The present invention relates to a laser packet marking unit.
The present invention may be used to advantage for marking progressive alphanumeric codes on the outer surface of packets of cigarettes, to which the following description refers purely by way of example.
On some packing lines for manufacturing packets of cigarettes, each packet produced must be marked or punched or printed with a progressive code indicating, for example, the date and/or place of manufacture.
U.S. Pat. No. 6,098,533A1 describes a conveyor for stabilizing packets of cigarettes coming off a packing machine, and on which each packet is fed along a stabilizing path and through a marking station by two opposite, facing conveyor belts, which partly engage respective opposite minor lateral surfaces of the packet; and a laser marking device at the marking station marks a progressive code on a portion of one of the minor lateral surfaces of the packet left exposed by the respective conveyor belt.
Patent Application US2001032932A1 describes the laser marking of a progressive code on the outer surface of packets of cigarettes. The packets of cigarettes are fed forward on a conveyor (preferably a vertical drying drum) fitted with grippers, which engage each packet of cigarettes, leaving exposed a marking area of the packet, on which a laser marking device, connected to the conveyor, marks the progressive code.
Patent Application EP1916188A1 describes a packet marking unit comprising: a marking conveyor for feeding the packets successively along a marking path and having a number of pockets, each for housing a respective packet; an input station; an output station; and a marking station located along the marking conveyor, between the input station and the output station, and having a laser marking device for marking a code on the outer surface of each packet on the marking conveyor.
Depending on the type of packet of cigarettes, the progressive code must be marked on an end wall or a lateral wall of each packet. In the above known laser marking units, switching the marking area from the end to the side of the packet (or vice versa) calls for changing the position of the laser marking device with respect to the conveyor feeding the packets past the device. This is due to the fact that, under current safety regulations (i.e. to reduce harm in the event of accidental contact with the laser beam), the focal area of the laser beam is very small, which means the path of the laser beam from the laser marking device emitter to the surface of the packet must always equal a given, non-adjustable distance. In other words, to switch the marking area from the end to the side of the packet (or vice versa), the position of the laser marking device with respect to the packet conveyor must be changed so that the path of the laser beam from the laser marking device emitter to the surface of the packet is always the same length.
Changing the position of the laser marking device with respect to the packet conveyor is a fairly complicated, time-consuming job, on account of the considerable size of the device and its location in an area crowded with other components, and what is more takes at least two operators, on account of the considerable weight of the device.
It is an object of the present invention to provide a laser packet marking unit designed to eliminate the aforementioned drawbacks, and which at the same time is cheap and easy to produce.
According to the present invention, there is provided a laser packet marking unit as claimed in the attached Claims.
A non-limiting embodiment of the present invention will be described by way of example with reference to the accompanying drawings, in which:
Number 1 in
Marking unit 1 comprises a frame 5 resting on feet on the floor and supporting a horizontal marking conveyor 6, which feeds packets 2 of cigarettes along a marking path P extending between an input station 7 at the output end of input conveyor 3, and an output station 8 at the input end of output conveyor 4.
As shown in
A number of pockets 12 are defined along belt 9, each for housing a respective packet 2 of cigarettes. More specifically, each pocket 12 receives a respective packet 2 of cigarettes from input conveyor 3 at input station 7, and releases respective packet 2 of cigarettes to output conveyor 4 at output station 8. Belt 9 supports a number of grippers 13, each perpendicular to belt 9 and defining a wall of a respective pocket 12. In other words, each pocket 12 is defined and bounded by two consecutive, side by side grippers 13.
In a preferred embodiment, marking conveyor 6 comprises a support 14 beneath marking conveyor 6 and having a horizontal top wall 15, on which packets 2 of cigarettes slide, pushed along by pockets 12 of marking conveyor 6.
Marking unit 1 also comprises a marking station 16 located along marking conveyor 6, between input station 7 and output station 8, and in particular along straight intermediate portion T2 of marking path P, between end pulley 10a and end pulley 10b. Marking station 16 comprises a laser marking device 17 for marking a code on the outer surface of each packet 2 of cigarettes on marking conveyor 6.
As shown in
Deflection box 20 comprises a supporting box 21 housing a number of mirrors 22 for deflecting the laser beam. In a preferred embodiment, each mirror 22 is defined by a circular plate of mirror-polished copper and fixed inside box 21 by respective screws. More specifically, mirrors 22 of deflection box 20 define a focusing path 23, along which the laser beam travels in use, and which starts at emitter 19, and ends on the outer surface of the packet 2 of cigarettes at marking station 16. Deflection box 20 is connected mechanically to laser beam generator 18 for easy removal and replacement.
In a preferred embodiment shown in
A preferred embodiment shown in
As shown in
By way of example,
Laser marking unit 1 as described above has numerous advantages, by being cheap and easy to produce and, above all, by enabling fast, easy alteration to the marking location on packets 2 of cigarettes. More specifically, one operator need simply remove the deflection box 20 currently fitted to laser beam generator 18, and replace it with another deflection box 20 to alter the marking location on packets 2 of cigarettes. In this connection, it is important to point out that deflection boxes 20 are compact (a few dm3 in total volume) and lightweight (normally less than 5 kg) enough to be handled easily by one operator, and to be stored easily, even on marking unit 1 itself.
In view of its many advantages, marking unit 1 described above may also be used to advantage for marking codes or similar on packets 2 other than packets 2 of cigarettes, e.g. for marking codes on cartons of cigarettes, on boxes, or on packages of food products.
Number | Date | Country | Kind |
---|---|---|---|
BO2008A000604 | Oct 2008 | IT | national |