The present invention relates to welding, and more particularly, to the combination of laser welding, special fixturing, the machined geometries and various methods being employed, to minimize the distortion of cast components as a result of the welding process. The invention minimizes the distortion of cast components and permits a change in the standard assembly sequence of machine, weld, machine again and clean to machine, clean, and finish weld components.
Over the years, the nuclear power industry has seen dramatic improvements in fuel designs. At present, there is a greater expectation that fuel will operate without failures. Some of the most common nuclear fuel failure mechanisms include: (1) debris fretting, (2) cladding corrosion, (3) pellet cladding interaction, and (4) failure due to manufacturing defects. One device that is used to prevent debris fretting is a Generation III Defender debris filter, which prevents the entry of debris into a nuclear reactor's fuel bundle, a problem that has previously caused fuel failures in reactors. The Defender debris filter is used in the BWR fleet, a series of boiling water nuclear reactors operating in the United States, Mexico, Japan, India, and several European countries.
Gas tungsten arc welding, also known as tungsten inert gas (“TIG”) welding, is an arc welding process that uses a non-consumable tungsten electrode to produce a weld. The weld area is protected from atmospheric contamination by a shielding gas, such as the inert gas argon. A filler metal is typically used, though some welds do not require it. A constant current welding power supply 55 produces energy, which is conducted across an arc through a column of highly ionized gas and metal vapors called plasma.
TIG welding is commonly used to weld thin sections of stainless steel and light metals, such as aluminum, magnesium and copper alloys. TIG welding allows for stronger, higher quality welds; however, the process is complex and significantly slower than other welding techniques. TIG welding is also used to weld cast plates, such as stainless steel cast surfaces. However, the process can create excessive distortion in such cast plates due to the heat generated in the welding process.
TIG welding has been used is in the manufacture of BWR fuel assembly lower tie plates. One of the difficulties with the use of TIG welding of cast components like the lower tie plates has been the distortion encountered when welding cast halves or machined components together in an assembly process. The distortion encountered is typically extreme enough to require final machining of the component due to the distortion.
The present invention is directed to the use of laser welding to minimize distortion on cast stainless steel components as a result of welding. More specifically, the present invention is directed to the process of using laser welding in the assembly of boiling water reactor fuel debris filters, such as the Defender debris filter. The laser welding process minimizes the distortion of pre-machined cast surfaces on the Defender debris filter lower tie plate by applying minimal heat during the welding of a cover plate to the lower tie plate.
During the laser welding process, a laser beam is applied symmetrically about a centerline between weld flanges on the cover plate and the lower tie plate. This concentration of light energy at the centerline between the cover plate weld flanges and the lower tie plate generates heat that is conducted within the joint formed between the cover plate and the lower tie plate, causing the metals from which the plates are formed to change from a solid state, into a liquid state of molten metal, and thereby, combine the centerline between the weld flanges on the cover plate and the lower tie plate. After the centerline of the two metal plates change back into a solid state, the two plates are then said to be welded together so as to form a butt welded joint between the cover plate and the lower tie plate.
The welding process of the present invention utilizes a fixture designed to hold the debris filter lower tie plate through four degrees of motion under a fixed focused laser source during welding. Applying laser welding in the assembly of the lower tie plate minimizes distortion during the process of installing the debris filter within the pre-machined cast lower tie plate. The application of the laser weld subsequent to final machining of components provides a finished product that differs from typical high heat (Energy) input techniques (TIG). The techniques differ by; 1) no further machining of areas distorted by welding, 2) debris free cleaning, ensuring the exclusion of foreign material, and 3) resulting weldment geometry designed to minimize the concern of stress corrosion cracking.
The present invention is also directed to the reduction of stress corrosion cracking resulting from crevices in partial penetration welds that might occur in the laser welding process. A specified minimum weld penetration along with reliefs behind the cover plate weld flange geometry, are intended to eliminate any possibility of cervices being created during the welding process at the interface between the cover plate and the lower tie plate. The resistance of the Defender weldment to stress corrosion cracking is preserved if the depth of weld penetration is equal to or greater than 70% of the weld joint.
After the filter plate assembly 12 is inserted into tie plate 14, cover plate 16 is fitted over the opening 11 leading to rectangular cavity 25 and tack welded preferably at two locations 22 and 24 shown in
Prior to welding the weld joints between the cover plate 16 and the lower tie plate 14 are wiped with acetone or alcohol to ensure all the components a clean and contaminate free, including all work surfaces. The filter plate assembly 12 is orientated into the lower tie plate's cavity 25 and then placed into the tack weld station 50. The copper chill block 49 that faces the lower tie plate 14 base, contains several precise locating pins that are made to fit snug into either the nuclear fuel pin holes 9 and/or the fuel flow holes 15 that are located on the surface base 31 of the lower tie plate 14. Copper chill block 49 has a negative grounding cable that's attached from the Digital TIG tack welding power supply 55. The lower tie plate 14 is then clamped into the copper chill block 49 by the manual loading and unloading clamp/ram 53. The filter plate assembly 12 is inserted into the lower tie plate cavity 25 until it bottoms on the opposite wall. The preferred orientation of the filter assembly 12 within the lower tie plate cavity 25 utilizes the compressive nature of the filter assembly 12. The push rod 47 locates the filter 12 and seats the filter within the inner cavity 25. The push rod is locked in place using locking device 45 to avoid filter 12 slippage and proper engagement of cover plate wedge 37. Thereafter, a fixture guide plate 56 is installed and held in place by the two palm-grip hand knobs 48, that are attached to the top side of the lower tie plate fixture 52. Once the fixture guide plate 56 is aligned with an edge of the tie plate's rectangular cavity 25/opening 11, an alignment tool 64 is then used to set a cover plate clamp 58 a predetermined distance from the guide face edge. Preferably, this distance is approximately 010″. Alignment tool 64 is placed on edge against the inner front surface of the fixture guide plate 56, with the two palm-grip hand knobs 48 remaining loose enough for final adjustment of cover plate 16 gap clearance. Alignment tool 64 surface “A” 63 will come to rest upon horizontal weld surface 19 within cavity/opening 11, while surfaces “B” 61 of the alignment tool 64 will come to rest upon the top surface of the fixture guide plate 56. The alignment tool 64 is pulled against the inner surface of the fixture guide plate 56 and tightened into a final position by the two palm grip hand knobs 48. The cover plate 16 is then installed and compressed with a manual arbor press 60 by way of the arbor press handle 57. Before seating the cover plate 16, a minimum force of 30 lbs must be indicated by the load cell 62. The cover plate 16 is fully seated with additional arbor press force to minimize gap between the cover plate 16 and the tie plate 14 and to seat the cover plate 16 completely. If the load sensor 62 located on the “Z” axis reads above 30 pounds, but less than 1,000 pounds, the amount of force being used to compress the filter assembly 12 is within an acceptable range. Once cover plate 16 has been seated, the guide plate 56 is removed and the cover plate 16 is visually inspected to ensure that it is properly seated. If necessary, a small rubber mallet can be used with light taps to re-center the cover plate 16 in the lower tie plate 14 rectangular cavity/opening 11. Preferably, the maximum gap between the cover plate 16 and the lower tie plate 14 is 0.010″ with a maximum gap on the two vertical joints 20 at 0.003″. While maintaining a load on the cover plate 16 and filter 12 with the arbor press 60 the final position of the filter 12 is inspected for proper positioning below the cover plate wedge 37. Once this determination is made, two light tack welds 22 and 24 are made, as shown in
The welding station
The locations and configurations of the welded butt joints are shown in
The reliefs 28 behind the cover plate weld flanges 26, along with complete joint weld penetration are intended to eliminate any possibility of cervices at the interface between cover plate 16 and lower tie plate 14, and thereby, reduce stress corrosion cracking resulting from crevices in partial penetration welds that might otherwise occur in the laser welding process.
During the laser welding process of the present invention, the laser beam is applied symmetrically about a centerline between weld flanges 26 on cover plate 16 and lower tie plate 14 onto weld surfaces 29 on the cover plate 16 and weld surfaces 19 on the lower tie plate 14. The focused coherent laser energy between the cover plate weld flanges 26 and the lower tie plate 14 generates heat that is conducted into weld joints 20/21 formed between the cover plate 16 and the lower tie plate 14, causing the metal from which the plates are formed to change from a solid to a liquid, so as to combine the two separate liquid plate metals into one. After the two metals change back to a solid, the two plates 14 and 16 are welded together so as to form butt weld joints 20/21 between the two plates 14 and 16.
The present invention is also directed to the reduction of stress corrosion cracking resulting from crevices in partial penetration welds that might occur in a welding process. As noted above, complete joint weld penetration, along with reliefs 28 behind the cover plate weld flanges are intended to eliminate any possibility of cervices at the interface between the cover plate 16 and the lower tie plate 14.
Partial penetration welds, such as welds 40 and 42 shown in
In a preferred embodiment of the debris filter lower tie plate assembly 10, the filter plate assembly 12 is constructed from an austenitic stainless steel. Preferably, the lower tie plate 14 is a solution annealed CF3 casting stainless steel. Preferably, the cover plate 16 and each of wavy stainless steel plates 18 forming the filter plate assembly 12 are made from solution annealed 316L stainless steel. Preferably, the lower tie plate 14 and cover plate 16 are machined after annealing without subsequent heat treatment. Preferably, the filter element 12 is re-annealed after assembly and welding of the wavy stainless steel plates 18 and before insertion of the filter plate assembly 12 into the lower tie plate 14.
Stress corrosion cracking is not an issue with respect to the lower tie plate 14, due to the material used in its construction, i.e., cast, low-carbon stainless steel. Similarly, crevice-induced stress corrosion cracking is not an issue with the filter element 12 due to the high rate of coolant flow through the Defender debris filter lower tie plate assembly 10. Crevice-induced stress corrosion is an issue in the cover plate 16 in the region of the laser welds 20 and 21 used to attach cover plate 16 to lower tie plate 14, if the welds are not full penetration welds that include crevices.
The stress rule index, given in equation (1), provides a means for assessing the potential effect of weld crevices on the likelihood of stress corrosion cracking.
where
A lack of fusion at the weld roots 44 and 46 shown in
where
The stress concentration factors from equation (2) range from 4.5 to 8.3 for weld penetrations of slightly less than 100% to 50%, respectively. For reference, the stress concentration factor from elastic theory for the joint in
The nature of the mechanical loading differs between the top and bottom welds 21 (horizontal) and end welds 20 (vertical) between plates 16 and 14. That is, the forces needed to satisfy equilibrium create primarily a shear stress in the horizontal welds 20 and a tensile stress in the vertical welds 21. In both types of welds, shrinkage during post-weld cooling creates primarily tensile stress in the weld material.
The resistive force of the filter plate assembly 12 against the welded cover plate 16 varies with component dimensions. It is measured during installation of the cover plate 16 and ranges from 30 lbs. to a maximum of 1,000 lbs. The upper end of this range leads to plastic deformation of the filter element 12 within the lower tie plate inner cavity 25. The coolant pressure difference between the fuel bundle inlet and the bypass region is approximately 10 psi. Residual welding stresses approach the yield strength of the cover plate 16 and tie plate 14 due to shrinkage of the weld metal during solidification of the weld joints and the geometry of the joints. The force due to compression of the filter element 12 and residual weld stresses relax during operation of the Defender debris filter lower tie plate assembly 10 due to thermal and irradiation-based processes. The force due to the coolant pressure differential varies with flow conditions during bundle operation, but remains throughout the operational life of the filter plate assembly 12, i.e., in the range of 6-9 years.
The loading and stresses in the weld joints 30 and 32 are shown schematically in
The primary stress due to compression of the filter plate assembly 12 within the lower tie plate 14 and the residual welding stress relax due to thermal and irradiation effects. Thermal relaxation and relaxation due to the fast neutron flux in the region of the welds 20 and 21 reduces the stresses by additional amounts.
The calculated stress indices are shown relative to penetration and limiting values in
The method of the present invention can be used to weld metal components other than the lower tie plate 14 and the cover plate 16 that are part of the Defender debris filter lower tie plate assembly 10. The thickness of the particular metal components to be welded together will affect the parameters selected for the operation of the laser welder. For weld joints of a given thickness, the power level, focal length and speed for the laser beam are preferably set to result in a laser beam power density and weld speed needed to achieve sufficient weld joint penetration to preclude crevice—induced stress corrosion cracking, while minimizing the distortion of the metal pieces to be welded together so as to be within final acceptance specifications, thereby requiring no post weld machining of the metal components to be considered a final product. The inert gas flow is set to maximize cooling and minimize weld oxidation. Preferably, there is no wire brushing of the weld after completion to comply with foreign material exclusion methods.
After completion of the welding, the fixture 74 holding the debris filter lower tie plate assembly 10 moves via CNC to an unload position, whereupon soot is vacuumed from the debris filter lower tie plate assembly 10 before it is removed from laser system 75. The debris filter lower tie plate assembly 10 is unloaded and wiped to remove excess soot with a clean wipe and filtered compressed air. A wire brush or other mechanically abrasive means are never used to clean the welds 20 and 21. Filtered compressed air is then blown through both ends of the tie plate 14 for at least 15 seconds and wiped clean with alcohol and a clean wipe.
In the welding process of the present invention, the Defender debris filter lower tie plate assembly 10 and the weld area is cleaned and bagged in a foreign material exclusion area.
While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiment, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.