This application claims the benefit of priority under 35 U.S.C. § 119 (a) and (b) to French application No. 04 51970, filed Sep. 7, 2004, the entire contents of which are incorporated herein by reference.
The present invention relates to a laser/MIG hybrid welding process using high wire speeds.
When it is desired to weld one tube or pipe to another (butt welding) or else to manufacture a tube or pipe by longitudinally welding the two longitudinal edges of a metal sheet shaped beforehand into a “U” and then an “O”, bevels are generally provided on the edges to be welded together, typically forming a groove in the shape of a “V”, an “X” or other shape.
If it is desired to fill this bevel by depositing metal therein by carrying out a laser/MIG (Metal Inert Gas) hybrid welding process, a diagram showing the principle of which is given in
Now, the higher the welding rate, the higher the wire feed rate has to be, so as to be able to rapidly fill the volume of the bevel, that is to say “V”-shaped, “X”-shaped or other shaped groove, at the welding speed in question.
Under these conditions, as soon as welding rates of around 2 m/min or higher are reached, this results, typically for thicknesses of 8 mm and taking into account the bevel shapes adopted, in having to increase the feed speed of the wire beyond the limits usually encountered on wire feeders, namely typically around 20 m/min.
One solution for increasing the rate of deposition is therefore to increase the wire diameter, since the wires conventionally used have a diameter of 1.2 mm.
However, the problem that then arises is that, for a constant rate of metal deposited, a higher current is therefore needed to melt the high-diameter wires, that is to say those of around 1.6 mm in diameter, but in this case the process runs into the current limitation of most MIG generators, which is conventionally around 450 A, which limitation therefore does not allow currents greater than this value to be delivered.
The problem which then arises is how to be able to fill a bevel at high speed without encountering the abovementioned drawbacks and limitations.
The solution of the invention is therefore a laser/MIG hybrid welding process, in which at least one portion of a bevel provided between the edges to be welded together is filled by depositing therein molten metal delivered in the form of at least one filler wire, said filler wire being melted by means of an electric arc and a laser beam which are combined together, characterized in that the welding is carried out at a welding speed of at least 2 m/min, the filler wire feed speed is at least 20 m/min, and the filler wire diameter is less than 1.2 mm.
For a further understanding of the nature and objects for the present invention, reference should be made to the following detailed description, taken in conjunction with the accompanying drawings, in which like elements are given the same or analogous reference numbers and wherein:
Depending on the case, the process of the invention may include one or more of the following characteristics:
In other words, according to the invention, it has been found in practice that, to solve the abovementioned problem, it is judicious to increase the wire speed to more than 20 m/min and to do so up to values of 30 to 40 m/min, something which can in general be quite easily achieved by modifying the reduction ratios of the wire feeder motor, but still using at the same time a wire with a diameter of less than 1.2 mm, contrary to what was employed in the prior art.
This is because, at a constant rate of metal deposited, the reduction in filler wire diameter has the consequence of reducing the current needed. Thus, it is possible, for the maximum value of the current delivered by the welding generator, to increase the amount of molten metal and therefore to fill more of the bevel at the welding speed in question, which is greater than 2 m/min.
The photograph in
In contrast, the photograph in
As may be seen in this case, the bevel is then completely filled when the process of the invention is employed, which clearly demonstrates the solution of the problem of how to completely fill the bevel thanks to the adoption of a wire speed of greater than 20 m/min and a wire diameter of less than 1.2 mm.
More generally, the welding process of the present invention is particularly suitable for the manufacture of tubes or pipes on automatic welding lines and to the butt-welding or to the laying of pipes, especially in offshore or on-shore applications.
It will be understood that many additional changes in the details, materials, steps and arrangement of parts, which have been herein described in order to explain the nature of the invention, may be made by those skilled in the art within the principle and scope of the invention as expressed in the appended claims. Thus, the present invention is not intended to be limited to the specific embodiments in the examples given above.
Number | Date | Country | Kind |
---|---|---|---|
04 51970 | Sep 2004 | FR | national |
Number | Name | Date | Kind |
---|---|---|---|
6034343 | Hashimoto et al. | Mar 2000 | A |
6642483 | Koga et al. | Nov 2003 | B1 |
6852945 | Harth, III | Feb 2005 | B2 |
7015417 | Takikawa et al. | Mar 2006 | B2 |
7019256 | Sonoda et al. | Mar 2006 | B2 |
20030234241 | Harth et al. | Dec 2003 | A1 |
Number | Date | Country |
---|---|---|
198 49 117 | May 2000 | DE |
198 49 117 | May 2000 | DE |
Number | Date | Country | |
---|---|---|---|
20060054603 A1 | Mar 2006 | US |