1. Field of the Invention
The present invention relates laser printers and particularly to configurations for grounding the laser printer's diselectrification brush.
2. Description of the Background Art
A laser printer arranges toner on a surface of a photoreceptor drum charged by laser light and sandwiches a sheet between the photoreceptor drum and a transfer roller to place the toner on a surface of the sheet or the like in a shape to be transferred. The toner placed on the surface of the sheet or the like is fixed on the sheet or the like by a fixture roller and thus discharged.
The sheet or the like having passed between the photoreceptor drum and the transfer roller is statically charged. To remove the static electricity, a diselectrification brush diselectrifying the sheet or the like is arranged adjacent for example to the sheet or the like output through between the transfer roller and the photoreceptor drum.
For example Japanese Patent Laying-Open No. 9-114277 discloses a transfer apparatus having a diselectrification needle arranged in a prescribed diselectrification region to achieve the needle's significant diselectrification effect. As disclosed in the document, if in this transfer apparatus the apparatus's cover attached disadvantageously clatters, a spring contact's resilience can compensate for the clatter to allow the needle and a transfer nip to have a fixed relative positional relationship therebetween.
Furthermore
A diselectrification brush 53 is joined to control member 54, and control member 54 is connected to a plate 60 via an extension contact 55 and a ground plate 56. By grounding plate 60, diselectrification brush 53 provides diselectrification. The member contacting and thus controlling the brush's bristles is adapted to be conductive to allow the bristles to be grounded to ensure that the bristles are grounded and a material receiving what is transferred is diselectrified, as described in the document.
A diselectrification brush is used to diselectrify sheets or the like. If the sheet or the like is not diselectrified, the sheet or the like is disadvantageously attracted to the photoreceptor drum. More specifically, the sheet or the like does not readily come off the photoreceptor drum and is not transported smoothly. Furthermore, if the charged sheet or the like is continuously transported, the sheet being transported is disadvantageously attracted by other components. In other words, the performance of transporting the sheet is impaired. Accordingly, diselectrification of the sheet or the like must be ensured at a transport path immediately following the photoreceptor drum.
Japanese Patent Laying-Open Nos. 9-114277 and 2001-154495 disclose apparatuses provided with a diselectrification brush for diselectrification. However, they disadvantageously have a complicated mechanism to ground the diselectrification brush. Furthermore, they have a large number of components resulting in poor productivity.
The present invention has been made to overcome the above disadvantages and it contemplates a laser printer having a symbol configuration and formed of a reduced number of components.
To achieve the above object the present invention in one aspect provides a laser printer including: a columnar photoreceptor drum; a transfer roller formed in a column and arranged to linearly contact the photoreceptor drum; a transfer roller frame covering the transfer roller and holding a rotation shaft of the transfer roller; a metallic outer frame having the transfer roller frame pivotably fixed thereto; a metallic spring formed to bias the transfer roller frame toward the photoreceptor drum; and a diselectrification brush arranged on an external surface of the transfer roller frame. The spring is formed of a single elongate member, and includes a helical portion, and a first extension extending from the helical portion toward the diselectrification brush to contact the diselectrification brush, a second extension extending from the helical portion toward the outer frame to contact the outer frame. The first extension has a portion bent to be flat, as seen in a plane, along a surface of the diselectrification brush and is formed to be biased toward a surface of the diselectrification brush. The second extension has a portion bent to be flat, as seen in a plane, along a surface of the outer frame and is formed to be biased toward a surface of the outer frame. A laser printer having a simplified configuration and formed of a reduced number of components can thus be provided.
To achieve the above object the present invention in another aspect provides a laser printer including: an outer frame; a photoreceptor drum; a transfer roller contacting the photoreceptor drum; a transfer roller frame holding the transfer roller; a diselectrification brush fixed to the transfer roller frame; and a resilient member at least having a surface formed of conductive material for biasing the transfer roller toward the photoreceptor drum. The resilient member is formed of a single member, and has one end contacting the diselectrification brush and the other end contacting the outer frame. A laser printer having a simplified configuration and formed of a reduced number of components can thus be provided.
In the present invention preferably the resilient member is formed of a single elongate member of metal, and includes a helical portion, and a first extension extending toward the diselectrification brush to contact the diselectrification brush, a second extension extending toward the outer frame to contact the outer frame. This can facilitate forming the resilient member.
In the present invention preferably the first extension is linearly formed and adapted to be biased toward a surface of the diselectrification brush. This ensures that the first extension is brought into contact with the diselectrification brush.
In the present invention preferably the second extension is linearly formed and adapted to be biased toward a surface of the outer frame. This ensures that the second extension is brought into contact with the outer frame.
The foregoing and other objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description of the present invention when taken in conjunction with the accompanying drawings.
With reference to
Along transport path 71 are arranged a transport roller 32 transporting the sheet, and a photoreceptor drum 2 and a transfer roller 1 for placing toner in a desired form on a surface of the sheet. Also arranged along transport path 71 is a fixture roller 33 fixing the toner on the surface of the sheet.
Along transport path 71 a diselectrification brush 3 is positioned adjacent to a location passing the sheet having just contacted photoreceptor drum 2. In the present embodiment diselectrification brush 3 has bristles spaced from transport path 71, as predetermined.
Casing 40 accommodates a toner cartridge 39 substantially at a center thereof. Toner cartridge 39 has toner therein. Toner cartridge 39 is exchangeably formed so that when toner runs out, toner cartridge 39 can be exchanged. In
In the present embodiment photoreceptor drum 2 is arranged in casing 40 closer to a rear side. Photoreceptor drum 2 and transfer roller 1 are arranged to sandwich the sheet or the like to be printed. Photoreceptor drum 1 is arranged in contact with a developer roll 34.
Transfer roller 1 is surrounded by a transfer roller frame 20. In the present embodiment, transfer roller 1, photoreceptor drum 2, developer roll 34 and other similar various types of rollers are each formed in a column.
Transfer roller frame 20 is formed to have the longitudinal direction substantially parallel to the transfer roller's axial direction. Transfer roller frame 20 is provided with recesses 25 and 29 at a back surface at opposite ends as seen in the longitudinal direction.
Recess 25 is formed in a trench penetrating transfer roller frame 20 in a direction perpendicular to the longitudinal direction. Recess 29 is a recessed portion provided at the back surface of transfer roller frame 20.
In the present embodiment the transfer roller is biased toward the photoreceptor drum by resilient means implemented by springs 10, 19. In the present embodiment springs 10, 19 are both formed of metal. Spring 10 is partially arranged in recess 25, and spring 19 is partially arranged in recess 29. Springs 10 and 19 are formed to bias transfer roller frame 20 toward photoreceptor drum 2. Below transfer roller frame 20 is provided a high voltage producing plate 28 and a conical spring 26 and a connection line 27 electrically connect plate 28 and spring 19.
Transfer roller frame 20 has a support shaft 45 connected to outer frame 21. Transfer roller frame 20 is adapted to pivot around support shaft 45 serving as a spindle. Transfer roller 1 pivots together with transfer roller frame 20 integrally.
Of an outer surface of transfer roller frame 20, an end of that side facing photoreceptor drum 2 is provided with diselectrification brush 3. In the present embodiment, diselectrification brush 3 includes bristles 4 providing diselectrification and a conductive tape 5 electrically connecting bristles 4. In the present embodiment, bristles 4 is sandwiched and thus fixed between transfer roller frame 20 and conductive tape 5. Conductive tape 5 is formed in a plane and has a surface provided with a flat portion.
With reference to
The first extension 12 has an end with a first bent portion 14 in a plane along a surface of diselectrification brush 3 in the form of the letter U, as seen in a plane, contacting diselectrification brush 3 at conductive tape 5 on a surface at a flat portion. The first extension 12 is adapted to be biased toward a surface of diselectrification brush 3. More specifically, the first extension 12 is adapted to have its portion of the elongate member to resiliently press the first bent portion 14 against conductive tape 5.
Spring 10 includes a second extension 13 extending from helical portion 11 toward outer frame 21 to contact the frame. The second extension 13 is formed to extend sideways. The second extension 13 includes a second bent portion 15 contacting outer frame 21 and a coiled portion 16 formed to be biased the second bent portion 15 toward a surface of outer frame 21.
The second extension 13 has an end with a second bent portion 15 in a plane along a surface of outer frame 21 in the form of the letter U, as seen in a plane, contacting outer frame 21 at a flat portion. The second extension 13 includes a coiled portion 16 formed to bias the second bent portion 15 toward outer frame 21.
In
Internal to toner cartridge 39, developer roll 34 is rotated to supply photoreceptor drum 2 with toner accommodated in toner cartridge 39. As it is transported through between photoreceptor drum 2 and transfer roller 1, the sheet is provided on a surface thereof with toner in a shape to be printed.
The sheet having passed between transfer roller 1 and photoreceptor drum 2 is diselectrified by diselectrification brush 3 arranged at a location immediately following transfer roller 1 and photoreceptor drum 2. This diselectrification can prevent the sheet or the like to be printed from being attracted to a surface of photoreceptor drum 2. Furthermore the diselectrification can also prevent the sheet being transported from being attracted to other components and thus transported unsmoothly.
The sheet or the like to be printed that has been diselectrified by diselectrification brush 3 is transported toward fixture roller 33. The sheet with toner placed thereon contacts fixture roller 33 and thus has the toner fixed thereon. Thereafter, the sheet is transported for example by a transport roller to an output port. The sheet or the like to be printed is thus printed.
In
As shown in
As shown in
In the present embodiment the resilient means or spring 10 is formed of a single, metallic elongate member including helical portion 11, the first extension 12 extending toward diselectrification brush 3, and the second extension 13 extending toward outer frame 21. This arrangement can facilitate forming the above described resilient means.
Furthermore in the present embodiment the first extension 12 is linearly formed and adapted to be spring biased toward diselectrification brush 3. This arrangement ensures that the first extension 12 contacts diselectrification brush 3. It also ensures that if the laser printer is used for many years the first extension and the diselectrification brush can still be brought into contact with each other.
In the present embodiment the first extension 12 is partially bent to bias the first bent portion 14 toward diselectrification brush 3. However, it is not limited to this manner, and the first extension 12 biased toward diselectrification brush 3 suffices. For example, as shown in
Furthermore in the present embodiment spring 10 has the second extension 13 linearly formed and adapted to be biased toward a surface of outer frame 21. More specifically, the second. extension 13 is provided with coiled portion 16 to bias the second bent portion 15 toward the surface of outer frame 21. This arrangement ensures that the second bent portion 15 is brought into contact with outer frame 21. It also ensures that if the laser printer is used over time the second extension 13 can still be brought into contact with outer frame 21.
In the present embodiment the second extension 13 is biased toward outer frame 21 by a means implemented by coiled portion 16. However, it is not limited to this manner, and for example the resilience of metal caused when the metallic second extension is bent may be utilized to bias the second extension 13 toward outer frame 21.
Furthermore in the present embodiment the first extension 12 includes the first bent portion 14 formed to be flat as seen in a plane. The first bent portion 14 is arranged along a flat portion of a surface of diselectrification brush 3 and thus contacts diselectrification brush 3. This arrangement allows the first extension to contact the diselectrification brush over an increased area to reliably ground the brush.
Furthermore the second extension 13 has the second bent portion 15 formed to be flat as seen in a plane. The second extension 13 is arranged along a flat portion of a surface of outer frame 21 and thus contacts outer frame 21. This arrangement allows the second extension 13 to contact outer frame 21 over an increased area to provide reliable grounding.
In the present embodiment the diselectrification brush includes a conductive tape and bristles. However, the diselectrification brush is not limited to this manner, and it may have any configuration that can diselectrify a sheet or the like. Furthermore in the present embodiment the first extension contacts the diselectrification brush at an upper surface. However, it is not limited to this manner, and the first extension that is electrically connected to the diselectrification brush suffices. For example, the diselectrification brush may be provided with a hole receiving the first extension to electrically connect the diselectrification brush and the first extension.
Furthermore in the present embodiment the diselectrification brush is electrically connected to a spring formed of a metallic elongate member. However, it is not limited to this manner, and at least having a surface formed of conductive material suffices. Furthermore a resilient means implemented by a spring including a helical portion is provided. However, it is not limited to this manner, and for example the resilient means may include a plate spring.
Furthermore in the present embodiment the outer frame electrically connected to the resilient means supports a transfer roller frame. However, it is not limited to this manner, and the electrically connected outer frame may be a frame having any conductance. Furthermore the transfer roller frame may be supported for example by a separately formed support frame.
The present invention can provide a laser printer having a simplified configuration and formed of a reduced number of components.
Although the present invention has been described and illustrated in detail, it is clearly understood that the same is by way of illustration and example only and is not to be taken by way of limitation, the spirit and scope of the present invention being limited only by the terms of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2004-174177 | Jun 2004 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5345295 | Takano et al. | Sep 1994 | A |
5758247 | Yanashima et al. | May 1998 | A |
Number | Date | Country |
---|---|---|
5-107935 | Apr 1993 | JP |
9-114277 | May 1997 | JP |
2001-154495 | Jun 2001 | JP |
Number | Date | Country | |
---|---|---|---|
20050276637 A1 | Dec 2005 | US |