1. Field of the Invention
Generally, the field of the present invention is laser patterning. More particularly, the present invention relates to correcting for orientation of a workpiece in relation to one or more lasers.
2. Background
Strong demand for smaller and more portable computing devices has led to substantial innovation in many corresponding areas, including touch screens for smartphones and tablet computers. However, the path of innovation has not kept pace with manufacturing, particularly in the area of touch sensor patterning and printed electronics. Existing technologies, including photolithography, screen printing, and laser processing, suffer from poor takt (cycle) times due in part to the number of processing steps required. In addition to costs associated with poor cycle time, photolithographic and screen printing techniques include numerous drawbacks, including increased cost associated with expensive consumables and toxic waste. Conventional laser processing techniques also suffer from numerous drawbacks, including misalignment between laser system and processing targets. Thus, it is unfortunate that the current state of the art has yet to produce an efficient and superior technique for processing printed electronics and touch sensors on substrates. Accordingly, there remains a need for methods for processing substrates without the attendant drawbacks.
According to one aspect of the present invention, a laser patterning alignment method includes steps of positioning a target at a working distance in a laser patterning system such that fiducial marks on the target are positioned in view of at least three laser patterning system cameras, locating a fiducial mark on the target with each laser patterning system camera, and sending location data of the located fiducial marks to a controller, determining corrections required to align expected fiducial mark locations with the sent fiducial mark location data, and adjusting the laser patterning system with the determined corrections.
According to another aspect of the present invention, a laser patterning alignment system includes three or more cameras positioned in relation to a system laser scanning field and each configured to detect fiducial marks in view thereof, at least one laser scanner configured to scan corresponding laser beams in the system laser scanning field for processing a target therein using expected fiducial mark data to define the system laser scanning field, and a controller configured to receive from the three or more cameras detected fiducial mark data and configured to adjust the system laser scanning field based on the detected fiducial mark data such that the at least one laser scanner is configured to scan beams according to the adjusted system laser scanning field.
A method of high-precision laser material processing on a laser patterning target, including aligning three or more cameras in relation to expected fiducial mark locations that are illuminated by one or more laser beams scannable in a laser scanning field defined at least in part by the expected fiducial mark locations, loading a first target having actual fiducial marks thereon such that the actual fiducial marks are in view of the three or more cameras, detecting the actual fiducial mark locations on the first target and sending the detected actual fiducial mark locations to a controller, determining in the controller an affine transformation laser scanning field correction and applying the affine transformation laser scanning field correction to the laser scanning field such that the one or more laser beams are scannable in the corrected laser scanning field, and processing the first target using the corrected laser scanning field.
The foregoing and other objects, features, and advantages will become more apparent from the following detailed description, which proceeds with reference to the accompanying figures.
Laser scanning systems provide one or more beams to a target surface in order to process one or more materials in the field of view of the scanned beams. Processing can occur with lasers of different wavelengths, different type (i.e., pulsed or continuous-wave), and with various configurable beam, pulse, or movement parameters. Various materials can be processed with lasers, including thin films, such as transparent conductive films, composite structures, as well as more rigid surfaces such as glass and metal. For some applications, laser beams are scanned with high precision across a target in a complex pattern provided by a pattern file and controller. Such high precision laser patterning can replace conventional approaches, such as photolithography or screen printing, and provide attendant advantages.
In laser scanning systems and methods herein, one or more laser scanners can be used to scan lasers beams across a global laser field to process a target area. In examples with a plurality of scanners, separate laser fields are stitched together in order to process the target area. Processing areas typically encompass all or a portion of sheets or rolls of material. However, as each new sheet or portion of a roll is queued up to be processed in relation to the one or more laser beam scanners and associated laser scanning fields, the position of the sheet or portion of a roll may not align with the expected area to be scanned by the lasers. A mismatch of even a few microns can be unacceptable for many materials processing applications, particularly in precision-demanding technologies, such as in the manufacturing of printed electronics, smartphones, and other electronic gadgets, or where multiple processing steps are performed requiring accurate placement in relation to processing performed in previous or subsequent steps. Providing accuracy in the laser scanning of large fields or with several adjacent overlapping laser fields presents a challenge, particularly as errors can compound across scanning fields or where scanning fields are large.
In order to align a material target in relation to the scanning fields of the one or more lasers, skew correction is applied to align three or more preexisting fiducial marks on the material target with three mark locations stored in a pattern data file. The misalignment can be captured by three or more cameras configured to detect for the preexisting fiducial marks in relation to expected mark location. Instead of performing mechanical operations to adjust the position of the material target itself, the alignment is performed through operations that correct the shape of the one or more laser scanning fields. A material target can be processed and removed from view of the laser scanning fields to make room for a new material target, such as a separate sheet or another portion of an roll advanced to a new position. Since the methods herein for making correction to the laser scanning fields can occur relatively fast, subsequent material targets can be expediently aligned for the processing thereof.
Thus, even though the material target does not line up with the position expected by the controller, the scanning fields can be corrected such that scanned beams pattern the target in a corrected fashion. The corrections determined in 106 and applied to the fields in 108 can be done in series or parallel. For example, a correction for translation of one expected fiducial mark location can be updated in a scanning field data file and a correction for rotation of another expected mark location can be updated in the scanning field data file, or corrections for translation and rotation can be performed and the scanning field data file can be updated with both corrections. Different corrections can be applied to the expected fiducial mark locations, including corrections for scale, translation, rotation, and shear. By using at least three fiducial marks on the target, most misalignment of the target with respect to stored laser scanning field data can be corrected. For example, with multiple scanning fields that are adjacent or overlapping, a global coordinate system can be used to efficiently extend corrections to each of the component scanning fields using the aforementioned three fiducials. More than three fiducials may also be used, including fiducials associated with particular component scanning fields.
In laser patterning manufacturing, tolerances in the range of microns can be required, and methods to provide alignment corrections herein can be applied to single or multiple-scanning field laser scanning systems to reduce misalignment and enable such high precision manufacturing. In order to provide the detectors in a configuration that supports rapid detection of fiducial marks on a material target, detectors should be positioned in locations associated with expected locations of target material fiducials. In
Referring to
As shown in
Additional fiducial marks 308 are disposed on the roll target 314 that correspond to a previously processed or subsequent portion to be processed of the roll. The three marks 308a, 308b, 308c are arranged with two marks 308a, 308b towards a rear portion of the laser scanning fields (i.e., in the field 306 on the left in
The component lasers 302, cameras 308, and securing components of support member 318 are in communication with a controller 320 situated in relation to the system 300. The controller 320 can include one or more controller components configured to operate and scan the lasers across the laser scanning fields according to laser pattern data, typically stored in one or more laser pattern data files. The controller 320 can be configured to apportion scanning data amongst the laser scanning fields 306, if more than one is present, such that a substantially seamless processing transition occurs in an overlapping scanning field area 322. The cameras 308 are also in communication with the controller in order to provide the laser scanning fields in accurate alignment with the target 314, as will be discussed in further detail hereinafter.
Before the system 300 is configured for processing multiple targets in sequence, each of the one or more laser scanning fields should be situated in suitable alignment with the target 314. For a plurality of fields, the alignment with the target should also include alignment between each adjacent laser scanning field. Since the performance of such alignments is time-consuming, they are typically intended to be performed infrequently instead of for each target that is processed in an assembly line.
For example, the areas of each field or of the larger global field extending across the target can be calibrated with respect to the Z-axis (i.e., perpendicular to the target) such that the topographical contour of the target and the focus of the laser away from a center position are accounted for by the laser scanning controller. Typically, a calibration target is processed using different Z-focus settings at several points in each field. The calibration target is visually inspected and the best or most appropriate values on the target are provided to the controller for future processing.
The X and Y shape of each scanning field should also be calibrated in relation to a target as well. Such calibration can be performed for each laser field by processing arrays of patterns and measuring the X,Y locations of the patterns using a coordinate measuring machine (CMM). The measurements are provided to the laser scanning controller, typically in the form of pairs of ideal and actual X,Y coordinates. To accomplish such calibration for multiple fields becomes difficult since each field must be calibrated separately to make corrections to each, and once the target is removed the data for relative rotation and degree of overlap associated with an adjacent field becomes lost.
Accordingly, for calibration of multiple fields, each field is stitched together with its adjacent fields in order to provide an alignment for a global laser field. For example, a calibration material can include half of an ‘x’ (e.g., a ‘>’) deposited thereon via a first laser field, and the other half of the ‘x’ (e.g., a ‘<’) deposited thereon via a second shared adjacent laser field. The two halves images are scanned with the CMM or another camera and the error in distance between the apex of each half is stored and the error in angle between opposite legs forming a line (e.g., the upper arm of the ‘>’ and the lower arm of the ‘<’) is recorded. The errors are then corrected for one or both of the respective adjacent laser fields by adjusting scanner translation and rotation.
Referring to
When there is a new target to be processed, at 402 it is determined whether fiducial mark detecting cameras (or other detectors) are to be positioned in relation to such a target. If the cameras are to be positioned, at 404 the lasers associated with the one or more laser scanning fields are energized to illuminate the expected location of fiducials on the target, stored in the controller, with or without a target being present. In some examples, a low power laser setting, seed light, or a coupled aiming laser can be used to illuminate the expected location. In some situations the illuminated locations at low power may not correspond to the locations illuminated at higher operational powers used in actual target processing. Such error can be predicted or heuristically determined (in x, y, and z directions) and stored or accessed by the controller such that the error is corrected during actual processing, including being corrected at different power levels where more or less error may be observed. Moreover, the location of the illuminated mark without a target present may not align with the illuminated location of the mark at all laser field locations when the target is present, due to the thickness of the target which itself may be quite thin. A calibration material of similar thickness to the target may be used to compensate for this difference.
At 406, the fiducial marks and the camera views are configured to automatic or manual alignment. In a manual example, an engineering graphical user interface is utilized to show the camera view to an operator. The operator can then manually or remotely move each camera in X,Y directions until each illuminated expected fiducial location is nearly centered in the respective camera. In an automatic example, the laser controller can reposition the cameras in relation to the illuminated fiducials in order to place the illuminated expected fiducial location within the camera field of view. After such manual or automatic camera movements, machine vision is used to determine respective camera coordinates of each illuminated expected fiducial location. Each of the aforementioned camera coordinates is reported to the laser system controller to use for translating the respective camera coordinates into global laser field X,Y coordinates. For example, for different batches of targets the cameras can be reoriented to align with the expected fiducial locations on the different type of target.
If the cameras are already in position for detection of the fiducial marks of the target to be processed, at 408 a target can be loaded in view of the cameras such that the fiducial marks on the target are aligned with the pre-positioned cameras. The fiducial marks on the target are detected by the cameras and it is determined at 410 whether the locate process is successful. In situations where the location is not successful, the target or the cameras can be repositioned in order to provide alignment between the actual location of fiducial marks on the target and the view of the cameras. In a successful location of the actual fiducial marks by the detection cameras, at 412 location data associated with the actual fiducial marks detected by the cameras are sent to the laser system controller for logging and dynamic laser field adjustment with respect to the logged values. In the laser controller at 414, adjustments for one or more of scale, shear, translation, and rotation are performed on the logged values. Based on the adjustments, the shape of the one or more laser scanning fields is corrected such that it aligns more closely with the actual position of the fiducial marks on the target to be processed. The target can then be processed with the one or more lasers of the high precision laser system at 416.
In a post-processing step, at 418 a determination of whether to check for a post-process skew or misalignment has occurred or accrued. If a check is to be performed, at 420 the location of the actual post-process fiducial marks are detected by the cameras and the location data is sent to the laser controller and logged. If a skew occurs that is out of tolerance, a flag can be sent to an operator or otherwise logged in association with the target that was processed. At 422 the dynamic skew adjustments applied to the laser scanning fields in 414 are removed and the target is removed from view of the lasers. For example, a vacuum chuck securing the target in place can be released and the roll or conveyor can be advanced. The process can begin again for the next target and the laser field can be quickly adjusted by the controller using new actual fiducial location detection data for efficient assembly line processing.
As mentioned hereinbefore, in order to provide dynamic correction to the one or more laser scanning fields, an algorithm can be applied which compares the detected actual fiducial mark location data and the stored expected fiducial mark locations to make the required corrections to the stored mark locations for processing the target. Corrections for rotation, translation, scale, shear, dilation, or other field characteristics can be implemented with various ordering of operations or in a single step, and such corrections can be distributed amongst one or more controller components.
Plan views of an exemplary global laser scanning field 500 are shown in
In
Other corrective transformations can be applied to the stored expected fiducial location data. Generally, transformations can be applied by performing matrix calculations. For example, a two-dimensional matrix affine transformation can be applied to the three stored expected fiducial locations using matrix multiplication. The top two rows of a 3×3 matrix includes a 2×2 two-dimensional transformation matrix with values M00, M01, M10, and M11, and a 2×1 translation matrix with values X and Y, representing accumulated rotation, scaling, shear, and translation corrections. The matrix is then multiplied by each stored expected fiducial location point to produce a transformed expected fiducial location point that better aligns with the detected actual fiducial locations.
The material target can then be laser processed with the one or more laser beams across the dynamically adjusted one or more laser fields. Once the material processing is complete, a check for change in skew can be performed using the detection cameras and stored data, which can assist in verifying the accuracy of the laser process on the just processed target. Some predictable skew can occur depending on the type laser pattern applied, the characteristics of the material processed, the laser parameters used, and other characteristics of the system, such as the method used for securing the target during material processing. Thus, post-process fiducial mark location error can be detected and a determination can be made whether such error is within a specified tolerance.
It is thought that the present invention and many of the attendant advantages thereof will be understood from the foregoing description and it will be apparent that various changes may be made in the parts thereof without departing from the spirit and scope of the invention or sacrificing all of its material advantages, the forms hereinbefore described being merely exemplary embodiments thereof.
Number | Name | Date | Kind |
---|---|---|---|
3388461 | Lins | Jun 1968 | A |
4713518 | Yamazaki et al. | Dec 1987 | A |
4863538 | Deckard | Sep 1989 | A |
4953947 | Bhagavatula | Sep 1990 | A |
5008555 | Mundy | Apr 1991 | A |
5082349 | Cordova-Plaza et al. | Jan 1992 | A |
5129014 | Bloomberg | Jul 1992 | A |
5252991 | Storlie et al. | Oct 1993 | A |
5509597 | Laferriere | Apr 1996 | A |
5523543 | Hunter, Jr. | Jun 1996 | A |
5566196 | Scifres | Oct 1996 | A |
5642198 | Long | Jun 1997 | A |
5719386 | Hsieh | Feb 1998 | A |
5932119 | Kaplan | Aug 1999 | A |
RE37585 | Mourou et al. | Mar 2002 | E |
6353203 | Hokodate et al. | Mar 2002 | B1 |
6362004 | Noblett | Mar 2002 | B1 |
6426840 | Partanen et al. | Jul 2002 | B1 |
6434302 | Fidric et al. | Aug 2002 | B1 |
6490376 | Au et al. | Dec 2002 | B1 |
6577314 | Yoshida et al. | Jun 2003 | B1 |
7027155 | Cordingley | Apr 2006 | B2 |
7151788 | Imakado et al. | Dec 2006 | B2 |
7154530 | Andrews | Dec 2006 | B2 |
7231063 | Naimark | Jun 2007 | B2 |
7349123 | Clarke et al. | Mar 2008 | B2 |
7622710 | Gluckstad | Nov 2009 | B2 |
7628865 | Singh | Dec 2009 | B2 |
7781778 | Moon et al. | Aug 2010 | B2 |
7834293 | Wile | Nov 2010 | B2 |
8024060 | Alpay | Sep 2011 | B2 |
8071912 | Costin, Sr. et al. | Dec 2011 | B2 |
8084713 | Idaka | Dec 2011 | B2 |
8237788 | Cooper | Aug 2012 | B2 |
8251475 | Murray et al. | Aug 2012 | B2 |
8258426 | Zhang | Sep 2012 | B2 |
8269108 | Kunishi et al. | Sep 2012 | B2 |
8288679 | Unrath | Oct 2012 | B2 |
8310009 | Saran et al. | Nov 2012 | B2 |
8404998 | Unrath et al. | Mar 2013 | B2 |
8414264 | Bolms | Apr 2013 | B2 |
8415613 | Heyn et al. | Apr 2013 | B2 |
8442303 | Cheng | May 2013 | B2 |
8472099 | Fujino et al. | Jun 2013 | B2 |
8809734 | Cordingley et al. | Aug 2014 | B2 |
9496683 | Kanskar | Nov 2016 | B1 |
9537042 | Dittli et al. | Jan 2017 | B2 |
20010050364 | Tanaka | Dec 2001 | A1 |
20030024913 | Downes | Feb 2003 | A1 |
20030174387 | Eggleton et al. | Sep 2003 | A1 |
20030178398 | Nagatoshi | Sep 2003 | A1 |
20030213998 | Hsu et al. | Nov 2003 | A1 |
20040031779 | Cahill et al. | Feb 2004 | A1 |
20040105092 | Iwata | Jun 2004 | A1 |
20040112634 | Tanaka et al. | Jun 2004 | A1 |
20040207936 | Yamamoto et al. | Oct 2004 | A1 |
20050168847 | Sasaki | Aug 2005 | A1 |
20050171630 | Dinauer | Aug 2005 | A1 |
20050191017 | Croteau et al. | Sep 2005 | A1 |
20050233557 | Tanaka et al. | Oct 2005 | A1 |
20060138097 | Hiramatsu | Jun 2006 | A1 |
20060275705 | Dorogy et al. | Dec 2006 | A1 |
20070075060 | Shedlov et al. | Apr 2007 | A1 |
20070251543 | Singh | Nov 2007 | A1 |
20080231939 | Gluckstad | Sep 2008 | A1 |
20080246024 | Touwslager et al. | Oct 2008 | A1 |
20090007933 | Thomas | Jan 2009 | A1 |
20090120916 | Bruce | May 2009 | A1 |
20090122377 | Wagner | May 2009 | A1 |
20090255911 | Krishnaswami | Oct 2009 | A1 |
20090274833 | Li | Nov 2009 | A1 |
20090297140 | Heismann et al. | Dec 2009 | A1 |
20090314752 | Manens | Dec 2009 | A1 |
20090324233 | Samartsev et al. | Dec 2009 | A1 |
20100025387 | Arai | Feb 2010 | A1 |
20100155379 | Shamoun | Jun 2010 | A1 |
20100225974 | Sandstrom | Sep 2010 | A1 |
20100230665 | Verschuren et al. | Sep 2010 | A1 |
20100251437 | Heyn et al. | Sep 2010 | A1 |
20100252543 | Manens | Oct 2010 | A1 |
20100257641 | Perkins et al. | Oct 2010 | A1 |
20100294746 | Bann | Nov 2010 | A1 |
20110080476 | Dinauer | Apr 2011 | A1 |
20110127697 | Milne | Jun 2011 | A1 |
20110133365 | Ushimaru et al. | Jun 2011 | A1 |
20110187025 | Costin, Sr. | Aug 2011 | A1 |
20110278277 | Stork Genannt Wersborg | Nov 2011 | A1 |
20110279826 | Miura et al. | Nov 2011 | A1 |
20120127097 | Gaynor et al. | May 2012 | A1 |
20120145685 | Ream | Jun 2012 | A1 |
20120148823 | Chu | Jun 2012 | A1 |
20120156458 | Chu | Jun 2012 | A1 |
20120241419 | Rumsby | Sep 2012 | A1 |
20120263448 | Winter | Oct 2012 | A1 |
20120295071 | Sato | Nov 2012 | A1 |
20120301733 | Eckert et al. | Nov 2012 | A1 |
20120301737 | Labelle et al. | Nov 2012 | A1 |
20130005139 | Krasnov et al. | Jan 2013 | A1 |
20130022754 | Bennett et al. | Jan 2013 | A1 |
20130023086 | Chikama et al. | Jan 2013 | A1 |
20130027648 | Moriwaki | Jan 2013 | A1 |
20130095260 | Bovatsek et al. | Apr 2013 | A1 |
20130134637 | Wiesner et al. | May 2013 | A1 |
20130186871 | Suzuki | Jul 2013 | A1 |
20130228442 | Mohaptatra et al. | Sep 2013 | A1 |
20130299468 | Unrath et al. | Nov 2013 | A1 |
20140104618 | Potsaid et al. | Apr 2014 | A1 |
20140155873 | Bor | Jun 2014 | A1 |
20140245608 | Morimoto | Sep 2014 | A1 |
20140259589 | Xu et al. | Sep 2014 | A1 |
20140271328 | Burris et al. | Sep 2014 | A1 |
20140319381 | Gross | Oct 2014 | A1 |
20140332254 | Pellerite et al. | Nov 2014 | A1 |
20140333931 | Lu et al. | Nov 2014 | A1 |
20150165556 | Jones et al. | Jun 2015 | A1 |
20150314612 | Balasini et al. | Nov 2015 | A1 |
20160059354 | Sercel et al. | Mar 2016 | A1 |
20160158889 | Carter et al. | Jun 2016 | A1 |
20160187646 | Ehrmann | Jun 2016 | A1 |
20160294150 | Johnson | Oct 2016 | A1 |
Number | Date | Country |
---|---|---|
1217030 | Aug 2005 | CN |
1926460 | Mar 2007 | CN |
1966224 | May 2007 | CN |
101836309 | Oct 2007 | CN |
101143405 | Mar 2008 | CN |
101303269 | Nov 2008 | CN |
101314196 | Dec 2008 | CN |
102448623 | Mar 2009 | CN |
101733561 | Jun 2010 | CN |
201783759 | Apr 2011 | CN |
102084282 | Jun 2011 | CN |
102176104 | Sep 2011 | CN |
102207618 | Oct 2011 | CN |
102301200 | Dec 2011 | CN |
102441740 | May 2012 | CN |
102549377 | Jul 2012 | CN |
102582274 | Jul 2019 | CN |
4437284 | Apr 1996 | DE |
203 20 269 | Apr 2004 | DE |
202016004237 | Aug 2016 | DE |
102015103127 | Sep 2016 | DE |
1238745 | Sep 2002 | EP |
1974848 | Oct 2008 | EP |
2587564 | May 2013 | EP |
2642246 | Sep 2013 | EP |
H02220314 | Sep 1990 | JP |
2006-098085 | Apr 2006 | JP |
2006-106227 | Apr 2006 | JP |
2008-281395 | Nov 2008 | JP |
10-2011-0109957 | Oct 2011 | KR |
2008742 | Feb 1994 | RU |
2021881 | Oct 1994 | RU |
553430 | Sep 2003 | TW |
200633062 | Sep 2006 | TW |
I271904 | Jan 2007 | TW |
200707466 | Feb 2007 | TW |
201307949 | Feb 2013 | TW |
WO 1995011100 | Apr 1995 | WO |
WO 1995011101 | Apr 1995 | WO |
WO 2012102655 | Aug 2012 | WO |
Entry |
---|
Java—Transform a triangle to another triangle—Stick Overflow, http://stackoverflow.com/questions/1114257/transform-a-triangle-to-another-triangle?lq=1, downloaded Feb. 21, 2014, 3 pages. |
Affine Transformation—from Wolfram MathWorld, http://mathworld.wolfram.com/AffineTransformation.html downloaded Feb. 21, 2014, 2 pages. |
Official Letter and Search Report from Taiwan Application No. 103106020, dated Jun. 6, 2017, 5 pages (w/ English translation). |
Office Action for related Chinese Application No. 201380075745.8, dated Jun. 2, 2017, 21 pages (w/ English translation). |
Chung, “Solution-Processed Flexible Transparent Conductors Composed of Silver Nanowire Networks Embedded in Indium Tin Oxide Nanoparticle Matrices,” Nano Research, 10 pages (Sep. 24, 2012). |
Cui, et al., “Calibration of a laser galvanometric scanning system by adapting a camera model,” Applied Optics 48(14):2632-2637 (Jun. 2009). |
First Office Action from Chinese Application No. 201410455972.X, dated Jan. 26, 2016, 21 pages (with English translation). |
Gardner, “Precision Photolithography on Flexible Substrates,” http://azorescorp.com/downloads/Articles/AZORESFlexSubstrate.pdf (prior to Jan. 30, 2013). |
Grigoriyants et al., “Tekhnologicheskie protsessy lazernoy obrabotki,” Moscow, izdatelstvo MGTU im. N.E. Baumana, p. 334 (2006). |
International Search Report and Written Opinion for International Application No. PCT/US2013/060470, 7 pages, dated Jan. 16, 2014. |
International Search Report and Written Opinion for International Application No. PCT/US2014/017841, 5 pages, dated Jun. 5, 2014. |
International Search Report and Written Opinion for International Application No. PCT/US2014/017836, 6 pages, dated Jun. 10, 2014. |
Ludtke, et al., “Calibration of Galvanometric Laser Scanners Using Statistical Learning Methods,” Bildverabeitung für die Medizin, pp. 467-472 (Feb. 25, 2015). |
Manakov, et al., “A Mathematical Model and Calibration Procedure for Galvanometric Laser Scanning Systems,” Vision, Modeling, and Visualization, 8 pages (Jan. 2011). |
Official Letter and Search Report from the Taiwan Intellectual Property Office for related Application No. 102139285, 21 pages, dated Jun. 13, 2016 (w/ Eng. trans.). |
Official Letter and Search Report from the Taiwan Intellectual Property Office for related Application No. 103106020, 21 pages, dated Apr. 20, 2016 (w/ Eng. trans.). |
Official Letter and Search Report from the Taiwan Intellectual Property Office for related Application No. 102139285, 8 pages, dated Nov. 21, 2016 (w/ Eng. trans.). |
Official Letter and Search Report from Taiwan Application No. 103130968, dated Dec. 20, 2016, 16 pages, (with English translation). |
Product Brochure entitled “3-Axis and High Power Scanning” by Cambridge Technology, 4 pages, downloaded Dec. 21, 2013. |
Product Brochure supplement entitled “Theory of Operation” by Cambridge Technology, 2 pages, downloaded Dec. 21, 2013. |
Search Report from the Taiwan Intellectual Property Office for related Application No. 102139285, dated Sep. 1, 2015 (w/ Eng. trans.). |
Second Office Action from Chinese Application No. 201410455972.X, dated Nov. 22, 2016, 22 pages (with English translation). |
3-Axis Laser Scanning Systems, downloaded from http://www.camtech.com/index.php?option=com_content&view=article&id=131&Itemid=181, 4 pages, Dec. 31, 2014. |
First Office Action from Chinese Application No. 201480019324.8, dated Apr. 5, 2017, 20 pages (with English translation). |
International Search Report and Written Opinion for International Application No. PCT/US2016/063086, 6 pages, dated Mar. 23, 2017. |
International Search Report and Written Opinion for International Application No. PCT/US2017/014182, 9 pages, dated Mar. 31, 2017. |
Office Action (with English translation) for related Chinese Application No. 201480022179.9, 5 pages, dated Mar. 30, 2017. |
Office Action (with English translation) for related Korea Application No. 10-2014-0120247, dated Apr. 14, 2017, 11 pages. |
Office Action (w /English translation) for related Taiwan application No. 103130968 5 pages, dated Jun. 7, 2017. |
Giannini et al., “Anticipating, measuring, and minimizing MEMS mirror scan error to improve laser scanning microscopy's speed and accuracy,” PLOS ONE, 14 pages (Oct. 3, 2017). |
Kummer et al., “Method to quantify accuracy of position feedback signals of a three-dimensional two-photon laser-scanning microscope,” Biomedical Optics Express, 6(10):3678-3693 (Sep. 1, 2015). |
Search Report from the Taiwan Intellectual Property Office for related Application No. 102139285, 10 pages, dated Sep. 4, 2017 (with English translation). |
Second Office Action from Chinese Application No. 201480019324.8, dated Nov. 16, 2017, 21 pages (with English translation). |
Second Office Action from Chinese Application No. 201380075745.8, dated Feb. 26, 2018, 6 pages (with English translation). |
Third Office Action from Chinese Application No. 201480019324.8, dated Apr. 13, 2018, 8 pages (with English translation). |
Office Action for related Korea Application No. 10-2014-0120247, dated Oct. 18, 2017, 6 pages (with English translation). |
PCI-6110, Multifunction I/O Device, http.//www.ni.com/en-us-support/model.pci-6110.html, downloaded Dec. 15, 2017, 1 page. |
Notice of Preliminary Rejection from the Korean Intellectual Property Office for related Application No. 10-2015-7025813, dated Jun. 26, 2018, 18 pages (with English translation). |
International Search Report and Written Opinion for International Application No. PCT/US2018/026110, 12 pages, dated Aug. 8, 2018. |
First Office Action for related Chinese Application No. 201510303469.7, dated Jun. 27, 2019, 18 pages (with English translation). |
Chen et al., “An Algorithm for correction of Distortion of Laser marking Systems,” IEEE International Conference on Control and Automation, Guangzhou, China, 5 pages (May 30-Jun. 1, 2007). |
Office Action for European Application No. EP 17741945.4, 7 pages, dated Jan. 9, 2019. |
Supplementary European Search Report for Application No. EP 17741945.4, 18 pages, dated Nov. 16, 2018. |
Xie et al., “Correction of the image distortion for laser galvanometric scanning system,” Optics & Laser Technology, 37:305-311 (Jun. 2005). |
Number | Date | Country | |
---|---|---|---|
20150352664 A1 | Dec 2015 | US |