The present disclosure is directed to systems and methods for producing dynographs for rod pumped wells, and more particularly to a laser positioning system to determine the position of the rod in a rod pumped well.
Many controllers for rod pumped oil and gas wells produce graphs called “dynographs” that plot the measured load on the rod against the position of the rod in the pumping stroke. An example of this type of graph is shown in
Each of these methods has inherent inaccuracies that can lead to inaccurate dynographs and data. What is needed is a more accurate mechanism for determining rod position in a pumping stroke.
In a preferred embodiment, a system for determining rod position in a rod pumped well includes a laser mounted on the well and a reflector plate mounted in a position near the laser such that the laser can transmit a beam onto the reflector plate thereby determining a distance between the laser and the reflector plate. The distance between the laser and reflector plate as determined by the laser is indicative of the position of the rod in the rod pumped well.
In another preferred embodiment, a method for determining rod position in a rod pumped well includes mounting a laser on the well and mounting a reflector plate in a position near the laser such that the laser can transmit a beam onto the reflector plate. The method then determines a distance between the laser and the reflector plate, wherein the distance between the laser and reflector plate as determined by the laser is indicative of the position of the rod in the rod pumped well.
In yet another embodiment, a system for determining rod position in a rod pumped well includes a laser unit mounted on an underside of a walking beam of the rod pumped well and a reflector plate mounted on a sampson post of the rod pumped well in a position near the laser unit such that the laser can transmit a beam onto the reflector plate. A distance between the laser and the reflector plate is determined by the laser unit using the beam. The distance between the laser and reflector plate as determined by the laser is then transmitted to a controller which calculates the position of the rod in the rod pumped well based on the distance determined by the laser.
The foregoing has outlined rather broadly the features and technical advantages of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of the invention will be described hereinafter which form the subject of the claims of the invention. It should be appreciated by those skilled in the art that the conception and specific embodiment disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present invention. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims. The novel features which are believed to be characteristic of the invention, both as to its organization and method of operation, together with further objects and advantages will be better understood from the following description when considered in connection with the accompanying figures. It is to be expressly understood, however, that each of the figures is provided for the purpose of illustration and description only and is not intended as a definition of the limits of the present invention.
For a more complete understanding of the present invention, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
Load and position measurement and the drawing of dynograph cards, shown in
An embodiment of a system and method according to the concepts described herein uses a laser positioning device on a rod pumped oil and or gas well to obtain the polished rod and or pumping unit position utilizing. The system is used in conjunction with a load measuring device to provide load vs position data and draw surface and down hole cards for control and diagnostics of a rod pumped well. The system and method according to the present invention provides increased accuracy over prior methods including accuracy to within hundredths of an inch. The device is also safer as it requires no climbing by workers and allows for quicker installation and less maintenance than traditional methods.
Well bore 11 includes casing 23 and tubing 24 extending inside casing 23. Sucker rod 25 extends through the interior of tubing 24 to plunger 19. At the bottom 25 of well bore 11 in oil bearing region 26, casing 23 includes perforations 27 that allow hydrocarbons and other material to enter annulus 28 between casing 23 and tubing 24. Gas is permitted to separate from the liquid products and travel up the annulus where it is captured. Liquid well products collect around pump barrel 29, which contains standing valve 30. Plunger 19 includes traveling valve 31. During the down stroke of the plunger, traveling valve is opened and product in the pump barrel is forced into the interior of tubing 24. When the pump begins its upstroke, traveling valve 31 is closed and the material in the tubing is formed forced up the tubing by the motion of plunger 19. Also during the upstroke, standing valve 30 is opened and material flows from the annulus in the oil bearing region and into the pump barrel.
Referring now to
Mounting on the underside of the Sampson beam 17 allows the laser device 40 to be protected from the elements, but the laser unit may be mounted anywhere on the well where an associated reflector plate can also be mounted to allow for accurate distance measurements. In one embodiment, the system may be used with a portable dynamometer. Portable dynamometers are often attached to the polished rod to provide temporary measurements of the load on the rod. The laser unit of the present system may be placed on the portable dynamometer with the reflector plate being mounted on the well head to allow the laser unit to measure the relative distance.
Referring now to
Well controllers and dynamometer cards allow for the control and monitoring of the pumping system. A pump system simulator utilizes state of the art electronic processors and graphics, which allows the operator to instantly recognize pump-off and changing well conditions based on the shape of the dynograph. Industry operators are trained to understand the pumping system as they view it on a daily basis including the pumping unit, rods, prime mover, and subsurface pump. Traditionally, the interpretation of dynamometer cards is an art which requires specialized training and years of experience, however new animations that can be created using a system such as is described herein may require no specialized training and only a basic understanding of the pumping system. Dynamometer cards are presented along with the real time simulation for viewing purposes by those that are skilled in the art and desire to view such plots.
System controllers are preferably located at the well-site of a rod pumped well. In multi-well fields it is possible to have a controller on each and every rod pumped well. These controllers can operate as standalone devices or can be connected to a central computer via radio, satellite or some means of remote communication. Remote access allows the ability to monitor and interrogate the controllers without having to travel to the well site. The controllers can be interrogated at the well site by utilizing a local keypad and display, HMI device, or by utilizing a laptop computer. The real time display of the entire rod pumping system with complete diagnostics allows the field operators a quick overview of the health of the pumping system.
Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims. Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure of the present invention, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present invention. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.
This application claims the benefit of U.S. Provisional Patent Application No. 61/868,315, filed Aug. 21, 2013, tiled “Laser Position Finding Device Used for Control and Diagnostics of a Rod Pumped Well”, the contents of which are hereby incorporated herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4286925 | Standish | Sep 1981 | A |
4487061 | McTamaney et al. | Dec 1984 | A |
4541274 | Purcupile | Sep 1985 | A |
4973226 | McKee | Nov 1990 | A |
5167490 | McKee | Dec 1992 | A |
5224834 | Westerman | Jul 1993 | A |
5267016 | Meinzer et al. | Nov 1993 | A |
5362206 | Westerman | Nov 1994 | A |
6176682 | Mills | Jan 2001 | B1 |
6473189 | Reedy | Oct 2002 | B1 |
9004166 | Raglin | Apr 2015 | B2 |
20040144529 | Barnes | Jul 2004 | A1 |
20050095140 | Boren | May 2005 | A1 |
20060271298 | MacIntosh | Nov 2006 | A1 |
20080240930 | Palka | Oct 2008 | A1 |
20120020808 | Lawson et al. | Jan 2012 | A1 |
20130104645 | Pons | May 2013 | A1 |
Entry |
---|
Shinohara, S. et al., “Compact and High-Precision Range Finder with Wide Dynamic Range and Its Application”, Instrumentation and Measurement, IEEE transactions vol. 41, Issue 1, Aug. 6, 2002. |
Number | Date | Country | |
---|---|---|---|
20150055142 A1 | Feb 2015 | US |
Number | Date | Country | |
---|---|---|---|
61868315 | Aug 2013 | US |