventors have recognized that a need exists to discover methods and materials allowing reflective metals to be laser processed using a wider variety of laser sources than was previously possible. Ideal methods and materials would enable metals such as copper, aluminum and silver to be heated with laser energy and processed in a highly controllable manner using both lower power lasers (e.g., 503 nm and 1.06 μm Nd:YAG lasers) and higher power lasers (e.g., 1.06 μm ytterbium fiber, 5.4 μm CO and 10.6 μm CO2 lasers), to form metal products containing fewer chemical and mechanical imperfections. Such methods and materials would preferentially allow laser processing of reflective metals under atmospheric conditions enabling both small scale and large scale manufacturing and repair of metallic components having intricate structural features.
The term “reflective metals” is used herein in a general sense to describe metals (e.g., copper, aluminum and silver) which exhibit low absorption of photons (e.g., having an absorptivity of less than 10% at the frequency of the photons) emitted from high-power laser sources emitting energy at 1 μm or more, such as 1.06 μm ytterbium fiber, 5.4 μm CO lasers and 10.6 μm CO2 lasers. The term “metal” is used herein in a general sense to describe pure metals as well as alloys of metals.
The laser beam 6 may be a continuous laser beam, a pulsed laser beam, one or more circular laser beams, a scanned laser beam (scanned one, two or three dimensionally), an integrated laser beam or a diode laser beam. The laser beam 6 may be a single laser beam or multiple laser beams. Suitable laser beams 6 include lower power lasers (e.g., 503 nm and 1.06 μm Nd:YAG lasers) and higher power lasers (e.g., 1.06 μm ytterbium fiber, 5.4 μm CO and 10.6 μm CO2 lasers).
The flux layer 4 and the slag layer 12 provide a number of beneficial functions that enable the process of
First, the flux layer 4 and the slag layer 12 greatly increase the proportion of laser energy delivered to the reflective metal substrate 2 as heat. This increase in heat absorption may occur due to the composition and/or form of the flux layer 4. In terms of composition the flux layer 4 may be formulated to contain at least one compound capable of absorbing laser energy at the wavelength of the laser beam 6. Increasing the proportion of the at least one laser absorptive compound causes a corresponding increase in the amount of laser energy (as heat) applied to the flux layer 4—leading to a corresponding increase in heat applied to the reflective metal substrate 2 (presumably via conduction heat transfer). Upon melting of the flux to form a molten slag blanket over the underlying molten metal substrate, advantageous absorptivity of the molten slag replaces inferior absorptivity of the relatively reflective substrate. Furthermore, in some cases the laser absorptive compound could also be exothermic such that its decomposition upon laser irradiation releases additional heat.
The form of the flux composition can also effect laser absorption by altering its thickness and/or particle size. As the thickness of the layer of the flux layer 4 increases, the absorption of laser heating generally increases. Increasing the thickness of the flux layer 4 also increases the thickness of a resulting molten slag blanket, which further enhances absorption of the laser beam 6. The thickness of the flux layer 4 in methods of the present disclosure typically ranges from about 1 mm to about 15 mm. In some cases the thickness ranges from about 3 mm to about 12 mm, while in other instances the thickness ranges from about 5 mm to about 10 mm.
Reducing the average particle size of the flux composition in the flux layer 4 also causes an increase in laser energy absorption (presumably through increased photon scattering within the bed of fine particles and increased photon absorption via interaction with increased total particulate surface area). In terms of the particle size, whereas commercial fluxes generally range in average particle size from about 0.5 mm to about 2 mm (500 to 2000 microns) in diameter (or approximate dimension if not rounded), flux composition in some embodiments of the present disclosure range in average particle size from about 0.005 mm to about 0.10 mm (5 to 100 microns) in diameter. In some cases the average particle size ranges from about 0.01 mm to about 5 mm, or from about 0.05 mm to about 2 mm. In other cases the average particle size ranges from about 0.1 mm to about 1 mm in diameter, or from about 0.2 mm to about 0.6 mm in diameter.
Second, the flux layer 4, gaseous products of laser interaction with the flux layer 4, and the slag layer 12 all function to shield both the region of the melt pool 8 and the solidified (but still hot) metal layer 10 from the atmosphere both at the surface of the melt pool and in the region downstream of the laser beam 6. The slag floats to the surface to separate the molten or hot metal from the atmosphere, and the flux composition may be formulated to produce at least one shielding gas as described below—thereby avoiding or minimizing the use of inert gases, sealed chambers (e.g., vacuum chambers) and other specialized devices for excluding air. In some embodiments requiring deeper penetration and higher levels of heating, the flux composition is formulated not to contain a shielding agent. This reduces or prevents reaction of reflective metals such as aluminum with potentially-reactive shielding gases like carbon monoxide (CO) and carbon dioxide (CO2). Such embodiments may employ a thicker flux layer 4 such that the resulting thicker slag layer 12 more effectively excludes atmospheric reactants like oxygen and nitrogen.
Shielding agents include metal carbonates such as calcium carbonate (CaCO3), aluminum carbonate (Al2(CO3)3), dawsonite (NaAl(CO3)(OH)2), dolomite (CaMg(CO3)2), magnesium carbonate (MgCO3), manganese carbonate (MnCO3), cobalt carbonate (CoCO3), nickel carbonate (NiCO3), lanthanum carbonate (La2(CO3)3) and other agents known to form shielding and/or reducing gases (e.g., CO, CO2, H2).
Third, the molten slag blanket and the slag layer 12 act as an insulation layer that allows the resulting metal layer 10 to cool slowly and evenly, thereby reducing residual stresses that can contribute to post weld cracking, and reheat or strain age cracking. Such slag blanketing over and adjacent to the deposited metal layer 10 can further enhance heat conduction towards the reflective metal substrate 2 which in some embodiments can promote directional solidification to form elongated (uniaxial) grains in the resulting metal layer 10 (see, e.g., the columnar grains 60 in
Fourth, the molten slag blanket and the slag layer 12 help to shape and support the melt pool 8 to keep it close to a desired height/width ratio (e.g., a 1/3 height/width ratio). This shape control and support further reduces solidification stresses that could otherwise be imparted to the resulting metal layer 10.
Fifth, the flux layer 4 and the slag layer 12 provide a cleansing effect for removing trace impurities that contribute to inferior properties. Such cleaning may include deoxidation of the melt pool 8. Because the flux layer 4 is in intimate contact with the reflective metal substrate 2, and with added filler material in solid or powder form (if used), it is especially effective in accomplishing this function.
Scavenging agents include metal oxides and fluorides such as calcium oxide (CaO), calcium fluoride (CaF2), iron oxide (FeO), magnesium oxide (MgO), manganese oxides (MnO, MnO2), niobium oxides (NbO, NbO2, Nb2O5), titanium oxide (TiO2), zirconium oxide (ZrO2), and other agents known to react with detrimental elements such as sulfur and phosphorous and elements known to produce low melting point eutectics to form low-density byproducts expected to “float” into a resulting slag layer.
Additionally, the flux composition of the flux layer 4 may be formulated to compensate for loss of volatilized or reacted elements during processing or to actively contribute elements to the deposit that are not otherwise provided by the reflective metal substrate 2.
Vectoring agents include titanium, zirconium, boron and aluminum containing compounds and materials such as titanium alloys (Ti), titanium oxide (TiO2), titanite (CaTiSiO5), aluminum alloys (Al), aluminum carbonate (Al2(CO3)3), dawsonite (NaAl(CO3)(OH)2), borate minerals (e.g., kernite, borax, ulexite, colemanite), nickel titanium alloys (e.g., Nitinol), niobium oxides (NbO, NbO2, Nb2O5) and other metal-containing compounds and materials used to supplement molten alloys with elements. Certain oxometallates as described below can also be useful as vectoring agents.
In some embodiments, additional elements and/or particles may also be provided by adding them directly into the melt pool 8. For example, another embodiment illustrated in
Alternatively, or in addition, in some embodiments supplemental elements may added to the melt pool 8 using an alloy feed material 14 as shown in
Alternatively, the filler material 32 and/or the flux layer 36 may be contained within a preform structure having at least one compartment enabling greater control in the placement and deposition of the contained material. In one such embodiment, for example, the filler material 32 is contained within a lower compartment and the flux layer 36 is contained within an upper compartment, said compartments being attached together to form an integral preform structure. The preform structure may itself be made of constituents contributing to fluxing function. The reflective metal of such a preform may be constrained in a distribution that defines a shape of a layer or slice of a component subject to repair or additive fabrication. The compartments of such preforms are generally constructed of walls and a sealed periphery, in which the walls may be sheets of any type (such as fabric, film, or foil that retains the contents) and the periphery may include a non-metallic, non-melting, laser blocking material (such as graphite or zirconia).
The support material 30 may be in the form of a metallic substrate (e.g., a reflective metal substrate as described above) or may be in the form of a fugitive support material. In cases in which the support material 30 is a metallic substrate, the deposited metal layer 42 is a cladding layer bonded to the surface of the metallic substrate. In cases in which the support material 30 is a fugitive support material, the fugitive support material can be later removed from the deposited metal layer 42 to form an object containing the reflective metal 34. “Fugitive” means removable after formation of the deposited metal layer 42, for example, by direct (physical) removal, by a mechanical process, by draining, by fluid flushing, by chemical leaching and/or by any other process capable of separating the fugitive support material 30 from the deposited metal layer 42. Any high-temperature material or structure capable of providing support and then being removable after the formation of the deposited metal layer 42 may serve as the fugitive support material 30. In some embodiments the fugitive support material 30 may be in the form of a refractory container or bed of at least one material selected from a metal, a metallic powder, a metal oxide powder, a ceramic powder and a powdered flux material.
In some embodiments heat provided by the laser beam 38 can be modulated by employing a plasma suppression gas 50 to partially displace a laser-generated plasma 48 that may be formed over the laser focal point. Depending upon a number of factors including the composition and form (e.g., thickness) of the flux layer 36, as well as the power, speed and wavelength of the laser beam 38, a plasma 48 may be produced due to ionization of at least one component in the flux composition. Such a plasma 48 may reduce the thermal energy delivered to the filler material 32 by absorbing (and thus blocking) the laser beam 38 above the melt pool 40. Use of a plasma suppression gas 50 can increase this absorption of the laser beam 38—thus indirectly increasing heating of the filler material 32—by shifting the position of the plasma 48 such that a larger portion of the laser beam 38 impacts the flux layer 36 and/or melt pool 40, as shown in
Reflective metals produced by methods of the present disclosure may also benefit from an ability to control to a certain extent the grain structure of the deposited metal layer 42 through directional solidification.
Flux compositions of the present disclosure may contain at least one of: (i) a metal oxide; (ii) a metal halide; (iii) a metal oxometallate; and (iv) a metal carbonate.
Suitable metal oxides include compounds such as Li2O, BeO, B2O3, B6O, MgO, Al2O3, SiO2, CaO, Sc2O3, TiO, TiO2, Ti2O3, VO, V2O3, V2O4, V2O5, Cr2O3, CrO3, MnO, MnO2, Mn2O3, Mn3O4, FeO, Fe2O3, Fe3O4, CoO, Co3O4, NiO, Ni2O3, Cu2O, CuO, ZnO, Ga2O3, GeO2, As2O3, Rb2O, SrO, Y2O3, ZrO2, NiO, NiO2, Ni2O5, MoO3, MoO2, RuO2, Rh2O3, RhO2, PdO, Ag2O, CdO, In2O3, SnO, SnO2, Sb2O3, TeO2, TeO3, Cs2O, BaO, HfO2, Ta2O5, WO2, WO3, ReO3, Re2O7, PtO2, Au2O3, La2O3, CeO2, Ce2O3, and mixtures thereof, to name a few.
Suitable metal halides include compounds such as LiF, LiCl, LiBr, LiI, Li2NiBr4, Li2CuCl4, LiAsF6, LiPF6, LiAlCl4, LiGaCl4, Li2PdCl4, NaF, NaCl, NaBr, Na3AlF6, NaSbF6, NaAsF6, NaAuBr4, NaAlCl4, Na2PdCl4, Na2PtCl4, MgF2, MgCl2, MgBr2, AlF3, KCl, KF, KBr, K2RuCl5, K2IrCl6, K2PtCl6, K2PtCl6, K2ReCl6, K3RhCl6, KSbF6, KAsF6, K2NiF6, K2TiF6, K2ZrF6, K2PtI6, KAuBr4, K2PdBr4, K2PdCl4, CaF2, CaF, CaBr2, CaCl2, Cal2, ScBr3, ScCl3, ScF3, ScI3, TiF3, VCl2, VCl3, CrCl3, CrBr3, CrCl2, CrF2, MnCl2, MnBr2, MnF2, MnF3, MnI2, FeBr2, FeBr3, FeCl2, FeCl3, FeI2, CoBr2, CoCl2, CoF3, CoF2, CoI2, NiBr2, NiCl2, NiF2, NiI2, CuBr, CuBr2, CuCl, CuCl2, CuF2, CuI, ZnF2, ZnBr2, ZnCl2, ZnI2, GaBr3, Ga2Cl4, GaCl3, GaF3, GaI3, GaBr2, GeBr2, GeI2, GeI4, RbBr, RbCl, RbF, RbI, SrBr2, SrCl2, SrF2, SrI2, YCl3, YF3, YI3, YBr3, ZrBr4, ZrCl4, ZrI2, YBr, ZrBr4, ZrCl4, ZrF4, ZrI4, NbCl5, NbF5, MoCl3, MoCl5, RuI3, RhCl3, PdBr2, PdCl2, PdI2, AgCl, AgF, AgF2, AgSbF6, AgI, CdBr2, CdCl2, CdI2, InBr, InBr3, InCl, InCl2, InCl3, InF3, InI, InI3, SnBr2, SnCl2, SnI2, SnI4, SnCl3, SbF3, SbI3, CsBr, CsCl, CsF, CsI, BaCl2, BaF2, BaI2, BaCoF4, BaNiF4, HfCl4, HfF4, TaCl5, TaF5, WCl4, WCl6, ReCl3, ReCl5, IrCl3, PtBr2, PtCl2, AuBr3, AuCl, AuCl3, AuI, KAuCl4, LaBr3, LaCl3, LaF3, LaI3, CeBr3, CeCl3, CeF3, CeF4, CeI3, and mixtures thereof, to name a few.
Suitable oxometallates include compounds such as LiIO3, LiBO2, Li2SiO3, LiClO4, Na2B4O7, NaBO3, Na2SiO3, NaVO3, Na2MoO4, Na2SeO4, Na2SeO3, Na2TeO3, K2SiO3, K2CrO4, K2Cr2O7, CaSiO3, BaMnO4, and mixtures thereof, to name a few.
Suitable metal carbonates include compounds such as Li2CO3, Na2CO3, NaHCO3, MgCO3, K2CO3, CaCO3, Cr2(CO3)3, MnCO3, CoCO3, NiCO3, CuCO3, Rb2CO3, SrCO3, Y2(CO3)3, Ag2CO3, CdCO3, In2(CO3)3, Sb2(CO3)3, C2CO3, BaCO3, La2(CO3)3, Ce2(CO3)3, NaAl(CO3) (OH)2, and mixtures thereof, to name a few.
In some embodiments the flux composition contains at least two compounds selected from a metal oxide, a metal halide, an oxometallate and a metal carbonate. In other embodiments the flux composition contains at least three of a metal oxide, a metal halide, an oxometallate and a metal carbonate. In still other embodiments the flux composition may contain a metal oxide, a metal halide, an oxometallate and a metal carbonate.
When the reflective metal is a metal such as copper which forms a low viscosity melt pool it is often beneficial to formulate the flux composition to reduce the fluidity of the melt pool and/or to increase its viscosity. For example, fluidity of the molten slag can be reduced by excluding metal fluorides which can act as fluidity enhancers. Thus, in some embodiments the flux composition is formulated to exclude metal fluorides. In other embodiments the flux composition is formulated to exclude all fluoride-containing compounds.
Viscosity of the molten slag can also be increased by including at least one high melting-point metal oxide which can act as thickening agent. Thus, in some embodiments the flux composition is formulated to include at least one high melting-point metal oxide. Examples of high melting-point metal oxides include metal oxides having a melting point exceeding 2000° C.—such as Sc2O3, Cr2O3, Y2O3, ZrO2, HfO2, La2O3, Ce2O3, Al2O3 and CeO2. In some non-limiting examples the flux composition is formulated to contain at least 7.5 percent by weight of zirconia relative to a total weight of the flux composition.
In one embodiment employing this approach the flux composition comprises:
(A) at least one selected from the group consisting of Sc2O3, Cr2O3, Y2O3, ZrO2, HfO2, La2O3, Ce2O3, Al2O3 and CeO2; and
(B) at least one of:
In other embodiments the flux composition may contain at least one of a metal oxide, a metal halide, an oxometallate, and a metal carbonate—with the proviso that no metal fluoride is included. In other embodiments the flux composition may contain at least one of a metal oxide, a metal halide, an oxometallate, and a metal carbonate—with the proviso that at least one of Sc2O3, Cr2O3, Y2O3, ZrO2, HfO2, La2O3, Ce2O3, Al2O3 and CeO2 is included. For example, in some embodiments the flux composition is required to contain at least 7.5 percent by weight of zirconia, relative to a total weight of the flux composition.
In some embodiments the flux composition may also contain certain organic fluxing agents. Examples of organic compounds exhibiting flux characteristics include high-molecular weight hydrocarbons (e.g., beeswax, paraffin), carbohydrates (e.g., cellulose), natural and synthetic oils (e.g., palm oil), organic reducing agents (e.g., charcoal, coke), carboxylic acids and dicarboxylic acids (e.g., abietic acid, isopimaric acid, neoabietic acid, dehydroabietic acid, rosins), carboxylic acid salts (e.g., rosin salts), carboxylic acid derivatives (e.g., dehydro-abietylamine), amines (e.g., triethanolamine), alcohols (e.g., high polyglycols, glycerols), natural and synthetic resins (e.g., polyol esters of fatty acids), mixtures of such compounds, and other organic compounds.
In some embodiments of the present invention, laser processing of reflective metals as described above may be performed under an atmosphere containing greater than 10 ppm of oxygen. For example, some embodiments may be conducted in air without the use of an externally-applied inert gas to deposit reflective metals largely free of the chemical and mechanical imperfections described above. Other embodiments may be performed under an inert gas atmosphere such as helium, nitrogen or argon, or in the presence of a flowing inert gas.
While various embodiments of the present invention have been shown and described herein, it will be obvious that such embodiments are provided by way of example only. Numerous variations, changes and substitutions may be made without departing from the invention herein. Accordingly, it is intended that the invention be limited only by the spirit and scope of the appended claims.
This application is a continuation-in-part of U.S. application Ser. No. 14/341,888 (attorney docket number 2013P12177US01), which was filed on 28 Jul. 2014 and claims benefit of 29 Jul. 2013 filing date of U.S. provisional application No. 61/859,317 (attorney docket number 2013P12177US), both of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61859317 | Jul 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14341888 | Jul 2014 | US |
Child | 14507916 | US |