Exemplary embodiments relate to mechanical latches that selectively hold items in engagement and release such items from engagement. Exemplary embodiments further relate to latches used to selectively hold and release lids or covers of waste containers.
Waste containers are mechanical devices that are typically used to hold discarded items. An example of a waste container includes a trash can or bin that is typically used to temporarily store garbage or other waste items. Waste containers often have lids that help hold and isolate the contents of the waste container. For example, lids can prevent the contents of waste containers from being exposed to wind, rain and snow. Lids can contain undesirable odors of the contents. Lids can also prevent the contents of waste containers from being accessed by domestic and wild animals scavenging for food.
To avoid a lid from being opened at inappropriate times, the lid and/or the bin of the waste container to which the lid is attached may include a latch mechanism. Such latch mechanisms for waste containers may benefit from improvements.
The following is a brief summary of subject matter that is described in greater detail herein. This summary is not intended to be limiting as to the scope of the claims.
In one example embodiment a latch mechanism may be configured to be mounted to a waste container that includes a bin and a cover which will be referred to herein as a lid. Such a bin of the waste container includes walls that bound an interior space or cavity and an opening into the interior cavity, which is coverable by the lid. Such a lid may be attached to the bin in a pivoting relationship such that the lid is operative to pivot with respect to the bin between an open position and a closed position relative to the opening into the interior cavity.
When the lid is in the closed position, the lid includes an inside surface facing the cavity and the lid includes an opposed outside surface. In the examples described herein, the latch mechanism may be in operative connection with either the bin or the lid. For example, in an example embodiment, the latch mechanism may be in operative connection with the inside wall surface of the bin of the waste container and a release mechanism may be in operative connection with the lid of the waste container.
The latch mechanism may automatically engage with the release mechanism in order to lock the lid in the closed position relative to the bin. However, it should be appreciated that in alternative embodiments the latch mechanism and release mechanism may be located in different locations. For example, the latch mechanism could be mounted to the lid of the container and be operative to engage with a release mechanism in operative connection with the bin. Also, in alternative embodiments, multiple outside release mechanisms may be mounted to the waste container such as on the lid and on an upper ledge of the bin.
In an example embodiment, the release mechanism mounted to the lid is operative to enable a human to manually disengage the lid from the latch mechanism so that the lid may pivot to its open position. However, it should also be appreciated that in some applications, the waste container may also need to be configured to enable the lid to automatically open without direct manual intervention.
For example, waste disposal providers may employ a lifting mechanism to lift and rotate a waste container over a trash receptacle of a garbage truck. To avoid the lid from preventing the contents of the bin from falling out of the bin and being dumped into the garage truck, the latch mechanism may be configured to automatically disengage from the release mechanism and permit the lid to rotate to an open position. In such an embodiment, the latch mechanism may be configured such that in certain predetermined angular dump orientations of the latch mechanism, gravity is operative to actuate portions of the latch mechanism to cause the latch mechanism to disengage from the release mechanism.
In general, both the hand operated release mechanism accessible from the outside of the lid and the automatic release features of the latch mechanism are capable of maintaining a lid in a closed position when the waste container is in an upright position and a human is not engaging the release mechanism. However, some animals (such as raccoons) working individually or in groups may be capable of discovering methods of opening a lid of a waste container in order to access discarded food therein. Thus, example embodiments of the latch mechanism and release mechanism described herein may be configured to require specific actions to operate that are not capable of being discovered and/or carried out by most raccoons.
For example, raccoons working together may be capable of pushing a waste container on its side, which causes the waste container and latch mechanism to rotate 90 degrees. Thus, to prevent the lid from opening in this possible situation, an example embodiment of a latch mechanism may be operative to prevent the lid from opening unless the waste container and latch mechanism has rotated to a range of predetermined angles (such as by more than 90 degrees) in which the opening is pointed somewhat downward enabling the container to be dumped. In this example embodiment, a dumping mechanism of a garbage truck may lift and rotate the waste container by 120 degrees or more, and thus the described latch mechanism would still be operative to automatically disengage the lid for this use. However, on flat ground, a raccoon is much less likely to be able to rotate a waste container more than 90 decrees by tipping it over. Thus, the lid would remain shut when tipped over by a raccoon.
An example latch mechanism that is operative in this described manner may include a latch housing, at least one latch slide bolt, and a release weight. The release weight may be operable to move responsive to gravity in at least a portion of the latch housing from a first position to a second position to cause the at least one latch slide bolt to move from an extended position to a retracted position relative to the latch housing.
A release mechanism for use with this described latch mechanism may include a release base, a release knob, and at least one release slide bolt. Operative movement of the release knob relative to the release base causes the release slide bolt to move from an extended position to a retracted position relative to the release base.
In this example embodiment, the latch mechanism is operatively configured to lockingly engage with the release mechanism when the at least one release slide bolt and the at least one latch slide bolt are in the respective extended positions and are in aligned engagement with each other (such as when mounted to a bin and lid of a waste container with the lid in a closed position). Also in this example embodiment, the latch mechanism is operatively configured to disengage from the release mechanism when the release weight has moved to the second position and has caused the at least one latch slide bolt to move to the retracted position so as to disengage from the at least one release slide bolt. In addition, in this example embodiment, the release mechanism is operatively configured to disengage from the latch mechanism when the release knob has moved relative to the release base from an extended position to a retracted position and then from a first angular orientation to a second angular orientation relative to the release base, to cause the at least one release slide bolt to move to the retracted position so as to disengage from the at least one latch slide bolt.
In an example embodiment, the latch mechanism includes a push member that is operable to slide in the latch housing from a first position to a second position responsive to the release weight sliding in at least a portion of the latch housing from the first position to the second position of the release weight. The latch mechanism may also include at least one drive member that is operable to rotate from a first angular position to a second angular position responsive to the push member sliding from the first position to the second position of the push member. The at least one drive member may include a projection that is operative to engage with the at least one latch slide bolt and cause the at least one latch slide bolt to move from the extended position to the retracted position responsive to the at least one drive member moving from the first angular position to the second angular position.
The latch housing and the release weight may be configured such that the push member and release weight are spaced apart when the release weight is in the first position of the release weight. When the latch mechanism is rotated, the release weight will slide at least some distance in the housing before contacting the push member.
In an example embodiment, the at least one slide bolt moves in directions that are transverse to the directions that the release weight and push member slide in the housing. For example, the slide bolt may move from the extended position to the retracted position along a first direction. Also, both the release weight and the push member may slide between the respective first positions to the respective second positions in a second direction. With this example, the first direction is generally perpendicular to the second direction. However, it should be appreciated that in other examples the first and second directions of travel among these elements may be orientated at other angles with respect to each other.
The described at least one latch slide bolt may correspond to the latch mechanism having two latch slide bolts that travel in opposite directions between their respective extended and retracted positions. In this example, at least one spring may be positioned between the two latch slide bolts. The at least one spring may be operative to urge the latch slide bolts to move in opposite directions toward their respective extended positions.
In addition, the described at least one drive member may correspond to the latch mechanism having two drive members. Each of the drive members may be operable to pivot with respect to a respective pivot axis. Also, each respective drive member is operable to engage with and cause a respective one of the two described latch slide bolts to move.
In this described example with two drive members and two latch slide bolts, the push member may include a channel bounded by two push arms on opposed sides of the channel. When the push member is in the second position, the pivot axis of each drive member may extend in the channel of the push member.
In addition, each drive member may include a driven edge surface that is substantially flat. When the push member moves from the first position to the second position of the push member, the push arms both push the respective drive members and slide along the respective driven edge surfaces of the drive members. Also, portions of the two push arms may include engaging surfaces that are substantially flat. In this configuration, when the push member is in the second position of the push member, the substantially flat surfaces of the drive members and the push arms may be substantially parallel to each and in contact with each other.
In example embodiments, the release mechanism may include a release receptacle in operative connection with the release base. The release receptacle may have outer walls that bound a cavity therein. The release slide bolts are positioned inside the cavity, such that when the latch mechanism is in latched engagement with the release mechanism, portions of the latch mechanism extend in the cavity of the release receptacle to enable the latch and release slide bolts to engage with each other.
To facilitate guiding portions of the latch mechanism that include the latch slide bolts into the cavity of the release receptacle, each of two opposed walls of the release receptacle may include a guide flange that extend outwardly from the release receptacle walls. Also to facilitate engagement of the latch and release slide bolts, the at least one release slide bolt may include an aperture. Thus, when the latch mechanism is in latched engagement with the release mechanism, the at least one latch slide bolt extends in the aperture of the at least one release slide bolt. However, it should be appreciated that in alternative embodiments, the latch slide bolt may include the aperture and the release slide bolt may extend in the aperture of the latch slide bolt.
It should also be noted that animals such as raccoons may be capable, through trial and error, of discovering ways to operate simple buttons or handles in order to manually open a latch mechanism of a waste container. Thus, example embodiments may employ a release mechanism that requires a combination of different manual operations and movement in two different directions to manually cause the described release mechanism to disengage from the described latch mechanism (when the waste container is in its upright—0 degree position).
For example, an embodiment of the release mechanism may include a movable release knob that requires the knob to be both pushed inwardly and then rotated in order to release the latch mechanism. In this example, the release mechanism may be mounted to the lid in a location such that the described release receptacle is operative to extend through an aperture in the lid and be aligned with a portion of the previously described latch mechanism (when the lid is pivoted to its closed position).
The release knob may be operative to move axially between an extended position and a retracted position relative to the release base. Also, a spring may bias the release knob to move to the extended position. When the release knob is in the retracted position, the release knob is enabled to rotate with respect to the release base. A further spring may bias the release knob to rotate the knob in the opposite direction.
In this described example, the release knob may include a cam surface that is operative to rotate with the turning of the release knob. When the release knob is in the retracted position and is rotated in a first angular direction, the cam surface may be operative to urge the at least one release slide bolt to move from the extended position to the retracted position. In examples where the release mechanism includes two release slide bolts, the cam surface may be positioned between portions of the slide bolts. As the knob is turned, the cam may urge the release slide bolts to move in opposite directions from their respective extended positions to their respective retracted positions (thus disengaging from the latch slide bolts of the latch mechanism). However, in this example, when the release knob is in the extended position relative to the release base, the release knob is not enabled to be rotated in a manner that causes the release slide bolts to move to the retracted position.
In this described embodiment, the release weight may be encapsulated inside the latch housing of the latch mechanism. Such a latch housing may then be mounted to an inside wall surface of the waste container. However, in a further embodiment, rather than fully encapsulating the release weight in the housing, the latch housing may instead include a partially open cavity therein in which the release weight is operable to slide. For example, the latch housing may include an opening adjacent at least one side of the release weight. Such an opening may facilitate moving the release weight into the cavity prior to installing the latch housing on the waste container. The latch housing may then be mounted to an inside surface of the waste container (via bolts or other fasteners) such that the inside wall surface of the waste container sealingly covers the opening in the latch housing.
Other aspects will be appreciated upon reading and understanding the attached figures and description.
Various technologies pertaining to latch and release mechanisms for waste containers will now be described with reference to the drawings, where like reference numerals represent like elements throughout. In addition, the example systems are illustrated and described herein for purposes of explanation; however, it is to be understood that functionality that is described as being carried out by certain system components may be performed by multiple components. Similarly, for instance, a component may be configured to perform functionality that is described as being carried out by multiple components.
In an example embodiment, the lid and bin of the waste container may be made of a plastic material such as a high density polyethylene (or other plastic such as a polypropylene) via a manufacturing process such as blow molding, injection molding, or other molding process. However, it should be appreciated that in alternative embodiments, the lid and bin of the waste container may be made out of other materials such as metal (e.g., aluminum or steel).
Of course it should be understood that while the example embodiment described herein includes a container with a hinged lid or cover, other embodiments may include different configurations. Such configurations may include multiple covers or closure members that are movable relative to one or more openings to open and close a cavity of the bin or other container. Other arrangements may include closure members that move relative to the bin, such as by sliding sideways relative to an opening. Still other arrangements may include lids or closure members that may move and be disengaged completely from the container. Such different configurations of waste containers may be utilized with latch and other structures including the features described herein.
In this example, the waste container 202 includes features that enable the waste container to be lifted, rotated and unloaded via a lifting mechanism of a dump truck or other unloading device. Such features, for example, may include a metal horizontal retention bar 210 coupled to exterior walls bounding an external recess of the bin. Such a waste container 202 may also include wheels 212 and a handle 214. In the U.S., such waste containers may be compatible with a standard such as ANSI Z245.60—2008, the disclosure of which is incorporated herein by reference in its entirety. Also, such waste containers may have different interior capacities such as 26 gallon, 32 gallon, 64 gallon, or 96 gallon sizes, or other waste container sizes. Thus, it should be appreciated that embodiments of the latch and release mechanisms described herein may be adapted for use with any type and/or configuration of a waste container that includes a lid.
Referring back to
The example outside release mechanism includes a movable element such as a knob 126. The knob may be in operative connection with a base 128. The base 128 has an outer shape that is compatible with the surface configuration of the lid 106. For example, as shown in
However, it should be appreciated that in alternative embodiments, the base may be configured to orientate the knob in other angular orientations and may be adapted to mount to lids of waste containers with other slopes and surface configurations. Also, in alternative embodiments of the outer release mechanism, rather than having a knob shape, at least one manually movable member may have the shape of a paddle, lever, button, handle, or any other configuration that is capable of being manipulated by a user to actuate the release mechanism. In exemplary arrangements the at least one manually movable member is moved in two different directions, either linear, rotational or a combination thereof to unlatch.
As shown in
However, it should be appreciated that in alternative embodiments, these elements may have different configurations and may be mounted to the waste container in other orientations. For example, alternative embodiments of the latch 120 may be mounted to the lid 106, while the release mechanism is mounted to the side wall 136 of the bin. In order to mount these described elements to the waste container, the latch and outside release mechanism may include threaded bores and/or apertures to accommodate the use of fasteners 140 such as of bolts, screws, nuts (or any other type of fasteners or other devices that are operative to hold these elements to the waste container).
With reference to
When the latch 120 is rotated from the neutral orientation shown in
When the latch 120 is in the neutral orientation (shown in
As will be described in more detail below, an example outside release mechanism 124 includes a release receptacle 122 that includes at least one movable release slide bolt. For example, as schematically illustrated in
In this example, the latch is operatively configured to lockingly engage with the release mechanism when the latch slide bolts 506, 508 and the release slide bolts 510, 512 are all in their respective extended positions and are in aligned engagement with each other. As shown in
In an example embodiment, the latch includes a push member 530 that is operable to slide in the latch housing 502 from a first position 532 (shown in
Also, in this described example, the latch includes at least one drive member. For example, as shown in
The exemplary drive members include respective projections 544, 546 that are respectively operative to engage with corresponding projections 554, 556 of the respective latch slide bolts 506, 508. The latch slide bolts are caused to move from their extended positions 520 (shown in
In this described embodiment, the latch includes at least one spring 560 (e.g., a compression spring) that acts between the two latch slide bolts 506, 508. The spring is operable to urge the latch slide bolts in opposite directions to move them outwardly toward their extended positions 520. When the release weight 502 and push member 530 have returned to their respective first positions (as shown in
In the arrangement shown in
To enable the exemplary latch to operate with these two described perpendicular directions of motion, the push member is operative to simultaneously actuate both drive members when moved from its first position 532 to the second position 634. For example, each of the drive members is operable to pivot with respect to a respective pivot axis 570, 572. Also, the push member includes a generally “y-shape” configuration that includes a channel 574 bounded by two push arms 576, 578 on opposed side ends of the push member. As the push member moves between the first and second positions 532, 634, the pivot axes 570, 572 extend within the channel 574 of the push member.
Also, as illustrated in
In addition, as shown in
In addition, it should be noted that the spring 560 will provide some resistance to movement of the push member and may be operative to prevent the release weight 504 from moving to the second position when the latch mechanism is only slightly angled downwardly as well (such as at an angle of 100 degrees). Consequently, when a waste container (with the example latch mounted thereto) is knocked over to the sideways orientation shown in
With this described exemplary configuration, the latch enables the lid to be automatically opened when a lifting mechanism of a garbage truck (or other device) lifts and rotates the waste container to a downward dump angular orientation between the sideways angular orientation shown in
As discussed previously with respect to
Referring now to
Referring now to
As shown in
To illustrate the cam 1310 more clearly,
As discussed previously, hand operation of the exemplary knob is operative to enable disengagement of the outside release mechanism from the previously described latch.
In addition, it should be appreciated that when a person lets go of the exemplary knob after the knob has been rotated to the position shown in
To aid in the alignment of the release mechanism with the latch mechanism, the two opposed side walls 1810, 1812 of the release receptacle 122 include respective guide flanges 1814, 1816. Inwardly facing surfaces of the exemplary guide flanges may be at least partially curved/beveled in order to facilitate guiding portions of the latch that include the latch slide bolts into aligned engagement of the cavity of the release receptacle.
For example,
In the examples of the latch and outside release mechanism described herein, when in engagement, the projections of the release slide bolts are configured to be more widely spaced apart than the spacing between the latch slide bolts. Thus, when engaged together, the latch slide bolts are positioned generally between the projections of the release slide bolts (except for the portions of the latch slide bolts extending in the apertures of the release slide bolts). However, it should be appreciated that in alternative embodiments, the configurations of these slide bolts may be reversed, with the release slide bolts generally being positioned to extend between projections associated with the latch slide bolts.
Also, other permutations and configurations are possible in further example embodiments. For example, the latch slide bolts may include apertures and the release slide bolts may extend into the apertures of the latch slide bolts. Also, in other embodiments, the release receptacle which includes the release slide bolts may instead be integrated into the latch as a receptacle with walls that surround the latch slide bolts.
It should be noted that in alternative embodiments, the described release mechanism may also be used for waste containers that do not include the previously described gravity operated latch mechanism. Rather, in place of the latch mechanism, the waste container may include a striker that includes projections operative to engage with the release slide bolts described previously.
Also, it should be appreciated that such a striker may include additional release features, such as a button that is operative to move the striker projections.
When the push button 2114 is pushed inwardly (e.g., upwards in
In an example embodiment of a waste container in an upright orientation, such a striker/release button mechanism 2102 may be mounted in a manner that enables the outer surface of the button to extend in or to be accessible through an aperture in a horizontally orientated wall portion of the bin. In an exemplary location the button 2114 may face downwardly on the outside of the bin while the striker slide bolts face upwardly and outwardly under the lid to engage a release mechanism mounted to the lid. A flange area including an angular cavity enables mounting of the release button to the bin and movement of the button relative thereto. Rather than using gravity, this described striker/release button mechanism 2102 may require the lifting mechanism of a garbage truck (or a human operator of a garage truck) to depress the button 2114 in order to release the lid prior to dumping the contents of the waste container. This may be done in some arrangements manually before the container is lifted. Alternatively, the lifting mechanism may include a moving member that causes the button to be depressed when the container is in a dump angular orientation when the opening is pointed sufficiently downward to dump the contents.
In example embodiments, the described components of the latch mechanism, release mechanism, and striker/release button mechanism may be comprised of plastics (e.g., Polycarbonate, ABS, PVC), metals (stainless steel, aluminum, tin), and/or any other materials that are operative to form the shapes and be capable of carrying out the functions described herein. Further, these described elements may be mounted together with fasteners such as screws, bolts, adhesives, or any other fastening or bonding system applicable to the type of materials being assembled. In addition, it should be appreciated that the housings may include gaskets, o-rings, and/or other elements to increase the weather/water resistance of the described mechanisms.
With reference now to
Referring now to
Also at step 2208, the method includes responsive to the release weight moving to the second position in step 2206, the at least one latch slide bolt moving from an extended position to a retracted position relative to the latch housing to cause the at least one latch slide bolt to move out of engagement with the at least one release slide bolt and enable the latch mechanism to disengage from the release mechanism. This corresponds to the waste container moving to a dump angular orientation in which the lid opens to enable dumping the contents of the cavity.
In addition, the method may include a step 2210 in which the latch angularly moves from the second angular orientation to the first angular orientation (back to the upright orientation) whereby the latch mechanism becomes lockingly engaged with the release mechanism with the at least one latch slide bolt and the at least one release slide bolt in engagement with each other.
In addition, the method may include a step 2212 in which the release knob moves relative to the release base from an extended position inwardly to a retracted position and then from a first angular orientation to a second angular orientation relative to the release base. In step 2214, responsive to step 2212, the at least one release slide bolt may move from an extended position outwardly to a retracted position relative to the release base to cause the at least one release slide bolt to move out of engagement with the at least one latch slide bolt and enable the release mechanism to disengage from the latch mechanism. In this example, the knob may not be able to rotate from the first angular orientation to the second angular when the knob is in the extended position.
It is noted that several examples have been provided for purposes of explanation. These examples are not to be construed as limiting the hereto-appended claims. Additionally, it may be recognized that the examples provided herein may be permutated or otherwise changed while still falling under the scope of the claims.
Further, it should be appreciated that while the exemplary embodiments described herein relate to waste containers and particular configurations of the exemplary waste containers, the structures and principles of the exemplary embodiments may be applied to other configurations of waste containers or other types of containment devices, closure structures or latching arrangements in other fields of use.
Thus the exemplary embodiments described herein achieve improved operation, eliminate difficulties encountered in the use of prior devices, systems and methods and attain the useful results described herein.
In the foregoing description certain terms have been used for brevity, clarity and understanding. However, no unnecessary limitations are to be implied therefrom because such terms are used for descriptive purposes and are intended to be broadly construed. Moreover, the descriptions and illustrations herein are by way of examples and the inventive aspects are not limited to the features shown and described.
Further, having described the features, discoveries and principles of the exemplary embodiments, the manner in which they are constructed and operated and the advantages and useful results attained, the new and useful structures, devices, elements, arrangements, parts, combinations, systems, equipment, operations, methods, processes and relationships are set forth in the appended claims.
This application claims benefit pursuant to 35 U.S.C. § 119(e) of Provisional Application Nos. 61/984,428 filed Apr. 25, 2014, 61/984,464 filed Apr. 25, 2014 and 62/081,365 filed Nov. 18, 2014, the disclosures of each of which are incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
480148 | Theby | Aug 1892 | A |
1438376 | Jeanmaire | Dec 1922 | A |
1908980 | Heyel | May 1933 | A |
2792963 | Smith | May 1957 | A |
3091356 | Simpkins | May 1963 | A |
3498657 | Fontana | Mar 1970 | A |
3596952 | Hinkle | Aug 1971 | A |
3674298 | Vekony | Jul 1972 | A |
3809414 | Neunherz | May 1974 | A |
3991595 | Bahry | Nov 1976 | A |
4120415 | Hopkins | Oct 1978 | A |
5015021 | Wyson | May 1991 | A |
5078295 | Grant | Jan 1992 | A |
5105967 | Horpestad | Apr 1992 | A |
5149153 | Drewry | Sep 1992 | A |
5224744 | Michelutti | Jul 1993 | A |
5415314 | McCollum | May 1995 | A |
5419598 | Kreitzer | May 1995 | A |
5683126 | De Vivo | Nov 1997 | A |
5738395 | Probst | Apr 1998 | A |
6030019 | Stiltner | Feb 2000 | A |
6047999 | Dixon, Jr. | Apr 2000 | A |
6053541 | Harris | Apr 2000 | A |
6199714 | Thompson | Mar 2001 | B1 |
6290093 | Obriot | Sep 2001 | B1 |
6343709 | DeForrest | Feb 2002 | B1 |
6510588 | Eromaki | Jan 2003 | B2 |
6666485 | Moret | Dec 2003 | B1 |
6669243 | Katoh | Dec 2003 | B2 |
6733053 | Hodge | May 2004 | B2 |
6793084 | Wunsch | Sep 2004 | B1 |
6808080 | Spiers | Oct 2004 | B2 |
6851288 | Howes | Feb 2005 | B2 |
6857538 | Lin | Feb 2005 | B2 |
7036852 | Cho | May 2006 | B2 |
7182373 | Yamada | Feb 2007 | B2 |
7234327 | Howes | Jun 2007 | B2 |
7455333 | Ookawara | Nov 2008 | B2 |
7506902 | Sheng | Mar 2009 | B2 |
7549552 | Hasegawa | Jun 2009 | B2 |
7712186 | Kang | May 2010 | B2 |
7712798 | Kraus | May 2010 | B2 |
7806287 | Rouns | Oct 2010 | B2 |
7832239 | Kozuka | Nov 2010 | B2 |
7971723 | Chiu | Jul 2011 | B1 |
8177264 | Iwakami | May 2012 | B2 |
8186539 | Lin | May 2012 | B2 |
8235233 | Pehr | Aug 2012 | B2 |
8313126 | Ferkovich | Nov 2012 | B2 |
8403374 | Shimizu | Mar 2013 | B2 |
8479944 | Moore | Jul 2013 | B2 |
8888147 | Blanck | Nov 2014 | B2 |
8910821 | Stravitz | Dec 2014 | B1 |
9573757 | Stravitz | Feb 2017 | B1 |
9580243 | Reeb | Feb 2017 | B2 |
20030006616 | Katoh | Jan 2003 | A1 |
20030189340 | Kitzis | Oct 2003 | A1 |
20030201265 | Lin | Oct 2003 | A1 |
20040256859 | Yamada | Dec 2004 | A1 |
20070163310 | Ookawara | Jul 2007 | A1 |
20100102575 | Ferkovich | Apr 2010 | A1 |
20110036837 | Shang | Feb 2011 | A1 |
20120080890 | Loret de Mola | Apr 2012 | A1 |
20120146343 | Zhao | Jun 2012 | A1 |
20140238990 | Banik | Aug 2014 | A1 |
20140367974 | Keely | Dec 2014 | A1 |
20150008680 | Suzuki | Jan 2015 | A1 |
20160159569 | Reeb | Jun 2016 | A1 |
20160257491 | Manssourian | Sep 2016 | A1 |
20160362229 | Hoskins | Dec 2016 | A1 |
20170043950 | Reeb | Feb 2017 | A1 |
Number | Date | Country | |
---|---|---|---|
61984428 | Apr 2014 | US | |
61984464 | Apr 2014 | US | |
62081365 | Nov 2014 | US |