The disclosure relates to switching of laser power in a laser printer, and in particular, to the control and switching of laser power for both imaging and beam detecting to ensure alignment between color planes and/or bi-directional scan lines.
In an image forming apparatus, such as a laser printer, a laser beam is swept, or scanned, across a photosensitive device. The accurate and precise placement of the swept laser beam ensures that the resulting output from the image forming apparatus is an accurate representation of the desired image.
It is also desirable to accurately control laser beam intensity, and one technique for doing so is found in U.S. Pat. No. 5,264,871, titled “Image forming apparatus having light beam intensity switching for detection purposes,” issued to Tsukada on Nov. 23, 1993. It discloses an image forming device with a beam detect sensor 31 that provides timing and position information for the laser beam 7. The Tsukada patent addresses the problem in which the laser power is changed to correspond with a selected pixel density and that same laser power level is used by the beam detect sensor 31. The Tsukada patent discloses an apparatus for switching the laser beam intensity to correspond to a position of a pixel density selection switch.
An apparatus is disclosed for maintaining the intensity of a laser beam directed toward a beam detect sensor at a constant level regardless of the intensity of the laser beam when it is at positions other than the beam detect position. A laser driver receives a reference power level signal from and output of a first switch. The first, or reference power, switch has two inputs, one for the printing power reference signal and another for the beam detect power reference signal. The switch selects the input based upon a power select signal. The laser driver is also connected to a second switch. The second switch has two inputs, each connected to a holding capacitor. The switch is controlled by the same power select signal that controls the first switch. One of the holding capacitors corresponds to a reference level for the printing power and the other holding capacitor corresponds to a reference level for the beam detect power. The laser driver receives an adjust signal, which includes timing information for the laser driver to output a signal to the appropriate holding capacitor.
In operation, the printing power reference capacitor is set, or adjusted, every other scan cycle. The beam detect power reference capacitor is set, or adjusted, at every other scan cycle when the printing power reference is not being set. The laser driver uses the respective holding capacitor voltage, in combination with the reference power level signal, to ensure that the proper power level of the laser is maintained.
Further features and advantages of the disclosed embodiments may become apparent by reference to the detailed description when considered in conjunction with the figures, which are not to scale, wherein like reference numbers indicate like elements through the several views, and wherein:
FIG 1. is a simplified schematic of a laser scanning unit;
An apparatus for maintaining the intensity of a laser beam directed toward a beam detect sensor at a constant, predetermined level regardless of the intensity of the laser beam when it is at other positions than the beam detect position is disclosed.
The reflected laser beam 20 is caused by the scanner 14 to sweep between a first boundary 18A and a second boundary 18B in order to follow a scan path on the photosensitive drum 22. The drum 22 rotates such that each scan path is physically separated from the previous scan path by the amount of rotation of the drum 22. The scanner 14 also causes the reflected laser beam 20 to extend past one boundary 18A and to strike a beam detect sensor 26. The beam detect sensor 26 provides a signal to the image controller 24. The image controller 24 includes the circuits and components necessary for the operation of the laser scanning unit 1, including a power controller 10.
The power controller 10 provides control of the laser 12 such that the intensity of the laser beam 16 is controlled and the beam detect sensor 26 receives a light beam 20 at a desired intensity for the generation of an accurate horizontal sync signal 34.
A predetermined amount of time after the leading edge of horizontal sync signal 32A, the forward scan 36A of the image data begins. After the sweeping laser beam 20 changes direction, the reverse scan 38A begins at a predetermined time and continues for specified distance. In order for the resulting image to be properly reproduced, the starting position 42 of the forward scan 36A and the ending position 42 of the reverse scan 38A must coincide physically on the photosensitive drum 22. Likewise, the ending position of the forward scan 36A and the starting position of the reverse scan 38A must coincide physically on the photosensitive drum 22. Such is the case illustrated in
FIG 2C illustrates the case in which the intensity of the laser beam 20 greater than the predetermined intensity. With greater intensity, the laser beam 20 must expose the photodetector in the beam detect sensor 26 for a shorter period of time than the desired condition illustrated in
As illustrated in
The power controller 10 includes a laser driver 66, a pair of switches 52A, 52B, and a pair of holding capacitors 64A, 64B. The first switch 52A is the reference power switch and has two inputs, a printing power reference 54 and a beam detect power reference 56. The reference power switch 52A connects one of the two inputs 54, 46 to the reference power level input 60 of the laser driver 66. The reference power switch 52A is actuated by the power select signal 58. When the power select signal 58 has a positive-going pulse 90, 94, the reference power switch 52A connects the beam detect power reference signal 56 to the reference power level 60 input of the laser driver 66. At other times, the printing power reference signal 54 is connected to the reference power level 60 input of the laser driver 66. Even though the switches 52A and B are shown as separate devices (which is acceptable), the switches are typically incorporated into other devices. In this embodiment, the switches would typically be incorporated into the laser driver 66.
The second switch 52B has each of the two inputs connected to a holding capacitor 64A, 64B. The second switch 52B is also actuated by the power select signal 58. When the power selects signal 58 has a positive-going pulse 90-94, the second switch 52B connects the beam detect power reference holding capacitor 64B to hold capacitor input/output, or I/O, port 62 of the laser driver 66. At other times, the printing power reference holding capacitor 64A is connected to the hold capacitor I/O port 62 of the laser driver 66. The power select signal 58 has a regular pattern, with the narrow pulse 90 and the wide pulse 94 alternating and occurring at regular intervals consistent with the adjust pulse 88.
Connected to the laser driver 66 is the laser unit 12, which includes an output laser 68 and a feedback photodiode, or photodetector, 70 optically coupled to the output laser 68. The feedback photodetector 70 is typically a PIN photodiode that is integrated with the output laser 68. The laser driver 66 determines the power of the output laser 68 by monitoring the feedback photodetector 70. When the adjust signal 74 has a low pulse 88, the laser driver 66 determines an error value based on the reference power level 60 and the sensed power of the output laser 68 from the feedback photodetector 70. The error value is then used to set the voltage of the currently selected holding capacitor 64A, 64B. When the adjust signal 74 is at a normal value, that is, when there is no negative-going pulse 88, the laser driver 66 uses the voltage of the currently selected holding capacitor 64A, 64B as a reference level to set the current through the output laser 68. The pulses 88 of the adjust signal 74 occur before the horizontal sync pulses 34, as illustrated by the differences between the reference line pairs 80, 82 and 84, 86.
The signals 54, 56, 58 and 74 are provided by a printer controller 13 that may be located remotely from the laser driver 66. Signal 75 represents all other data and control signals produced by the printer controller 13 and supplied to the power controller 10 (such as the image data signals).
The output laser power signal 72 includes image data 72A, a printing power reference pulse 72B, a narrow beam detect pulse 72C, a wide beam detect pulse 72D. The printing power reference pulse 72B and the two beam detect pulses 72C, 72D are shown with different amplitudes for illustration purposes. Those skilled in the art will recognize that the relative levels may vary depending upon the requirements of the components selected for use. The output laser signal 72 has a two cycle repeating pattern. That is, one cycle includes the image data portion 72A, the printing power reference pulse 72B, and the narrow beam detect pulse 72C. The next cycle includes the image data portion 72A and the wide beam detect pulse 72D. This pattern coincides with the pattern of the power select signal 58, which includes a narrow pulse 90 and a wide pulse 94. The narrow pulse 90 coincides with the output laser power signal 72 portion with the narrow beam detect pulse 72C, and the wide pulse 94 coincides with the output laser power signal 72 portion with the wide beam detect pulse 72D.
The image data 72A portion of the output laser power signal 72 corresponds to one or more of the scans 36, 38 in which data is transferred to the photosensitive drum 22. The intensity, as determined by the output laser 68 output power, of the image data portion 72A is determined by the requirements of the image and may vary throughout the scan 36, 38.
The printing power reference pulse 72B portion of the output laser power signal 72 coincides with every other one of the negative going pulses 88 of the adjust signal 74. Reference line 80 illustrates the relationship between the narrow beam detect pulse 72C and the adjust pulse 88. In the illustrated embodiment, the printing power reference pulse 72B has the same pulse width as the negative going pulse 88 of the adjust signal 74.
The leading edge of the wide beam detect pulse 72D coincides with the leading edge of the other one of the negative going pulses 88 of the adjust signal 74. Reference line 84 illustrates the relationship between the wide beam detect pulse 72D and the adjust pulse 88. In the illustrated embodiment, the wide beam detect pulse 72D has a width wider than the pulse width of the negative going pulse 88 of the adjust signal 74.
The operation of the power control circuit 10 illustrated in
A short time after both the printing power reference pulse 72B and the adjust pulse 88 stop, the narrow beam detect pulse 72C begins. At about the same time, the narrow pulse 90 of the power select signal 58 begins. The narrow pulse 90 of the power select signal 58 causes both of the switches 52A, 52B to change position, connecting the beam detect reference signal 56 to the reference power level input 60 and the beam detect power reference hold capacitor 64B to the hold capacitor I/O port 62 of the laser driver 66. The output laser 68 has its output set to a predetermined power level. The laser beam 20 strikes the beam detect sensor 26 and a horizontal desired sync pulse 34 is generated. The horizontal sync pulse 34 is used by the image controller 24 to sync the appropriate signal and to stop the narrow beam detect pulse 72C. The power select pulse 90 stops at about the same time that the narrow beam detect pulse 72C stops.
After a selected time interval, the output laser power signal 72 includes the next scan of the image data 72A. After the image data 72A is sent, the output laser power signal 72 includes the wide beam detect pulse 72D, which coincides with the wide pulse 94 of the power select signal 58. The wide pulse 94 causes the two switches 52A, 52B to change state so that the beam detect power reference signal 56 is connected to the reference power level input 60 to the laser driver 66 and the beam detect power reference hold capacitor 64B is connected to the hold capacitor I/O port 60 of the laser driver 66. coincide with the leading edge of the wide beam detect pulse 72D of the output laser power signal 72 is the leading edge of an adjust pulse 88. The adjust pulse 88 causes the laser driver 66 to perform an error check of the intensity of the image laser 68 and to adjust the voltage of the beam detect power reference holding capacitor 64B. The adjust pulse 88 has a shorter duration than the wide power select pulse 94 and the wide beam detect pulse 72D; therefore, the wide beam detect pulse 72D continues after the hold capacitor 64B is adjusted. During this later portion of the wide beam detect pulse 72D, the output laser 68 has its output set to a predetermined desired power level. The laser beam 20 strikes the beam detect sensor 26 and a horizontal sync pulse 34 is generated. The horizontal sync pulse 34 is used by the image controller 24 to sync the appropriate signals and to stop the wide beam detect pulse 72D. The wide power select pulse 94 stops when the wide beam detect pulse 72D stops. The above-described two scan cycles of the output laser power signal 72 are repeated, thereby alternating the adjustment of the two holding capacitors 64A, 64B.
The next step 112 is output the image data 72A for another scan 36, 38. After the image data 72A is output 112, the next step 114 is for the laser driver 66 to output a wide beam detect pulse 72D. The wide beam detect pulse 72D is first used by the next step 116 to adjust the beam detect power reference holding capacitor 64B. After the capacitor 64B is adjusted 116, the wide beam detect pulse 72D is used to generate 118 a horizontal sync pulse 34. After the horizontal sync pulse 34 is generated 118, the loop repeats by outputting 102 another scan of image data 72A.
The power controller 10 includes various functions. The function of switching between a printing power reference signal 54 and a beam detect power reference signal 56 is implemented, in one embodiment, by the first switch 52A. The function of switching between a printing power reference holding capacitor 64A and a beam detect power reference holding capacitor 64B is implemented, in one embodiment, by the second switch 52B. The function of operating the first switch 64A in the tandem with the second switch 64B is implemented, in one embodiment, by the power select pulse 90, 94 of the power select signal 58.
In the above described embodiment, both the forward scan 36A and the reverse scan 36B are timed using a single horizontal sync pulse 32A, and this is an acceptable working embodiment. Other embodiments may include two horizontal sync pulses, one pulse for controlling the forward scan and the other pulse for controlling the timing of the reverse scan. The sync pulses may be created by two different sensors, or one sensor and mirror at the position of the other sensor that reflects the laser beam 20 to the one sensor so that the one sensor creates four sync pulses per cycle (two sync pulses on the forward scan and two sync pulses on the reverse scan).
In the embodiment illustrated by
The foregoing description of preferred embodiments has been presented for purpose of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed. Modifications or variations are possible in light of the above teachings. In particular, it should be noted that the power of the laser beam 20 during printing and during beam detect could be changed at different intervals other than the intervals described above. One or both of the power levels could be changed on every scan, every other scan, or every x scan. Likewise, while wide and narrow beam detect pulses are described, the same size beam detect pulses could be used in other embodiments. The embodiment is chosen and described in an effort to provide the best illustration of the principles of the invention and its practical application, and to thereby enable one of ordinary skill in the art to utilize the invention in various embodiments and with various modifications as is suited to the particular use contemplated. All such modifications and variations are within the scope of the invention as determined by the appended claims when interpreted in accordance with the breadth to which they are fairly, legally, and equitably entitled.
Number | Name | Date | Kind |
---|---|---|---|
5264871 | Tsukada | Nov 1993 | A |
5710589 | Genovese | Jan 1998 | A |
6583913 | Ito et al. | Jun 2003 | B2 |
20030213890 | Mochiduki et al. | Nov 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
20070285492 A1 | Dec 2007 | US |