The firearms training industry has, for a number of years, trained individuals in the use of firearms by using systems that incorporate simulated weapons and simulated scenarios. Typically, these systems present a trainee with simulated situations which require the trainee to exercise judgment in determining when and where to fire a simulated weapon. The simulated situations are typically produced as an interactive cinematic environment using videotaped situations with actual people and locations to create a realistic environment for the trainee. Throughout the cinematic experience, the systems detect and record the location of each “shot” fired by the trainee in relation to the position of the character to which the shot was directed.
In such systems, the detection and location of a trainee's shot is often accomplished through use of a simulated weapon that works in conjunction with data acquisition equipment. The simulated weapon and data acquisition equipment may take on various forms. For example, in one weapons training system, the simulated weapon may employ a laser light source to generate a spot on the screen (or reflective surface) when the weapon is aimed and fired by the trainee. The data acquisition equipment employs an area array image sensor, such as a Charge Coupled Device (CCD) camera, to detect and locate the position of the laser spot when it is directed upon the screen by the trainee.
To accomplish these tasks, the CCD camera is aimed at the screen to constantly receive an updated image consisting of light reflected from the screen. Before entering the CCD camera, the reflected light passes through a filter that prevents passage of all light not having a wavelength equal to that of the laser light. Thus, only reflected light from the laser spot actually enters the CCD camera where it is imposed on a sensor surface comprised of individual CCD sensors arranged in a two-dimensional array (or row and column grid) like the discrete pixels on a computer monitor or television screen. When struck by the reflected light of the laser spot, the sensors produce an electrical signal corresponding to the intensity of the light received by the sensors. By scanning all of the sensors in the sensor array one row after another, the current image received by the CCD camera is converted into a plurality of discrete electrical signals or pixels. The presence and location of a laser spot is determined by subsequent analysis of the acquired pixel data.
Other firearms training systems enable multiple individuals to be trained simultaneously as a team using similar simulated weapons and data acquisition equipment. To detect and distinguish between multiple weapons that may be fired at the same time by multiple trainees, some systems employ simulated weapons having a laser light source which is modulated at a preset frequency. By modulating the lasers of the different weapons in the system at different preset frequencies, appropriate data acquisition equipment is able to distinguish a laser spot generated by one weapon from the laser spots generated by the other weapons.
Various patents disclose the use of laser or other light energy with firearms to simulate firearm operation. For example, U.S. Pat. No. 3,633,285 discloses a laser transmitting device for marksmanship training. The device is readily mountable to the barrel of a firearm, such as a rifle, and transmits a light beam upon actuation of the firearm firing mechanism. The laser device is triggered in response to an acoustical transducer detecting sound energy developed by the firing mechanism. The light beam is detected by a target having a plurality of light detectors, whereby an indication of aim accuracy may be obtained.
Another patent, U.S. Pat. No. 3,938,262, discloses a laser weapon simulator that utilizes a laser transmitter in combination with a rifle to teach marksmanship by firing laser bullets at a target equipped with an infrared detector. The laser weapon includes a piezoelectric crystal coupled to a laser disposed in a housing for mounting axially to a rifle barrel. The rifle may develop a mechanical force by firing a blank cartridge which generates a shock wave and vibrates the piezoelectric device.
Finally, U.S. Pat. No. 3,995,376 discloses a miniaturized laser apparatus mounted on a weapon, where the power source and circuitry for the laser apparatus are contained within the weapon. The laser weapon is fired in a normal manner by squeezing the trigger while aiming at a target.
In each of these training systems, where lasers are used to measure the accuracy of the shooter, is it important that the laser light source be properly aligned with the direction of the barrel of the weapon simulator so that the laser will follow the same path as a projectile of an actual firearm. This is problematic, in that even when the light source is properly aligned in the barrel initially, the laser light source may drift or move within the barrel during operation of the firearm, and create an inaccurate result. Specifically, recoil in the firearm can sometimes create movement in the laser light source that misaligns the laser light from the projected path of fired ammunition. Thus, when the laser is misaligned with the direction of the barrel of the weapon simulator, inaccurate results are obtained.
In attempting to prevent movement of the laser light source within the firearm barrel, several solutions have been proposed. One such solution includes the application of an adhesive material to the laser light source to keep it secure within or to the firearm barrel. A problem with such a solution is that the use of adhesive materials could cause the laser light source to receive the full impact of recoil of the firearm, which would lead to the premature failure of that laser light source. In addition, the adhesive materials would prevent or substantially hinder the removal of the laser light source from the barrel of the firearm, such that repair or improvements to the firearm would be difficult.
A laser stabilization assembly for firearms is used in conjunction with a firearm to steady a laser module. The laser stabilization assembly includes a first spacer, a second spacer and a lock ring that is secured to the barrel of the firearm via a threaded insert and locking components. The assembly is mounted proximate to the barrel of the firearm in the same general area allocated for a conventional laser apparatus of a conventional weapon simulator.
A laser stabilization assembly for firearms is illustrated in the following drawings:
a is a front elevational view of a second or distal spacer of the laser stabilization assembly of the present invention;
b is a side elevational view of the second spacer illustrated in
c is a perspective view of the second spacer illustrated in
a is a front elevational view of a first or proximal spacer of the laser stabilization assembly of the present invention;
b is a side elevational view of the first spacer illustrated in
c is a perspective view of the first spacer illustrated in
a is a front elevational view of a lock ring of the laser stabilization assembly of the present invention;
b is a side elevational view of the lock ring illustrated in
c is a perspective view of the lock ring illustrated in
a is an exploded sectional view of the laser stabilization assembly of the present invention;
b is an exploded view of the laser stabilization assembly of the present invention;
a is an exploded view of an alternative mounting of the laser stabilization assembly with the weapon barrel;
b and 8c are side sectional views of the laser apparatus;
d is an end elevational view of the laser apparatus;
a is a side elevational view of a barrel guide; and
b is a top plan view of the barrel guide illustrated in
Looking now to
In assembling the laser stabilization assembly 10, the first or proximal spacer 14 may be installed in the barrel 12 independently of the laser apparatus 16, wherein the laser apparatus 16 is then connected to the proximal spacer 14. On the other hand, the wired connections 15 of the laser apparatus 16 may be fitted through the first or proximal spacer 14 to be connected with a control module 17. Since the wired connectors 15 are fit through the first spacer or proximal spacer 14, the first or proximal spacer 14 and the laser apparatus 16 may be jointly installed in the barrel 12. Once the first or proximal spacer 14 and laser apparatus 16 are mounted within the barrel 12, the second or distal spacer 18 is mounted in the barrel 12 proximate the laser apparatus 16 on the end of the laser apparatus 16 that is opposite the first or proximal spacer 14. The first and second spacers 14, 18 therefore form a mounting combination for the laser apparatus 16.
The mounting combination is seated in the barrel 12 by installing a threaded barrel guide 20 (see
The first or proximal spacer 14 may be made of a strong resin material such as acetal polyoxymethylene (which is commonly referred to by the federally registered trademark Delrin). Such resins offer superior mechanical properties including high strength and rigidity over a broad temperature range, toughness and resistance to repeated impact and good electrical insulation. Components made from materials such as acetal polyoxymethylene have many of the same characteristics of industrial metals such as brass, aluminum, zinc, and stainless steel. Some comparable properties include stiffness, dimensional stability, impact resistance, and structural strength. These properties have led acetal polyoxymethylene to replace many industrial metals in various applications. More specifically, acetal polyoxymethylene is an outstanding general purpose mechanical plastic, and is popular for its versatility. It has good overall mechanical properties, dimensional stability, low moisture absorption, and chemical resistance. In making the first spacer 14 of a material such as acetal polyoxymethylene, the laser stabilization assembly 10 is able to provide a perfect stop to laser apparatus 16 when the weapon simulator 8 is actually fired and recoil is created.
Looking to
The second or distal spacer 18 may be made of material such as a polyurethane. Polyurethane materials are considered somewhat elastic, abrasion and chemical resistant, and can be produced in a wide range of hardness. Because polyurethane provides more “give”, it acts as a shock absorber for the laser apparatus 16. The hardness of the material chosen is dependant on the required damping and compression. The second or distal spacer 18 is positioned at the forward end of the weapon simulator 8, away from the stock 6, such that when the simulator with forward shock is fired, the shock will be absorbed by the second or distal spacer 18. With a simulator having shock in the opposite direction, the first or proximal spacer 14 would be made of a material such as polyurethane, while the second or distal spacer 18 would be made with a material such as acetal polyoxymethylene.
In the embodiment illustrated in
Referring to
A further embodiment of the present invention is illustrated in
While the laser stabilization assembly 10 is illustrated in the attached figures in use with an SRS assault rifle simulator, it is to be noted that it may be incorporated into any number of other firearm designs and firearm frames. The present design may be used in any weapon simulator as needed to stabilize the laser apparatus 16 mounted therein or thereto.
While this invention has been described with reference to preferred embodiments thereof, it is to be understood that variations and modifications can be affected within the spirit and scope of the invention as described herein and as described in the appended claims.
This application claims priority from U.S. Provisional Patent Application Ser. No. 60/575,443, filed on May 28, 2004, which is incorporated herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3633285 | Sensney | Jan 1972 | A |
3938262 | Dye et al. | Feb 1976 | A |
3995376 | Kimble et al. | Dec 1976 | A |
4281993 | Shaw | Aug 1981 | A |
5299375 | Thummel et al. | Apr 1994 | A |
5432598 | Szatkowski | Jul 1995 | A |
5842300 | Cheshelski et al. | Dec 1998 | A |
6473980 | Ripingill et al. | Nov 2002 | B2 |
6579098 | Shechter | Jun 2003 | B2 |
6742299 | Strand | Jun 2004 | B2 |
6793494 | Varshneya et al. | Sep 2004 | B2 |
6869285 | Jones, II | Mar 2005 | B1 |
6966775 | Kendir et al. | Nov 2005 | B1 |
Number | Date | Country | |
---|---|---|---|
60575443 | May 2004 | US |