The invention relates to the laser welding of nickel-based substrates by means of a laser, with a welding material being applied to a substrate to effect the weld in the substrate.
The welding of materials sometimes leads to cracks. A welded joint or build-up welding of this nature then does not satisfy the required demands. It is an object of the invention to solve this problem.
The object is achieved by a laser build-up welding process according to the invention. The improvement concerns a laser build-up welding process described in more detail below, including a laser beam of specified parameters, a mass feed rate of welding powder, setting the speed of the laser over the substrate being welded, displacing the laser beam and selection of an appropriate nickel-based superalloy for being welded with a selected high γ′ content
In the drawing:
The figure and the description represent merely exemplary embodiments of the invention.
Welding material 14, that is, welding powder, is applied to the surface 17 of the substrate 10, if appropriate at an excavated point. The welding powder may be any nickel-based superalloy powder, typically used for gas turbines. Melting depressants, such as boron or silicone, may be added. The welding powder may also be the material of which the substrate being welded is comprised.
This is done by means of a laser 4, which uses a laser beam 7 to melt the material 14 coming from a material feed 11, in particular a powder feed. In this process, the laser 4 preferably moves at a speed of 500 mm/min. The laser power is preferably 80 watts to 120 watts, in particular 100 watts. The laser beam 7 of the laser 4 has a concave curvature.
The laser beam is conical typically. The laser beam diameter d is preferably between 300 μm and 400 μm, in particular 350 μm. The laser beam diameter d is measured on the surface 17.
In order to generally keep the supply of heat into the substrate 10 low, use is preferably made of a low mass feed rate of the powder of between 360 mg/min and 450 mg/min, in particular between 370 mg/min and 390 mg/min.
Accordingly, the speed of movement of the laser beam 7 over the substrate or surface 17 is 450 mm/min to 550 mm/min. The speed and mass feed rate of powder are coordinated to provide sufficient time to melt the powder and optionally to melt the surface layer of the substrate.
By virtue of these laser parameters, the power, the beam diameter, the speed of movement and the mass feed rate, the input of energy is deliberately kept low in order to avoid thermal cracks.
Cracks in welding layers lying one above another can also be avoided by further measures.
Firstly, this is done by virtue of the fact that the welding tracks which are laid alongside one another and form a welding layer lie between 200 μm and 250 μm apart, that is to say the laser is displaced by this amount AY in the Y direction in the plane of the welding layer to move from one track formed to the next, adjacent track to be formed.
For the subsequent welding layer, that is to say for increasing the thickness, the focus position dz is displaced by 100 μm to 150 μm in the Z direction.
These measures avoid thermal stresses and therefore also weld-related cracks.
The substrate 10 is preferably welded at below 100° C., preferably at room temperature, particularly so that cooling, very particularly without control, is carried out.
This procedure/these measures are particularly suitable for nickel-based alloys having a high γ′ content. γ′ is a secondary phase known in nickel-based super alloys. The content of a γ′ phase is the content of this phase rated to the volume or mass fraction of the matrix in which the γ′ phase is incorporated. This procedure is in particular for substrates made of Rene 80 or of 1N738, both known in the art, since these are materials which are generally somewhat harder to weld.
The high γ′ content is considered to be the maximum γ′ content at room temperature.
This γ′ content is preferably at least 30% by weight, in particular in the range of between 30% by weight and 50% by weight, very particularly 35% by weight.
The γ′ proportion in the alloy is brought about by titanium (Ti) and aluminum (Al), and therefore it is preferable that the contents of titanium (Ti) and aluminum (Al) together are preferably between 7% by weight and 9% by weight, in particular 8% by weight.
A carbon content (C) of the nickel-based superalloy is between 0.15% and 2.5% by weight and particularly 0.17% by weight.
The process can similarly be employed for nickel-based alloys having a relatively high carbon content of 0.15% by weight to 0.25% by weight.
The foregoing procedures/measures produce, for example, a polycrystalline weld seam.
Number | Date | Country | Kind |
---|---|---|---|
12150579.6 | Jan 2012 | EP | regional |
The present application is a 35 U.S.C. §§371 national phase conversion of PCT/EP2012/074310, filed Dec. 4, 2012, which claims priority of European Patent Application No. 12150579.6, filed Jan. 10, 2012, the contents of which are incorporated by reference herein. The PCT International Application was published in the German language.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2012/074310 | 12/4/2012 | WO | 00 |