The subject matter disclosed herein relates to spark plugs for internal combustion engines, and more particularly, to electrodes for such spark plugs. More particularly, the subject matter disclosed herein relates to a method of forming the electrodes for such spark plugs.
Conventional spark plugs for internal combustion engines generally include a center electrode and a ground electrode. The center electrode is traditionally mounted within a center bore of an insulator of the spark plug and extends past the insulator at a first end of the spark plug. The ground electrode typically extends from a shell surrounding the insulator near the first end. A spark gap is formed between an end of the center electrode and an end of the ground electrode. Additionally, a noble metal tip is commonly located at the end of one or both of the electrodes facing the spark gap. Traditional spark plug construction frequently includes attaching these noble metal tips directly to the surface of the electrode, often with a joint or weld application.
Modern engine applications expose spark plug electrodes to severe thermal cycling that can create stress on a joint or weld connecting the noble metal tip to the electrode. Over time, such stress can ultimately cause the noble metal tip to detach from the electrode, rendering the spark plug inefficient or inoperable. Spark plugs having a noble metal tip attached to an electrode by a single weld created in a single thermal step are most susceptible to this type of phenomena. A single weld connection created in a single thermal step may result in local stresses at the weld interface between the noble metal tip and the electrode due to the rapid heating and cooling involved in the welding process. These stresses may contribute to premature detachment of the noble metal tip when a spark plug is used in an engine that undergoes thermal cycling.
Accordingly, while existing spark plug electrode manufacturing processes are suitable for their intended purposes, the need for improvement remains, particularly in providing a process of welding a noble metal tip to the electrode that improves the reliability, durability, and the expected life of the spark plug. It is desirable to resolve issues of premature detachment of the noble metal tip by reducing or eliminating the creation of local stress in the weld interface during the welding process of the noble metal tip to the electrode.
According to one illustrative embodiment, an electrode for a spark plug is provided including an electrode with a tip end. A noble metal tip has a fold around its periphery. A portion of the noble metal tip is affixed to the tip end of the electrode by a first weld. A second weld joins the fold of the noble metal tip to the tip end of the electrode. The second weld forms a seal over the first weld.
According to another illustrative embodiment, a spark plug is provided including an elongated center electrode. An insulator substantially surrounds the center electrode and an outer shell surrounds the insulator. A ground electrode is attached to an end of the outer shell, the ground electrode including an electrode body. A first weld affixes a noble metal tip to the electrode body. The noble metal tip has a fold around its periphery. A second weld joins the fold of the noble metal tip to the electrode body and creates a seal over the first weld.
According to yet another illustrative embodiment, a method for forming an electrode is provided including forming a first weld between a noble metal tip and an electrode body. A fold is then created around the periphery of the noble metal tip. A laser beam from a laser is then applied to the electrode body and the noble metal tip to join the fold to the electrode body and to reinforce the first weld.
In accordance with yet another non-limiting exemplary embodiment of the present invention, a method for manufacturing a robust electrode is provided.
These and other advantages and features will become more apparent from the following description taken in conjunction with the drawings.
The subject matter, which is regarded as the invention, is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
A spark plug 10 in accordance with illustrative embodiments of the present disclosure includes a center electrode 12, an insulator 14 surrounding the center electrode 12, and a tubular metal shell 16 surrounding the insulator 14. The center electrode 12 extends through the insulator 14 at a first end of the spark plug 10 and a ground electrode 44 extends from the tubular metal shell 16 near the first end of the spark plug 10. A spark gap 30 is formed between the center electrode 12 and the ground electrode 44. In illustrative embodiments, a noble metal tip 28 may be mounted on a tip 34 of the center electrode 12, a tip 36 of the ground electrode 44 or both tips 34 and 36. The noble metal tip 28 includes a fold 52 around its periphery, as best illustrated in
Referring now to
In illustrative embodiments, and as seen in
Similarly, in illustrative embodiments, the tip 36 of the ground electrode 44 includes a discharge surface 46. A noble metal tip 28 may be welded to the side surface of the ground electrode 44 coaxially with the noble metal tip 28 of the center electrode 12. The noble metal tip 28 of the ground electrode 44 may be made from materials including gold, palladium, iridium, platinum, or an alloy thereof in any suitable form for enabling proper spark plug functioning. For example, a noble metal tip 28 may be added to the tip 36 of the ground electrode 44 to improve wear resistance and maintain the spark gap 30. In illustrative embodiments, the center electrode 12 and the ground electrode 44 are positioned such that the noble metal tips 28 welded thereto form the spark gap 30 there between.
Other embodiments may omit either the noble metal tip 28 affixed to the center electrode 12 or the noble metal tip 28 attached to the ground electrode 44. If the noble metal tip 28 of the center electrode 12 is omitted, the spark gap 30 is formed between the discharge surface 46 of the center electrode 12 and the noble metal tip 28 of the ground electrode 44. If the noble metal tip 28 of the ground electrode 44 is omitted, the spark gap 30 is formed between the discharge surface 46 of the ground electrode 44 and the noble metal tip 28 of the center electrode 12.
In an illustrative embodiment, a noble metal tip 28 is connected to either the center electrode 12 or the ground electrode 44 by a first weld 40, for instance a resistance weld, as generally known in the industry. Exemplary forms of resistance welding include but are not limited to electrical resistance welding, such as spot welding and seam welding, for example.
For illustrative purposes, the description herein and
Because of the pressure applied during the manufacturing process to flatten the noble metal tip 28, a fold 52 of material is formed around the periphery of the noble metal tip 28 adjacent the discharge surface 46 of the ground electrode 44. The fold 52 may have a variable thickness around the periphery of the noble metal tip 28. Portions of the fold 52 may have a thickness greater than, equal to, or less than the thickness T of the center portion 50 of the flattened noble metal tip 28. Similarly, the fold 52 may have a variable width around the periphery such that the width of some portions may be negligible.
After the fixed noble metal tip 28 is flattened, a second weld 42 is applied to portions of the ground electrode 44 to seal the attachment of the noble metal tip 28 to the ground electrode 44. In illustrative embodiments, the second weld 42 may be applied to the fold 52 and the discharge surface 46 of the ground electrode 44 adjacent the fold 52. By welding the fold 52 to the ground electrode 44, the first weld 40 formed between the noble metal tip 28 and the ground electrode 44 is thereafter sealed and protected from spark discharge and high temperature oxidation.
Various methods of welding the second weld 42 are envisioned. In illustrative embodiments, optical or laser beams of energy (not shown) produced from a laser are applied to at least a portion of the discharge surface 46 of the ground electrode 44 and the fold 52. Similarly, when welding the noble metal tip 28 to the center electrode 12, optic or laser beams of energy (not shown) produced from a laser are applied to at least a portion of the discharge surface 46 of the center electrode 12 and the fold 52. As illustrated in
Application of the second weld 42 may be formed in a variety of known manners. In an illustrative embodiment, a laser beam may be moved in a random pattern. In another illustrative embodiment, the laser beam may be moved in a linear striping pattern. If the laser beam is moved linearly, the space between each line may be approximately 0.06 millimeters or the lines may be overlapped by some percentage of line width. Yet another illustrative embodiment includes moving the laser beam in a geometric pattern. Exemplary geometric patterns include a series of circles, a cross hatch pattern, a spiral pattern originating from a center of the center portion 50, or a star pattern with lines radiating outward from a center of the center portion 50 to the fold 52, for example. The laser and its resulting laser beam may be configured to create a series of narrow welds which reinforce the interface between the noble metal tip 28 and the electrode 12 or 44. Additionally, the laser beam may be configured to bond the fold 52 around the periphery of the noble metal tip 28 to the electrode 12 or 44, thereby increasing the weld interface area between the noble metal tip 28 and the electrode 12 or 44. By joining the fold 52 of the noble metal tip 28 and the electrode 12 or 44 in such a manner, the first weld 40 formed between the noble metal tip 28 and the electrode 12 or 44 is sealed and protected from spark discharge and high temperature oxidation. Further, by using this method, advantages are gained in that little or substantially no internal stresses are created at the weld interface of the first weld 40 between the noble metal tip 28 and the electrode 12 or 44. Consequently, the spark plug 10 is more durable and will have a prolonged life since it is less susceptible to failure during thermal cycling.
The insulator 14 of the present disclosure may be configured as any traditional insulator 14 known in the art. In illustrative embodiments, the insulator 14 has an elongated, substantially cylindrical body with multiple sections of varying diameters. The insulator 14 is placed into the metal shell 16 so that the leading end portion 18 of the insulator 14 protrudes from an end of the metal shell 16. In an illustrative embodiment, the insulator 14 may be made of a ceramic sintered body, such as alumina, for example. The insulator 14 has a through hole 20 formed therein so that the center electrode 12 can be positioned within the insulator 14 along an axial direction.
In illustrative embodiments, a terminal stud 22 is fixedly inserted into a first end of the through hole 20 of the insulator 14. Similarly, the center electrode 12 is fixedly inserted into the second end of the through hole 20. In an illustrative embodiment, a resistor 25 may be disposed in the through hole 20 and between the terminal stud 22 and the center electrode 12. Opposite ends of the resistor 25 are electrically connected to the center electrode 12 and the terminal stud 22 through sealing layers of electrically conductive glass 24. In illustrative embodiments, the terminal stud 22 may be made from steel or a steel based alloy material with a nickel plated finish. The terminal stud 22 additionally includes a terminal nut 26 that protrudes from the insulator 14 and attaches to an ignition cable (not shown) to supply electrical current to the spark plug 10 when connected.
An illustrative method of forming an electrode 12 includes welding the noble metal tip 28 to the tip 34 or 36 of the electrode 12 or 44 by means of the first weld 40. The first weld 40 may be a resistance weld. After the noble metal tip 28 is secured to the electrode 12 or 44, a fold 52 is created around the periphery of the noble metal tip 28. In illustrative embodiments, the fold 52 is created by flattening the noble metal tip 28 by coining or stamping. After the fold 52 is created, the fold 52 may extend over a portion of the tip 34 or 36. The method includes applying a laser beam or additional welding process (e.g., the second weld 42) to the electrode 12 or 44 near or at the tip 34 or 36 to join the fold 52 to the electrode 12 or 44, thereby reinforcing the first weld 40.
While the principles of the present invention are depicted as being implemented within a particular spark plug, it is contemplated that the principles of the present invention may be implemented within various types and sizes of spark plugs.
While the invention has been described with reference to an exemplary embodiment, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the present application.
This application claims the benefit of U.S. Provisional Patent Application No. 61/602,192, filed Feb. 23, 2012 and entitled “Spark Plug Electrode Laser Welding Method,” the entire disclosure of which is incorporated herein.
Number | Date | Country | |
---|---|---|---|
61602192 | Feb 2012 | US |